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4: Two applications of the point process likelihood formula
Two-alternative forced choice (2AFC) discrimination. Let’s assume we have some model

that assigns some conditional intensity function λ~x(t) to any given stimulus ~x. We may use
this model to perform discrimination tasks: given the observed spike train data D = {ti},
which of the two stimuli ~x1 or ~x2 are more likely to have produced this spike train? (The
detection task is a special case: here we would like to know whether ~x0 or ~x = 0 produced
the observed response.)

According to Neyman-Pearson, we should simply compare loglikelihoods:

log
p(D|~x1)

p(D|~x2)
=

∑

i

log λ~x1
(ti) −

∫ T

0

λ~x1
(t)dt −

(

∑

i

log λ~x2
(ti) −

∫ T

0

λ~x2
(t)dt

)

=
∑

i

log
λ~x1

λ~x2

(ti) +

∫ T

0

[λ~x2
(t) − λ~x1

(t)] dt.

This formula has a simple interpretation: we will prefer hypothesis ~x1 if the difference
log λ~x1

(t)−log λ~x2
(t) is large at the times ti when we observed a spike, and when the difference

λ~x1
(t) − λ~x2

(t) is large at all other times.
In the special case of homogeneous Poisson processes, λ~xi

(t) ≡ λi, this formula reduces
further:

log
p(D|~x1)

p(D|~x2)
= NT log

λ1

λ2

+ T (λ2 − λ1),

with NT denoting the total number of spikes observed on [0, T ]. In other words, the total
spike count NT is sufficient here to perform discrimination optimally. Another way to state
this is that NT is a minimal sufficient statistic for performing inference on the the rate λ of a
homogeneous Poisson process: all timing information may be ignored in this case. (Of course
in general we do need to keep track of spike timing to perform inference optimally, as is clear
from the more general formula above.)

Change-point detection. In many cases we are interested in detecting the time of a change
in a neuron’s firing rate, from some baseline rate λ0 to λ1 (Akman and Raftery, 1986; Loader,
1991; Herberts and Jensen, 2004). We may estimate the change-point time (the time t0 at
which the rate changes from λ0 to λ1) by maximum likelihood:

t̂MLE = arg max
t

L(t),
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with the likelihood of a change at time t defined as

L(t) = Nt log λ0 + (NT − Nt) log λ1 − tλ0 − (T − t)λ1 = t(λ1 − λ0) + Nt log
λ0

λ1

+ const.,

with Nt defined as the cumulative number of spikes up to time t. (For simplicity here, assume
that the rates λ0 and λ1 are known.) Thus this likelihood has a very simple form: a linear
drift interrupted by jumps of size log λ0

λ1
at spike times. We may estimate the change point

t0 by optimizing L(t),
t̂MLE = arg max

t
L(t).

It is clear that we will not be able to estimate t0 exactly unless the firing rate goes to
infinity (the information in the spike train is roughly proportional to the total number of
spikes observed, as we will discuss in more detail shortly). The consistency and asymptotic
distribution of t̂MLE is fairly easy to derive in the limit λ0, λ1 → ∞, λ0/λ1 = c; for consistency,
we need only note that Nt may be approximated by its mean

E(Nt) =

{

λ0t 0 ≤ t < t0

λ0t0 + λ1(t − t0) t0 ≤ t ≤ T

in the large firing rate limit; therefore, we may approximate

L(t) ≈ const. + t(λ1 − λ0) +

{

λ0 log λ0

λ1
t 0 ≤ t < t0

[λ0t0 + λ1(t − t0)] log λ0

λ1
t0 ≤ t ≤ T

.

Proving consistency is now (by standard M-estimator theory) just a matter of proving that
L(t) is asymptotically increasing up to t0 and decreasing after t0 (van der Vaart, 1998). This
may be proven directly1 or by the more standard approach of writing this expected log-
likelihood ratio as a negative Kullback-Leibler (KL) divergence and using the non-negativity
of the KL divergence (Cover and Thomas, 1991).

The asymptotic distribution of t̂MLE may be characterized as the maximizer of a Brownian
motion with two-sided linear drift; generically, both the drift and scale of the Brownian change
discontinuously at t0 (van der Vaart, 1998).

1Taking derivatives, we need to prove that

(λ1 − λ0) + λ0 log
λ0

λ1

> 0

and

(λ1 − λ0) + λ1 log
λ0

λ1

< 0

for any positive λ0 6= λ1. To see this, simply write

(λ1 − λ0) + λ0 log
λ0

λ1

= λ0 (1/c − 1 + log c)

and

(λ1 − λ0) + λ1 log
λ0

λ1

= λ1 (1 − c + log c)

for c = λ0/λ1; the desired inequalities follow noting the positivity of λ0 and λ1 and then using the inequalities

1 − 1/c ≤ log c ≤ c − 1, 0 < c < ∞.
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5.2: Renewal processes
A key equation for a spike train corresponding to a renewal process is the conditional

firing rate given the occurrence of a spike at time t = 0:

λt|(n(t) = 0) =
∑

i>0

p ∗i−1 p(t) =

(

∑

i>0

(p∧)i

)

∨

(t) =

(

p∧

1 − p∧

)

∨

(t),

where ∗i denotes the i-fold convolution and ∧ and ∨ denote the Fourier and inverse Fourier
transforms, respectively. The renewal theorem (Karlin and Taylor, 1981) states that

lim
t→∞

= 1/E(T )

under weak conditions on p(t); i.e., the asymptotic firing rate is given by the inverse of the
mean interspike interval. (Note that in general, by Jensen’s inequality,

1/E(T ) ≤ E(1/T ),

since the function 1/x is convex for x > 0.)

5: Spatial Poisson processes
While we will spend most of our time discussing one-dimensional temporal point processes,

it is worth noting that the concept of a Poisson process extends readily to the multidimen-
sional case (Snyder and Miller, 1991; Moeller and Waagepetersen, 2004). The same definition
applies: a Poisson process is a nonnegative discrete stochastic process for which the counts in
any collection of disjoint sets C1, C2, . . . are independent Poisson random variables, with rate
parameter λC =

∫

~x∈C
λ(~x)d~x, for some rate function λ(~x). We obtain the same likelihood

formula in the continuous-space limit:

∑

~xj

log λ(~xj) −

∫

λ(~x)d~x,

where ~xj are the points where samples were observed. We will discuss this further in the
context of models which are useful for optimal image smoothing.

Point processes in one dimension (e.g. time) are simpler because sampling and likelihood
calculations may be done recursively for many natural models of the conditional intensity
function λ(.). In general it may be difficult or awkward to construct analogous recursions in
the case that the state space has dimension larger than one; see (Moeller and Waagepetersen,
2004) for further details.

7: Time-rescaling: network simulation example
To be concrete, let’s imagine a population of model neurons with spike rate given by the

generalized linear model form

λi(t) = f



Ii(t) +
∑

ti′,j<t

hi′,i(t − ti′,j)



 ,
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where Ii(t) is some input signal to neuron i and hi′,i a post-spike effect from the i′-th observed
neuron; these terms are summed over all past spike times {ti′,j}. The hi,i terms correspond to
the i-th cell’s own past activity, and may encode e.g. refractory or burstiness effects; the hi′,i

terms from the other cells in the population correspond to interneuronal interaction effects,
and may be excitatory and/or inhibitory.

To sample from this model we may adapt the approach taken in Brown’s eq (7.6):
Initialization (assuming no spikes have been observed in the interval (−∞, 0)):

Set the clocks ui = 0 for all cells i.
Set the summed currents mi(t) = 0 for t ∈ [0, T ] and all cells i.
Draw the random times τi = ei/dt, ei ∼ exp(1) for all cells i.
Set the time index t = 0.

While t ≤ T :
Advance the clocks ui = ui + f [Ii(t) + hi(t)] for all cells i.
If ui′ ≥ τi′ for any cell i′:
— record that neuron i′ spiked at time t;
— update the currents mi(s) = mi(s) + hi′,i(s − t) for s ∈ [t, t + t0] for all cells i which

are connected to cell i′;
— draw a new (independent) random time τi′ = ei′/dt, ei′ ∼ exp(1);
— reset the clock ui′ = 0.
Advance the time index t = t + dt.
Note that only one call to the random number generator is required per spike, making the

method quite computationally efficient.
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