From Hidden Markov Models to Linear Dynamical Systems
Thomas P. Minka
(revised July 18, 1999)

Abstract

Hidden Markov Models (HMMs) and Linear Dynamical Systems (LDSs) are based on
the same assumption: a hidden state variable, of which we can make noisy measurements,
evolves with Markovian dynamics. Both have the same independence diagram and con-
sequently the learning and inference algorithms for both have the same structure. The
only difference is that the HMM uses a discrete state variable with arbitrary dynamics
and arbitrary measurements while the LDS uses a continuous state variable with linear-
Gaussian dynamics and measurements. We show how the forward-backward equations for
the HMM, specialized to linear-Gaussian assumptions, lead directly to Kalman filtering and
Rauch-Tung-Streibel smoothing. We also investigate the most general possible modeling
assumptions which lead to efficient recursions in the case of continuous state variables.

1 Introduction

Both HMMs and LDSs specify a joint probability distribution over states s;..sr and measure-
ments X;..X7. In both cases, the distribution factors in the same way:

T
p(S1--ST, X1--XT) = p(sl)p(xl|s1) Hp(St|St—1)p(Xt|St) (1)
t=2
where all terms are implicitly conditioned on the parameters of the model. This factorization is
equivalent to the following independence diagram:

S]——==S9 ——==83 —= o0 o o —=S87

X1 X9 X3 XT

which is a graphical way to say that the hidden states form a Markov chain that emits a time
series of outputs. To convert a graph into a factorization, make one term per node, conditioned
on the nodes pointing into it. In this way, mathematical manipulations can be replaced with
graphical ones.

Besides a Markov chain (horizontal arrows) with noisy measurements (vertical arrows), this
graph can also be considered a mixture model (vertical arrows) with coupling between the as-
signment variables (horizontal arrows). It is just a matter of whether you consider the horizontal
or vertical links to be fundamental. More complex independence diagrams can be interpreted
in even more different ways.

The main point of this paper is that the independence structure reflected in the graph determines
the overall structure of the algorithms. The choice of conditional distributions only affects
computational details, which are the only difference between the HMM and the LDS.

Given one or more measurement sequences from the model, there are three basic tasks we want
to perform:

Classification Compute the probability that a measurement sequence x;..xy came from this
model.

Inference Compute the probability that the system was in state z at time ¢, i.e. p(s; = z|x;..x7).

Learning Determine the parameter settings which maximize the probability of the measure-
ment sequences.

The first two tasks are accomplished via forward-backward recursions which propagate informa-
tion across the graph. The third task is performed iteratively by EM, where the E-step is the
inference task and the M-step is a linear maximum-likelihood problem. Only the first two tasks
are discussed here; the M-step for a LDS is straightforward and can be found in Ghahramani &
Hinton (1996).

2 Generic forward-backward propagation

This section develops the complete solution to the classification and inference tasks. In exchange
for making the restrictive assumption of a Markov chain, we get an exact, efficient inference
algorithm. The reason is that each state variable s; separates the graph into three independent

Xt

where

Bt = {Xl--Xt—lgsl--St—l} (2)
Ft = {Xt+1..XT,St+1..ST} (3)

Therefore,
P(By, 8¢, X, Fy) = p(By, s)p(x¢|s¢)p(Fi|sy) (4)

If we want p(s, x;..X7), we can integrate out the other state variables:

p(st, x1.X7) = /sl..st_l/st+1..sTp(Bt’st’Xt’Et) (5)
= ([wms) s ([otris)) ©)
= DB sop(als)p(Frs) @)

where
BY = {x1.x; 1} (8)
B = {xenxr))

The probability of the entire measurement sequence is p(x;..xr) = g, p(st, X1..Xy) and the
probability of being in state z at time ¢ is p(s; = z,x;1..x7)/p(X1..X7), so the joint distribution
(7) is all we need to solve the classification and inference tasks.

The idea is to compute the left and right terms in (7) recursively on the left and right subgraphs.
To this end, define

ar(sy) = p(BY,se)p(xelst) = p(By, Xy, s¢) (10)
Bi(ss) = p(F[se) (11)

corresponding to the notation in Rabiner (1989). Therefore
p(st, Xl..XT) = at(st)ﬁt(st) (12)

To derive the recursions, consider two consecutive time-steps:

Si_1—= Sy %/
\

\

B4 Fy

In this diagram, By = B; 1 U{s; 1,x; 1} and Fy 1 = {s;,x;} U F}.

The independence diagram tells us

on(s1) = pals)p(Bf.si) = ploalsi) [p(BF 1501 = 231,80
= p(xi|se) /Zp(Bf_p St-1 = 2)p(Xi—1]St-1 = 2)p(si[si-1 = z) (14)
= p(x|sy) /zp(St|St71 = z)ay1(2)

Bi-1(se-1) = p(FY 4[se-1) = /Zp(st = 2, Xy, F{’[si-1)
= [plsi = zlsi-)p(aals = 2)p(F7ls, = 2)

(
(
(
(
(
= [plse = 2lsi-)p(xils: = 2)6i(2) (

To start off the recursions:

ai(s1) = p(s1)p(xis1) (19)
ﬁT(ST) = 1 (20)

Putting these equations together lets us compute all ay(-) (going forward in time) and all 5;(-)
(going backward in time) and therefore all marginals for s;. A backward step is needed because
we want the best estimate of s, using all the data at hand, including data received after time ¢.
It may be helpful to consider the graph to be a parallel machine, where each node is a processor
and the links are communication paths. The forward-backward recursions make sure that every
s; processor gets information about the entire measurement sequence.

If we instead want the marginal pairwise density of s; ; and s;, the diagram tells us, going left
to right:

p(St—last‘BfA;Ewaxt—laxt) & p(BfflaSt—l)p(xt—l|St—1)p(st|St—1)p(xt‘st)p(ﬂw‘st) (21)
= oy_1(Se—1)p(Se[se—1)p(x¢|8¢) Be(st) (22)

This obviously generalizes to triples of state variables and so on. Therefore any inference task
on this model can be solved by computing the o’s and A’s.

Since this algorithm is derived from independence relationships alone, it is clear that any transi-
tion density p(s¢|s;—1) and any emission density p(x¢|s;) can be used, in principle. These densities
may depend on time, i.e. the process need not be stationary. Furthermore, if the independence
diagram were not a chain but rather a tree, exact inference could still be performed efficiently.
This case is illustrated below:

1 1

P 2 92 9
X3 S1 Sog —=Xj

s, sy sy s
Xi XXy X

Since each hidden state node still partitions the graph into independent pieces, a similar set of
recursions can be derived, resulting in an upward-downward algorithm (Pearl, 1988). This is
left as an exercise.

2.1 Scaling factors

In preparation for the Linear Dynamical System equations, it is helpful to reformulate the
forward-backward recursions in terms of scaled a’s and B’s. The rescaling is also useful for
avoiding numerical underflow (Rabiner, 1989).

Define

e = p(xglx1-%x4-1) (23)

which is the inverse of Rabiner’s (1989) scaling factor, also called ¢;. Now factor ¢; out of the
original definition of cy(s;):

ay(sy) = p(sy, BY,xi) = p(sy, X1..X¢) (24)
= p(x1..%)p(se|x1..%y) (25)
= (1:[1 cr)G (st) (26)

which defines é;(s;) = p(s¢|x1..x;). Equation 15 can be turned into a recursion for é:
t t—1
(IT er)éulse) = p(xelse) /P(St\st—l =z)(]] ¢;)ds-1(2) (27)
=1 z T7=1

5

ata(s) = plxils:) [plsisi1 = 2)ai(2) (28)

where ¢; is computed as the factor that normalizes &, (s;). This way & (s;) and all of the ¢; stay
within machine precision during the forward propagation.

Similarly, define

T

Bi(s)) = (I er)Bilse) (29)

T=t+1

where ¢; is the same scaling factor used for &;. Equation 18 turns into
~ 1 ~
Balsis) = — [p(s = zlsi)p(xils: = 2)fi(2) (30)
t Jz

which keeps /5’ within machine precision.

The marginal distributions now become exact in terms of the scaled a’s and §’s (the distributions
do not require normalization):

p(sefx1.xr) = ?t(st)ﬁt(st) (31)
p(St—l,St‘Xl--XT) = c_td’tfl(Stfl)p(st|St71)p(xt‘st)3t(st) (32)

Note that the forward and backward recursions could be derived from these equations alone, by
integrating the latter equation over s;_; or s;, respectively.

The probability of the measurement sequence is now

p(xi.xr) = []e (33)

T7=1

2.2 Sequential vs. parallel recursions

The recursions just given are parallel in the sense that & and B are computed independently of
each other. It is also possible to derive a sequential recursion, where the B ’s are computed from
the &’s instead of from the data. This is the type of recursion that is used for Linear Dynamical
Systems. The idea is to make a backward recursion for the product dy(s;)5;(s:) = p(se|x1..xr)
as follows (Murphy, 1998):

A

Gui(si-0)Bi-1(50-1) = [ploi-alsi = 2,x1.x0)du(2)fu(2) (34)

. p(St|St—1)5ét—1(St—1)
p(si_1]8e, X1.X7) = T o150 = 2)n (@) (35)

This comes from multiplying (30) by é&; 1(s; 1) and applying (28) for ¢,.

6

3 Linear dynamical systems

When the state variables s; are discrete, the integrals above become sums and the & and BA
functions can be stored and computed explicitly. This leads to the HMM forward-backward
algorithm, which is completely general in terms of what the transition and emission probabil-
ities can be. When the state variables are continuous, the & and 5 functions must instead be
stored implicitly and the integrals solved analytically. This leads to restrictions on the kinds of
transition and emission densities we can handle efficiently, i.e. in time linear in the length of
the measurement sequence.

To get a linear-time algorithm, each & and S function must be represented with a constant
number of parameters (constant with respect to 7). Otherwise the integral at each step would
take time proportional to 7. For example, if we use a mixture of Gaussians, the number
of components must remain constant. This is a very stringent requirement, since it means
multiplication by the transition and emission densities cannot make the function more complex
but only change its parameters. The only family of probability distributions with this property—
closure under multiplication—is the exponential family. Fortunately, the exponential family is
quite large, including the Gaussian, Gamma, Poisson, and Beta distributions. Any distribution
which can be written as p(z,0) = exp(8T f(z) + g(0)) is in the family.

Let () denote the abstract choice of density for our model, e.g.) = Gaussian. Conditioned
on s;, the variables z; and s;;; must have density (), though with arbitrary parameters. They
must also have marginal density @ if s; has density @ (because of (15)). If @@ = Gaussian, then
this means s;, s;_1, and x; must be jointly Gaussian:

p(St|St,1) ~ N(ASt,bF) (36)
p(x¢lsy) ~ N(Csy,X) (37)

)
where N (x;m, V) = ! —l(x —m)TV(x —m))

— —ex
\27rV\1/2 p(2

This model can also be written, more conventionally, as a set of linear equations driven by noise
(e.g. as in Ghahramani & Hinton (1996)):

st = As; 1 +w; (38)
w, ~ N(0,T) (39)
x; = Cs;+vy (40)
vi ~ N(0,%) (41)

Hence choosing (Q = Gaussian leads to exactly the class of Linear Dynamical Systems (LDSs).
In their fullest generality, the parameters A, C, " and X may depend on ¢, i.e. the model may be
nonstationary. An additional parameter of the model is the initial state distribution N (mg, Vi)
which starts off the recursions. If () is not Gaussian, then we can still get tractable recursions,
but they will not be Kalman filter recursions.

3.1 Forward recursion: Kalman filter

Once we’ve decided on a linear-Gaussian restriction, the next step is to perform the integrals
in the forward-backward equations. The representation for &; can be any fixed-length mix-
ture of Gaussians. For simplicity, let it be one Gaussian: d&y(s;) ~ N (my, Vy). The forward
equation (28) becomes

Ctd’t(st) = N(Xt; CSt,Z) /N(StéAZ= F) N(Z§mt—1,vt—1) (42)

The following fact comes in handy. Suppose we have a Gaussian random vector partitioned into
x and y with the following mean and covariance:

T
v] av, aviars v, (43)
Since p(y[x)p(x) = p(y)p(x[y), we get
N(y;Ax,V,) N(x;m,;, V,) = N(y;Am,, AV,AT+V,)
N(x;m, + K(y — Am,), (I - KA)V,) (44)
where K = V,AT(AV,AT +V,)"! (45)

using the rule for conditioning a Gaussian (Minka, 1997).

Applying this rule twice to (42):

cby(s)) = N(x4;Cs,X) N(si; Amy_i, AV, AT 4+ 1) (46)

= N(x;;CAm,_,,CP, CT +Y)
N(sy; Am,_; + K,(x, - CAm,_,), (I - K,C)P,_,) (47)
where K, = P,_,CT(CP,_,C" 4+ x%)™! (48)
and P, ;, = AV, AT4+T (49)

Therefore:

m, = Am; |+ K;(x; — CAm, ;) (50)
V, = I-K.C)P,_, (51)
¢ = N(x;CAm, ;,CP, |CT+Y) (52)

which are exactly the Kalman filter equations reported by Ghahramani & Hinton (1996). By
design, the computational cost is constant per time step.

Since &4 (s1) = p(s1|x1), the recursions start off with
m; = mg-+ K1 (X1 — Cmo)
V1 == (I - K1C)V0
ci = N(Xl; Cm(), CV()CT + E)
K, = V,C'(CV,CT+x%)!

~— — e’ S

8

Note that the transition density could be such that s; is a constant s, in which case we have a
recursive solution for the posterior of s given a series of independent, noisy observations. This
again emphasizes that the observation density must come from the exponential family: it is the
only family for which parameter estimation can be performed recursively, via sufficient statistics
(this is the Pitman-Koopman theorem).

3.2 Backward recursion: Kalman smoothing

Now we can derive a sequential backward recursion for é;(s;) 3t(st) = N (sy; my, Vt) This is the
marginal distribution for s;, given the entire measurement sequence. It is also possible to derive
a parallel backward recursion for §; see Murphy (1998).

Multiplying the backward equation (30) by é&; 1(s¢ 1) gives us

: 1, V
s (5B (802) = Nsecrimes, Vi) [N Ay, DI e O,) R0 VI

ciby(z)

Combining the first two terms via (44) and substituting (46) for c;&;(z) causes massive cancel-
lation, leaving

N

G1(si-1)Bi-1(s1-1) = /N(Stfﬁ my +J1(z—Amy_y), T —J;-1A) V)N (z; 1y, Vt)
= /N(St—l —my +JAmy_ 53z, (I— 321 A) V)N (z; iy, Vt)

N(st—l —my_; +J 1 Amy_q;Jmy, Jt—lthtT_1 + (I - Jt—lA)Vt—l)
= N(simp;my_y +Jp (i — Amy_y), Vi + Jt—lthtT_1 —Ji1AV,)

where J;,_; = V;_AT(P,_)7! (58)
Therefore:

my_; = my_ +J,(m—Am,_,) (59)

Vioi = Vi + 3 (Ve —Pi)J), (60)

since AV, ; = P;_;J} ,. These match the equations given by Ghahramani & Hinton (1996).

Since Br(sy) = 1, the backward recursion starts with

ﬁlT = Imnr (61)
Vr = Vr (62)

Equation 32 for the marginal pairwise density becomes

N (sy; 1y, V
p(stflast‘xl--XT) = N(Stl;mtlavtI)N(StEAStlaF)N(Xt;CStaE)% (63)
1O (St

which is virtually the same as the backward equation above. Proceeding as before:
p(se1,8ex1-x7) = N(sg ;my 1+ Ty 1(sp — Amy 1), Vi — T, 1AV,)N (s; iy, Vt)
Therefore s; ; and s; are jointly normal:

St-1] m; Avtq Jtilvt
R)

S¢ ﬁlt VtJtTfl Vt (64)

The recursion reported by Ghahramani & Hinton (1996) to compute the cross-covariance be-
tween s;_; and s; is not required; the answer is simply J;_; V.

Every Linear Dynamical System has the property that the entire set of state variables and
measurement variables {sj..sy,x;..x7} is jointly Gaussian. In other words, the variables all
form a long Gaussian random vector whose mean and covariance matrix can be computed in
terms of A,C,T" and ¥. In principle, one could use this fact to compute any probability of
interest; the forward-backward recursions just provide a particularly efficient way to do so.

Acknowledgements

I am indebted to Rosalind Picard and Aaron Bobick for improving the presentation and to
Kenneth Russell for helpful discussions.

References

[1] Zoubin Ghahramani and Geoffrey E. Hinton. Parameter estimation for linear dynamical
systems. Technical Report CRG-TR-96-2, University of Toronto, 1996.
http://www.cs.utoronto.ca/ zoubin/.

[2] Thomas P. Minka. Old and new matrix algebra useful for statistics.
http://vismod.www.media.mit.edu/"tpminka/papers/tutorial.html, 1997.

[3] Kevin P. Murphy. Filtering, smoothing and the junction tree algorithm.
http://www.cs.berkeley.edu/ "murphyk/publ.html, 1998.

[4] Judea Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San
Francisco, CA, 1988.

[5] L. R. Rabiner. A tutorial on hidden Markov models and selected applications in speech
recognition. Proc. IEEE, 77(2):257-286, Feb. 1989.

10

