
Statistical analysis of neural data:
Regression approaches for modeling neural responses and stimulus

decoding

Liam Paninski
Department of Statistics and Center for Theoretical Neuroscience

Columbia University
http://www.stat.columbia.edu/∼liam

September 28, 2013

Contents

1 Nonparametric estimation of spike responses is straightforward in low-
dimensional cases 3

2 Multiple linear regression provides the simplest approach for modeling the
firing rate given higher-dimensional stimuli 4
2.1 Different loss functions may be used to obtain more robust estimators 6

3 Including nonlinear terms enhances the flexibility of the regression tech-
nique 6
3.1 Volterra-Wiener series . 7
3.2 The kernel trick can be used to fit some very high-dimensional nonlinear models 8

4 *Analysis-of-variance methods may be used to determine when to include
additional terms in a regression model 9

5 “Overfitting” is the bane of high-dimensional model estimation: training
error, generalization, and cross-validation 9

6 Reducing the number of free parameters by choosing a suitable parameter
subspace can increase the prediction accuracy 12

7 Regularization provides a “softer” method for incorporating prior informa-
tion and avoiding overfitting: maximum penalized likelihood and maximum
a posteriori estimation 13

8 Rank-penalizing and group LASSO penalties provide a useful method for
regularizing matrix-valued parameters 18
8.1 Example: low-rank approximations for spatiotemporal receptive fields 19
8.2 Example: “energy” models as low-rank Volterra series models 20
8.3 Example: estimating input nonlinearities . 21

1

8.4 Example: finding a good basis for estimating multiple receptive fields simulta-
neously . 22

9 *Regression methods are often used for neural decoding 23

10 *When decoding temporally-varying signals, it is useful to analyze the er-
rors in the frequency domain 24
10.1 *The discrete Fourier transform performs harmonic regression across all avail-

able harmonic frequencies . 24
10.2 *For a stationary time series, smoothing the periodogram produces an estimate

of the spectrum . 24
10.3 *Uncertainty following the discrete Fourier transform may be propagated to

produce surrogate time series . 24

2

Before we attack the full neural coding problem of learning the full high-dimensional
p(~n|~x), where ~n is a full spike train, or multivariate spike train, etc., and ~x is the observed
signal with which we are trying to correlate ~n (~x could be the stimulus, or observed motor
behavior, etc.), it is conceptually easier to begin by trying to predict the scalar p(n(t)|~x), i.e.,
to predict the spike count in a single time bin t. From a statistical modeling point of view,
we will therefore begin by discussing a simple first-order model for p(~n|~x):

p(~n|~x) =
∏
t

p(n(t)|~x),

i.e., the responses n(t) in each time bin are conditionally independent given the observed ~x.
(This model is typically wrong but it’s a useful place to start; later we’ll discuss a variety
of ways to relax this conditional independence assumption (Paninski et al., 2004; Truccolo
et al., 2005).)

Understanding p(n(t)|~x) is already a hard problem, due to the high dimensionality of ~x,
and the fact that, of course, we only get to observe a noisy version of this high-dimensional
function of ~x.

1 Nonparametric estimation of spike responses is straightfor-
ward in low-dimensional cases

In the simplest case, we may take dt, the width of the time bin in which n(t) is observed,
to be small enough that only at most one spike is observed per time bin. Then estimating
p(n(t) = 1|~x) is equivalent to estimating E(n(t)|~x). We may begin by attempting to estimate
this function E(n|~x) nonparametrically: this approach is attractive because it requires us to
make fewer assumptions about the shape of E(n|~x) as a function of ~x (although as we will
see, we still have to make some kind of assumption about how sharply E(n|~x) is allowed to
vary as a function of ~x). One simple method is based on kernel density estimation (Hastie
et al., 2001; Devroye and Lugosi, 2001): we form the estimate

Ê(n|~x) =

∑
tw(~xt − ~x)nt∑
tw(~xt − ~x)

,

where w(.) is a suitable smoothing kernel; typically, w(.) is chosen to be positive, integrable
with respect to ~x, and symmetric in ~x about ~x = 0. See Fig. 1 for an illustration in the case
that ~x is one-dimensional. A related approach is to simply form a histogram for ~x, and set
Ê(n|~x) to be the mean of n(t) for all time points t for which the corresponding ~xt fall in the
given histogram bin (Chichilnisky, 2001).

The wider w(.) (or equivalently, the histogram bin) is chosen to be, the smoother the
resulting estimate Ê(n|~x) becomes; thus it is common to use an adaptive approach in the
choice of w(.), where w(.) is chosen to be wider in regions of the ~x-space where there are
fewer samples ~xt (where more smoothing is necessary) and narrower in regions where more
data are available.

This simple smoothing approach is quite effective in the case that dim(~x) ≤ 2, where it is
possible to visualize the estimated function Ê(n|~x) directly. We will return to these smoothing
methods in a later chapter, after we develop some theory for generalized linear models; as
we will see, both the histogram and kernel smoother approaches can be understood in the

3

0

1

d
a
ta

0.2

0.4

p
(x

)

0.1

0.2

0.3

0.4

0.5

p
(y

=
1
,
x
)

−2 −1 0 1 2

0.2

0.4

0.6

0.8

p
(y

=
1
 |
 x

)

x

Figure 1: Illustration of the Gaussian smoothing kernel applied to simulated one-dimensional
data x. Top: observed binary data. Second panel: Estimated density p̂(x) = 1

N

∑N
i=1w(xi−

x), with the smoother w(.) chosen to be Gaussian with mean zero and standard deviation .1.
Third panel: Estimated joint density p̂(x, y = 1) = 1

N

∑N
i=1 1(yi = 1)w(xi − x). Bottom:

Estimated conditional density p̂(y = 1|x) = p̂(y = 1, x)/p̂(x).

context of likelihood-based methods. However, for higher-dimensional ~x this nonparametric
approach becomes less useful, in effect because the number of samples needed to “fill in” a
multidimensional histogram scales exponentially with d = dim(~x): this is one example of the
so-called “curse of dimensionality” (Duda and Hart, 1972; Hastie et al., 2001). Thus in the
following subsections we will examine more parametric methods for estimating the firing rate.

2 Multiple linear regression provides the simplest approach
for modeling the firing rate given higher-dimensional stimuli

A great variety of more involved nonparametric approaches have been developed in the statis-
tics and machine learning community (Hastie et al., 2001). However, the approach emphasized
here will be more model-based; this makes the results somewhat easier to interpret, and more
importantly, allows us to build in more about what we know about biophysics, functional
neuroanatomy, etc.

The simplest model-based approach is to employ classical linear multiple regression. We

4

model nt as
nt = ~kT~xt + b+ εt,

where εt is taken to be an independent and identically distributed (i.i.d.) random variable
with mean zero and variance V ar(εt) = σ2. The solution to the problem of choosing the
parameters (~k, b) to minimize the mean-square error∑

t

[~kT~xt + b− nt]2 (1)

is well-known (Kutner et al., 2005): the best-fitting parameter vector θ̂LS = (~kT b)TLS satisfies
the “normal equations”

(XTX)θ̂LS = XT~n,

where the matrix X is defined as
Xt = (~xTt 1)

and
~n =

(
n1 n2 . . . nt

)T
.

The normal equations are derived by simply writing the mean square error in matrix form,∑
t

[~kT~xt + b− nt]2 = ||Xθ − ~n||22 = θTXTXθ − 2θTXT~n+ ~nT~n,

and setting the gradient with respect to the parameters θ = (~kT b)T equal to zero. In the
case that the matrix XTX is invertible, we have the nice explicit solution

θ̂LS = (XTX)−1XT~n;

more generally, the solution to the normal equations may be nonunique, and additional con-
straints may need to be imposed to obtain a unique solution, as we will discuss at more length
below.

There is an important connection between the least-squares solution and the maximum
likelihood estimator if the noise terms εt are Gaussian. In this case we can write the loglike-
lihood of the observed outputs {nt} given the parameters (~k, b, σ2) and the observed inputs
{~xt} as

log p({nt}|{~xt},~k, b, σ2) = log
∏
t

1√
2πσ2

exp

(
− 1

2σ2
(~kT~xt + b− nt)2

)
= c− a

∑
t

(
(~kT~xt + b− nt)2

)
,

where the scalars a > 0 and c do not depend on (~k, b). Thus maximizing the log-likelihood
leads to the same solution for (~k, b) as does minimizing the mean square error.

So the linear regression approach leads to a nice, computationally-tractable solution; more-
over, the statistical properties of the estimated parameters θ̂LS are very well-understood: we
can construct confidence intervals and do hypothesis testing using standard, well-defined tech-
niques (again, see (Kutner et al., 2005) for all details). Finally, the components of the solution
(XTX)−1XT~n turn out to have some useful, straightforward interpretations. For example,

XT~n =

(∑
t

~xTt nt
∑
t

nt

)T
;

5

forming the quotient of the two terms on the right, [
∑

t ~xtnt]/[
∑

t nt], gives us the spike-
triggered average (de Boer and Kuyper, 1968) — the conditional mean ~x given a spike —
about which we will have much more to say in a moment. Similarly, the matrix XTX contains
all the information we need to compute the correlation matrix of the stimulus.

2.1 Different loss functions may be used to obtain more robust estimators

The least-squares estimate is very non-robust to outliers: by changing a single (nt, xt) pair
we can cause arbitrarily large changes in the estimate θLS . One way to fix this problem is to
optimize a different objective function. (Another method is to include prior information about
the true underlying parameter value θ in our estimator; we will discuss Bayesian approaches
based on this idea in much more depth below.) For example, instead of eq. (1) we could
minimize an objective function of the form∑

t

G(~kT~xt + b− nt), (2)

where G(u) is a convex function of u that is minimized for u = 0 and which grows more slowly
than the quadratic function for large values of the error |u|. Common choices include the ab-
solute error G(u) = |u| or the “epsilon-insensitive” loss Gε(u) = max(0, |u|−ε). In general, no
analytic solution exists for minimizing the resulting objective function (2), and numerical con-
vex minimization algorithms are required. For both the absolute-error and epsilon-insensitive
loss functions, the problem of minimizing eq. (2) can be cast as a linear programming problem
(i.e., minimize a linear objective function under linear inequality constraints), for which fast
algorithms are available.

3 Including nonlinear terms enhances the flexibility of the re-
gression technique

It is not clear that this simple linear regression model captures neural responses very well.
Moreover, departures from the assumptions of the model might bias our estimates of the
model parameters, or reduce the interpretability of the results.

A few such departures are obvious, even necessary; for example, the spike count nt, and
therefore E(n|~x), must be nonnegative. More importantly, the function E(n|~x) may be quite
nonlinear, reflecting saturation, rectification, adaptation effects, etc. It is straightforward to
include nonlinear terms in the regression analysis (Sahani, 2000; Kutner et al., 2005), simply
by redefining the matrix X appropriately: instead of letting the t-th row Xt contain just the
elements of ~x and 1, we may also include arbitrary functionals φi(~xt):

Xt =
(
~xT φ1(~xt) φ2(~xt) . . . φm(~xt) 1

)
.

The resulting model of the response is now nonlinear:

nt = ~kT~x+

m∑
i=1

aiφi(~x) + b+ εt,

with the maximum-likelihood (least-squares) parameters (~k,~a, b)LS determined by solving the
normal equations (with the suitably redefined X) exactly as in the fully linear case.

6

We still need to make sure that the predicted firing rate E(n|~x) remains nonnegative. This
nonnegativity constraint may be enforced with a collection of linear inequality constraints

~kT~x+
m∑
i=1

aiφi(~x) + b ≥ 0 ∀~x,

(i.e., one constraint for each value of ~x; note that each constraint is linear as a function of the
parameters (~k,~a, b), despite the nonlinearity in ~x). This converts the original unconstrained
quadratic regression problem into a quadratic program1, which retains much of the tractability
of the original problem.

This nonlinear regression approach is useful in a number of contexts. One example in-
volves the incorporation of known presynaptic nonlinearities: if we know that the neuron of
interest receives input from presynaptic neurons which perform some well-defined nonlinear
transformation on the stimulus ~x, it is worth incorporating this knowledge into the model
(Rust et al., 2006).

3.1 Volterra-Wiener series

Another common application is a kind of polynomial expansion referred to as a “Volterra-
Wiener” series (Marmarelis and Marmarelis, 1978). The N -th order Volterra expansion in-
volves all polynomials in ~x up to the N -th order: thus the zero-th order model is

nt = b+ εt,

with a corresponding design matrix
Xt = (1);

the first order expansion is the linear model discussed above (nt = b+~kT~xt + εt); the second-
order model is

nt = b+ ~kT~xt +
∑
ij

aij~xt(i)~xt(j) + εt,

with

Xt =
(
1 ~xTt ~xt(1)~xt(1) ~xt(2)~xt(1) ~xt(3)~xt(1) . . . ~xt(2)~xt(2) . . . ~xt(d)~xt(d)

)
,

while the third-order model includes all triplet terms ~x(i)~x(j)~x(l), and so on. The attraction of
these expansion-based models is that, in principle, we may approximate an arbitrary smooth
function E(n|~x) by using a sufficiently large expansion order N , while the order N provides
a natural, systematic index of the complexity of the model.

1A quadratic program (QP) is a linearly-constrained quadratic optimization problem of the form

max
θ

1

2
θTAθ + aT θ, aTi θ ≥ ci ∀i,

for some negative semidefinite matrix A and some collection of vectors a and ai and corresponding scalars ci.
Quadratic programs are do not in general have analytic solutions, but if the number of inequality constraints
is small then we may numerically solve a QP in the same order of computational time as required to solve the
unconstrained problem maxθ

1
2
θTAθ + aT θ, since we are maximizing a particularly simple concave function

on a particularly simple convex space. However, if the number of constraints is large then solving the QP
efficiently may become more difficult.

7

−3 −2 −1 0 1 2

0.5

1

1.5

2

true f
quad approx

Figure 2: A simple toy example illustrating some flaws in the Volterra expansion approach.
In this case we are approximating the true firing rate function f(.) by its second-order Taylor
series. The problem here is that the function f(x) saturates for large values of x, while of
course the x2 term increases towards infinity, thus making a poor approximation.

However, several problems are evident in this nonlinear regression approach. The key
problem is that it is often difficult to determine a priori what nonlinearities φ(~x) to include
in the analysis. In the Volterra-Wiener approach described above, for example, the polynomial
expansion works poorly to approximate a saturating function E(n|~x), in the sense that a large
N is required to obtain a reasonable degree of accuracy, and (more importantly) the resulting
approximation is unstable, with delicately balanced oscillatory terms and unbounded behavior
at the boundary of the ~x space (poor extrapolation). In general, moreover, the number of
terms required in the expansion scales unfavorably with both the expansion order N and
the dimension d of ~x. A complementary problem is that the inclusion of many terms in any
regression model will lead to overfitting effects, as we discuss below (Machens et al., 2003;
Smyth et al., 2003; Paninski, 2004): that is, poor generalization ability even in cases when
the training error may be made small.

3.2 The kernel trick can be used to fit some very high-dimensional nonlin-
ear models

It is interesting to note that the regression problem can be reformulated such that we never
need to explicitly compute the nonlinear feature functions φ(xi); instead, we only need to
be able to compute the ”kernel” matrix consisting of the dot products between all the φ(xi)
vectors: K(i, j) =< φ(xi), φ(xj) >. (We skip the derivation here; see e.g. (Scholkopf and
Smola, 2002) for details.) This observation is useful because in some cases we can compute
K(i, j) directly, without having to compute φ(xi) and φ(xj) at all. This is especially helpful
in cases for which φ(x) is very high-dimensional or infinite-dimensional. (See (Scholkopf and
Smola, 2002) for a wide variety of examples.) This ”kernel trick” (evaluate K(i, j) directly,
not the nonlinear feature functions φ(xi)) leads to faster computation when the number of
samples is much smaller than the dimensionality of φ(xi). In addition, this trick is applicable

8

in many other cases, not just linear regression. For example, if we replace the squared
error with absolute error or the epsilon-insensitive error (recall section 2.1) and incorporate a
quadratic regularizer (we will discuss regularization in depth below), the resulting quadratic
program can be reformulated to only involve kernel evaluations K(i, j). This kernel trick can
also be applied to other classical multivariate methods, e.g. principal or canonical correlations
analysis, discriminant analysis, etc. (Scholkopf and Smola, 2002).

4 *Analysis-of-variance methods may be used to determine
when to include additional terms in a regression model

5 “Overfitting” is the bane of high-dimensional model estima-
tion: training error, generalization, and cross-validation

The key thing to remember about high-dimensional data analysis is that we are looking for
models that predict the data well, rather than fit the data well. For example, we typically
measure the quality of a model’s fit to data D by the maximum of the likelihood function,

L ≡ max
θ∈Θ

p(D|θ).

Here Θ indexes the parameter set, corresponding to all possible models in the model class
under consideration. Clearly, we can always make L larger (in principle) simply by expanding
Θ, since adding elements to Θ can never decrease the maximum in the definition of L; for
example, in the regression setting, we could increase L by fitting models including both linear
and nonlinear terms, rather than just linear terms. Typically, by adding more and more terms
in our regression we can fit any data we’d like, in the sense that L becomes arbitrarily large.

There are many problems with this approach of simply iteratively expanding the parameter
space Θ to increase the fit quality L. First, of course, the higher the dimensionality of the
parameter space (e.g., the more nonlinear, poorly physiologically-justified terms we include
in our regression analysis), the more uninterpretable and overly complex our models become.
For similar reasons, higher-dimensional models often pose greater computational difficulties
than do simpler models. The most important problem with this approach from a statistical
point of view, though, is that poor control over the complexity of one’s model typically leads
to poor predictions; this is the statistical justification for “Occam’s razor,” the principle that
simple explanations are preferred over complex.

A classical example of this phenomenon is shown in Fig. 3. We observe data generated by
a smooth curve g(.) (a sum of a few low-fequency sinusoids, in this case) plus i.i.d. Gaussian
noise: thus, the i-th sample was given by

ni = g(xi) + σεi,

where εi is i.i.d. standard Gaussian noise. Then we fit a series of models of monotonically
increasing complexity to this data: the p-th model class, Θp, is the set of all sums of sinusoids
of integer frequency less than p. We see, as expected, that the training error

1

N

N∑
i=1

Err(gp(xi), ni) =
1

N

N∑
i=1

[ĝp(xi)− ni]2

9

(with the sum taken over the observed samples ni and the estimate ĝp(.) constructed by linear
least squares from sinusoids of maximal frequency p) decreases monotonically with the model
complexity p, while the generalization error

E [Err(gp(x), n)] = E [ĝp(x)− n]2 = Ex,ε [ĝp(x)− (g(x) + σε)]2

(where the expectation is now taken over the true underlying distribution of the data x and
noise ε, instead of the observed samples) reaches its minimum at the true p (5 Hz in this case)
and then increases for larger p. The explanation is that models with larger p fit the data
very well at the observed sample points xi at the expense of large oscillations where no data
are observed (i.e., the noise has been fit well, not the underlying true function g). Thus the
training error curve is completely misleading if we want to understand how well our estimator
is actually generalizing, rather than just fitting the data.

A geometric analysis of this phenomenon is useful; our discussion here will be in terms of
the linear regression model, but these ideas hold more generally. We may understand linear
regression as an intersection of soft constraints, in the following sense. As we saw above, the
loglikelihood is simply the quadratic form

log(D|X,~k) = c− 1

2σ2

N∑
i=1

(
ni − ~kt~xi

)2
,

which may be rewritten as
−~kTA~k +~bT~k + c,

where
A ∝

∑
i

~xi~x
T
i = XTX,

~b ∝ 2
∑
i

ni~xi,

and c is a constant which does not affect the location of the optimal ~k. Note that each
observation ~xi contributes a rank-one matrix to the resulting XTX matrix. The geometric
interpretation of this sum of rank-one matrices is illustrated in Fig. 4: each sample contributes
a term (~kT~xi−ni)2 to the overall cost function which serves to constrain the optimal ~k along
a single direction in ~k-space (because the matrix ~xi~x

T
i is of rank one), and we obtain the

optimal solution by forming a weighted intersection of these constraints. The directions
of low curvature of the resulting quadratic surface are the directions for which ~k is poorly
constrained, and which will result in an estimate of ~k which will be highly variable in these
directions (in the sense that slight changes in ~n will cause large variations in the least-squares
estimate k̂LS). Unconstrained directions correspond to zero curvature — infinitely long flat
valleys in the cost function. The overfitting phenomenon we observed in Fig. 3 results in
exactly this unconstrained case (e.g., when the dimension of ~k is large compared to the
number of available samples).

We can translate this geometric intuition into algebra fairly easily: k̂LS is defined as
k̂LS = (XTX)−1(XT~n), so if cov(~n) = σ2I, then

Cov(k̂LS) = (XTX)−1XTσ2IX(XTX)−1 = σ2(XTX)−1.

10

0 1 2 3 4 5 6
−3
−2
−1

0
1

−2
−1

0
1

p
=

2

−3
−2
−1

0
1

p
=

5

0 1 2 3 4 5 6
−500

0

500

p
=

2
0

t

2 4 6 8 10 12 14 16 18 20

10
0

p

true f

samples

true f

best fit

train err

gen err

Figure 3: Overfitting demonstration: test vs. generalization error. Top: the true function
g(.) (solid black) was a sum of three sinusoids, of frequency 2, 3, and 5 Hz. We observe 50
noisy (zero-mean Gaussian; sd=0.3) samples from this true function (red dots). Middle:
best-fitting function ĝp(.) (red trace) versus true function g(.) (black), using all sines and
cosines of nonnegative integer frequencies, up to and including a maximum frequency p = 2,
5, and 20 Hz. Note that the estimate is oversmoothed when the maximal frequency p = 2
Hz, and badly overfit for p = 20. Bottom: training and generalization error as a function of
maximal frequency p. Note that the generalization error achieves a minimum at the true value
p = 5, and increases for higher p (overfitting). The training error decreases monotonically, as
it must. (Error curves averaged over 100 i.i.d. experiments; note log axis.)

If we express this covariance matrix in terms of its eigenvectors (principal components),
(XTX)−1 = OD−1OT , then we see again that the directions of low curvature (small eigenval-
ues of XTX, i.e., small values of the diagonal matrix D) will correspond exactly to directions
of large variance.

These arguments help to explain how overfitting arises, and give us some intuition into
what is going on. But how can we avoid overfitting? We describe several methods below. But
the major concept to keep in mind (c.f. Fig. 3) is that the training error is misleading; when
fitting a model to data we need to quantify the performance of the model in predicting data
that was not used to train the model. This practice of quantifying the model’s performance
on a “test” set of data which is held completely distinct and independent of the “training”

11

k
1

k
2

− (k
T
 x

1
 − n

1
)
2

−2 0 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−120

−100

−80

−60

−40

−20

k
1

− (k
T
 x

2
 − n

2
)
2

−2 0 2

−120

−100

−80

−60

−40

−20

k
1

− (k
T
 x

1
 − n

1
)
2
 − (k

T
 x

2
 − n

2
)
2

−2 0 2

−120

−100

−80

−60

−40

−20

Figure 4: Geometry of least-squares: soft constraints. The left two panels show the cost
function −(~kT~xi−ni)2 as a function of ~k given two observed data points, (~x1, n1) and (~x2, n2),
while the right panel shows the sum of these two terms. Each individual sample (~xi, ni) acts as
a soft consraint, restricting ~k in the direction parallel to ~xi (but not restricting ~k at all in any of
the dim(~k)−1 other directions); by combining the available data, (i.e., forming what amounts
to the weighted intersection of these soft constraints), we obtain a well-defined minimum. Note
that the resulting confidence ellipse is tilted in the direction of the first constraint, which was
stronger in this case; despite the fact that the constraints were nonorthogonal, the principal
axes of the resulting confidence ellipse are orthogonal (as they must be, since these correspond
to he eigenvectors of the symmetric matrix XTX).

set is called “cross-validation.” Thus, to compare the performance of two distinct models, we
might fit both models on the same training set, then compute the likelihood of a completely
distinct test data set under each of the two models: the model with the higher test likelihood
may be considered a better model, in that it is able to predict the responses of the neuron to
novel stimuli more accurately.

6 Reducing the number of free parameters by choosing a suit-
able parameter subspace can increase the prediction accu-
racy

As discussed above, it is well-known that estimates of the receptive field ~k based on spike-
triggered averaging can be quite noisy when ~k has many parameters (Sahani and Linden,
2003; Smyth et al., 2003); the noisiness of the estimate ~kLS is roughly proportional to the
dimensionality of ~k (the number of parameters in ~k that we need to estimate from data)
divided by the total number of observed samples (Paninski, 2003). A variety of methods have
been introduced to “regularize” the estimated ~k, to incorporate prior knowledge about the
shape and/or magnitude of the true ~k to reduce the noise in ~kLS . In each case, the goal is to
reduce the variance associated with estimating a large number of parameters, at the possible

12

expense of an increase in bias due to a reduction in the flexibility of the model.
One basic idea is to restrict ~k to lie within a lower-dimensional subspace,

~k =
∑
l

al~kl,

where ~kl denotes the l-th basis element (fixed a priori); we then employ the same fitting
procedure to estimate the coefficients al of ~k within this lower-dimensional basis. Plugging in
this formula for ~k, we have

~kT~xt = (
∑
l

al~kl)
T~xt =

∑
l

al(~k
T
l ~xt) = ~aT~yt,

where
~yl = ~kTl ~x.

Thus fitting these new parameters ~a proceeds in exactly the same fashion as before: we set
up a design matrix, Xt = ~yt, and optimize the loglikelihood with respect to the parameters
θ = ~a. The goal is to choose a basis whose span contains the “shapes” we might expect ~k
to take (in order to minimize the bias associated with restricting our attention to a lower-
dimensional subspace of possible ~k), with as few basis elements (smallest dimensionality) as
possible (since the variance of the estimated ~k is roughly proportional to the dimensionality).
Of course, this restriction also increases the computational efficiency of the fitting procedure,
since computation time increases with the dimensionality of Xt.

The choice of a suitable basis is problem dependent, but some basic principles are often
followed in practice. For example, we often have good a priori knowledge about the smooth-
ness of the filter ~k: in this case, it is common to represent ~k in a Fourier or wavelet basis,
with the very high- (and/or low-) frequency elements removed from the basis. We may take a
similar approach using an orthogonal basis defined by principal components analysis (PCA):
the idea is to match our basis for ~k to those directions in ~x-space with high variance, which
may be described in terms of the eigenvectors of the prior covariance matrix of ~x. (In the
case that ~x are drawn from a shift-stationary distribution, we will see below that the Fourier-
and PCA-based approaches coincide.) Some other bases which have proven useful in practice
include the Hermite basis (Victor et al., 2006), the stretched-cosine basis introduced by Keat
et al. for the representation of temporal receptive fields (Keat et al., 2001; Pillow et al., 2005;
Pillow et al., 2008), and the Zernike basis for receptive fields defined on a circle (Barbieri
et al., 2004).

In general, it is helpful to choose the basis in such a way that the resulting design matrix
X (expressed in the new basis) is close to orthogonal, i.e., that the matrix (XTX) has a small
condition number. This increases the numerical stability as well as interpretability of the
resulting estimate θ̂ML.

7 Regularization provides a “softer” method for incorporat-
ing prior information and avoiding overfitting: maximum
penalized likelihood and maximum a posteriori estimation

Above we discussed one tractable way to avoid overfitting, by restricting our attention to a
linear subspace or submanifold of the full parameter space. This corresponds to enforcing

13

“hard” constraints on the acceptable parameter values. A slightly less restrictive approach is
to use “soft” constraints instead — that is, to penalize some parameters but not to disallow
them entirely. This penalization may be interpreted easily in Bayesian terms: instead of max-
imizing the loglikelihood log p(D|X,~k) directly (which can lead to overfitting), we maximize
the logarithm of the posterior

log p(~k|X,D) = c+ log p(D|X,~k) + log p(~k)

(with ~k allowed to take values in the full original parameter space, i.e., no hard constraints
have been imposed); here p(~k) encodes our a priori beliefs about the true underlying ~k, and
if we set −Q(~k) = log p(~k), we see that Q(~k) acts as a kind of “penalty function,” encoding
our preferences in more a priori probable values of ~k (or equivalently, penalizing less probable
values).

In the linear regression case, the computationally-simplest prior is a zero-mean Gaussian,

log p(~k) = c− ~kTA~k/2,

where A is a positive definite matrix (the inverse prior covariance matrix); maximizing the
corresponding log-posterior

log p(~k|X,D) = c+ log p(D|X,~k) + log p(~k) = c− 1

2σ2
||XT~k − ~n||22 −

1

2
~kTA~k

analytically leads directly to the regularized least-square estimator

~kRLS = (XTX + σ2A)−1XT~n

(Sahani and Linden, 2003; Smyth et al., 2003).
One of the most common penalties acts to smooth the resulting estimate (Smyth et al.,

2003). For example, our prior might express that smooth ~k are more common than rapidly
changing or highly fluctuating ~k. If we express this prior in the Gaussian form described
above, log p(~k) = c− ~kTA~k/2, then we might choose the matrix A such that

~kTA~k =
∑
i

[k(i)− k(i+ 1)]2 = ||D~k||22 = ~kTDTD~k,

with D denoting the discrete difference matrix, i.e., large changes between adjacent elements
~k(i) of ~k are penalized. Clearly A here may be written as A = DTD, which turns out to
correspond to the symmetric second difference matrix. (Of course it is also possible to penalize
higher-order derivatives.)

It is also worth mentioning how to implement this penalty in the case that ~k is expressed
in some alternative basis, ~k =

∑
l al
~kl = K~a for a suitable basis matrix K. If we write out

the penalty in this case,

~kTA~k = ~kTDTD~k = ~aTKTDTDK~a = ~aTB~a,

where the elements of the matrix B = KTDTDK are given by the inner product of the
differenced basis elements,

Bl,l′ = (D~kl)
T (D~kl′).

Note that precomputing B and maximizing the posterior with respect to the parameters ~a is
typically more computationally efficient than recomputing ~k = K~a on each iteration.

14

More generally, if log p(~k) is maximized at the point ~k = ~0, the MAP estimator will
basically be a more “conservative” version of the MLE, with the chosen coefficients shrunk
nonlinearly towards zero. This type of “shrinkage” estimator has been extremely well-studied,
from a variety of viewpoints (James and Stein, 1960; Donoho et al., 1995; Klinger, 1998;
Tipping, 2001; Ng, 2004), and is known, for example, to perform strictly better than the
MLE in certain contexts: again, because this shrinkage can effect a large decrease in the
variance of our estimator, at the expense of a small increase in the bias. See (Sahani and
Linden, 2003; Machens et al., 2003; Harris et al., 2003) for some illustrations of this effect.

The simplest version of this shrinkage idea is to choose the matrix A in the quadratic form
for Q to be proportional to the identity. Thus we are penalizing the magnitude ~kT~k directly
instead of the magnitude of D~k, as in the smoothing case. This form of direct “shrinkage” has
been studied extensively and is also known as “ridge regression” or Tikhonov regularization,
depending on the literature. Note that the eigenstructure of XTX+λI is easily derived from
that of XTX: the eigenvectors are exactly the same, and the eigenvalues are merely changed
by the constant value λ. The key fact is that any zero eigenvalues in XTX which might have
caused problems in computing the inverse (XTX)−1 are now strictly positive, making the
inverse much more stable and insensitive to noise.

Another very common penalizer is based on the L1 norm of ~k, Q(~k) =
∑

i |~k(i)|, instead
of the L2 norms we have discussed above2. This L1 penalty is often used as a “sparseness”
penalty: in many cases, we might believe that many of the elements of ~k are exactly zero,
i.e., that only a “sparse” subset of ~k are actually active. One reasonable penalty to enforce
sparseness would be the so-called L0 norm,

||~k||0 =
∑
i

δ(~ki) = lim
p→0
||~k||p

(where as usual the Dirac delta function δ(.) is one at zero and zero everywhere else); unfor-
tunately, this L0 norm is nonconvex and the resulting minimization problem is often plagued
by multiple local optima. The absolute value function |x| is in a sense the closest convex
function to the discontinuous function 1(x = 0), and so we often use the L1 norm to impose
sparseness. A great deal of recent research has focused on the properties of this L1 penalty
(also known as the “LASSO” in the statistics literature (Donoho et al., 1995; Tibshirani,
1996)); for example, it has recently been established that, under certain circumstances, the
L0- and L1-penalized regression problems have exactly the same solution, i.e., the L1 term
really does serve to sparsen (Donoho and Elad, 2003).

It is worth comparing the L1 versus L2 penalization in a simple one-dimensional case, in
order to gain some intuition into the behavior of these penalizers. As always, we turn to the
quadratic-loss case for simplicity: if our original loglikelihood can be written in the form

−a
2
θ2 + bθ + c

for some coefficients (a, b, c), with a > 0, then adding an L2 penalty term on θ, −(a0/2)θ2,

2The Lp norm of a vector ~k is a measure of the magnitude of ~k, defined as

||~k||p =

(∑
i

|k(i)|p
)1/p

.

For p ≥ 1, this is a convex function of ~k.

15

−0.5 0 0.5
−0.5

0

0.5
L1 penalty

true x

e
s
ti
m

a
te

d
 x

−0.5 0 0.5
−0.5

0

0.5
L2 penalty

true x

Figure 5: Comparison of L2 and L1 penalties for one-dimensional observations x. Note that
the L2 penalty changes the slope of the line x̂(x) (i.e., larger x are shrunk more), while the
L1 penalty leads to threshold behavior in x̂ (estimates corresponding to small x are set to
zero, but medium and large x are shrunk equally). Identity line (dashed trace) shown for
comparison.

corresponds to changing the objective function to

−a+ a0

2
θ2 + bθ + c,

with the penalized optimum θ = b/(a+a0), as compared to the unpenalized optimal θ = b/a.
Thus we see that the L2 penalty term simply shrinks the optimal θ by a multiplicative factor
of a/(a + a0) — and therefore, the larger the optimal original θ is, the larger the absolute
shrinkage will be.

The L1 penalty term behaves differently in two respects. First, instead of a multiplicative
shrinkage we have an additive shrinkage: the total shrinkage does not increase as a function of
the absolute value of the unpenalized optimizer. Second, and related, it is easy to see that the
L1 optimizer has a threshold nature: if the unpenalized θ has small enough magnitude, θ will
be shrunk all the way to zero. (Clearly the L2 penalty will never set θ to zero exactly, unless
the original unpenalized θ is itself zero.) The optimizer may easily be computed analytically
in this one-dimensional case; see Fig. 5 for a comparison between the L1 and L2 solutions in
the one-dimensional setting.

In the case of multidimensional ~k, the geometric interpretation of the two penalties is
helpful and fairly natural. See Fig. 6 for an illustration: the key point is that the L2 is
radially symmetric — no elements of ~k are preferred, and thus in a sense all directions are
shrunk equally. In the L1 case, this symmetry no longer holds: it is clear that sparse solutions
are favored, since the L1 penalty is smaller along the coordinate axes (where some components
of ~k are set to zero) than along other directions.

This regularization approach does have a somewhat unpleasant side effect. While a
smoothing penalty can greatly improve the shape of the resulting estimates, and the L1

approach can perform feature selection (by “turning off” those features k(i) that do not con-
tribute any predictive power), both of these approaches also result in a “shrunk” estimate: the

16

L2 penalty

k1

k
2

−0.5 0 0.5
−0.5

0

0.5

k1

L1 penalty

−0.5 0 0.5
−0.5

0

0.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 6: Comparison of L2 and L1 penalties for a two-dimensional ~k. Note the radial
symmetry of the L2 penalty and the preference for the coordinate axes (the “corners”) in the
L1 case.

overall magnitude of the estimate is often reduced. We can often achieve better generalization
performance if we undo this shrinkage, while maintaining the shape or the “correct” features
obtained by the regularization approach. (Of course, in the simplest L2 case, undoing this
shrinkage is a bad idea, since it undoes the symmetric shrinkage which was the whole point
of the L2 penalty.) Luckily, undoing this unwanted shrinkage is often fairly straightforward.
For example, in the context of a smoothing penalty, we simply optimize the likelihood along
a one-dimensional line corresponding to a magnitude α > 0: that is, we choose k̂0 as the
optimizer of the log-posterior log p(~k|X,D), but then choose our final estimate k̂ = αoptk̂0,
where aopt is the solution to the one-dimensional concave optimization problem

αopt = arg min
α>0

log p(D|X,αk̂),

where note we are performing this last linesearch over the unpenalized likelihood, not the full
posterior. This retains the smooth shape of the estimate but does not result in a reduced
magnitude. Similarly, if we have used an L1 penalty to choose a predictive subset of features
k(i), we may undo the L1 shrinkage by performing an unpenalized “post-fit” on the subspace
spanned by this reduced subset of features. See (Bühlmann and van de Geer, 2011) for a
much more detailed discussion of these issues.

Finally, it is quite common to solve a slightly more general problem: instead of maximizing
the log-posterior we might instead minimize

log p(D|X,~k)− λQ(~k), (3)

where λ > 0 is a free “regularization parameter”: for λ large, we penalize strongly, while for
λ → 0 we recover the unregularized maximum likelihood solution, and λ = 1 gives us the
original MAP solution. Varying this parameter λ gives us some extra flexibility, but of course
we need some way of selecting the best value of this parameter: this may be done either
by cross-validation (Machens et al., 2003; Smyth et al., 2003) or by an approach known as

17

“evidence optimization” (Tipping, 2001; Sahani and Linden, 2003), a somewhat more involved
technique based on integrating out hyperparameters in a Bayesian hierarchical framework;
we will discuss related methods at more length below.

A full discussion of the computational problem of finding good solutions to problem (3),
when Q(~k) is some convex penalty function, is outside the scope of this chapter. However,
a few points are worth noting here. As emphasized above, in the case that both Q(~k) and
log p(D|X,~k) are quadratic functions of ~k, an analytic solution is available, and more gener-
ally if both Q(~k) and log p(D|X,~k) are concave and smooth then standard approaches based
on conjugate gradient ascent or Newton’s method typically suffice. However, in the case that
Q(~k) imposes an L1 penalty the resulting objective function is not everywhere differentiable:
it has “corners” that cause problems for optimization techniques that assume that the ob-
jective function is twice-differentiable. This type of problem has attracted a good deal of
attention in the recent optimization theory literature (Boyd and Vandenberghe, 2004). Three
general approaches have proven useful. First, we can always replace a nonsmooth objective
function f with a sequence of smooth functions fi that approximate the desired objective:
i.e., fi → f , in some suitable sense. Then we can use standard smooth methods to optimize
each of the approximate functions; it is often easy to show that the optimizers to the approx-
imate smooth functions will approach the desired optimizer of the original objective function,
i.e., arg max fi → arg max f . This smooth approximation approach is especially useful in the
context of constrained optimization; see (Boyd and Vandenberghe, 2004) and the examples in
the later chapters for further discussion of this approach. Second, in some cases a coordinate
ascent approach — in which we sequentially optimize along just one coordinate axis at a time
— turns out to be surprisingly effective, particularly in cases where each coordinate optimiza-
tion can be computed analytically and certain sparse features of the underlying problem can
be exploited; see, e.g., (Friedman et al., 2010) for further discussion. Finally, in many cases
we would like to solve problem (3) not just for one value of the regularization parameter λ,
but for many values of λ simultaneously, so that the corresponding solutions, with different
degrees of regularization, can be compared. We can always use a “warm start” technique,
i.e., to initialize our search for an optimizer for a given value of λ at the precomputed value of
~k which maximizes (3) for a nearby value of λ. It turns out that in some cases we can exploit
the structure of Q(~k) or log p(D|X,~k) to follow the “solution path” ~kλ in a semi-analytical
and very computationally-efficient fashion, where ~kλ = arg max log p(D|X,~k)−λQ(~k); (Efron
et al., 2004) discusses a very influential example of this idea.

8 Rank-penalizing and group LASSO penalties provide a use-
ful method for regularizing matrix-valued parameters

In many cases the parameters we are interested in estimating can be best organized in terms
of a matrix. Specialized penalization methods are often appropriate here. As a first example,
imagine for concreteness that we are fitting a regression model for the firing rate of cell i, in
which we are incorporating inputs from other cells i′. We might believe that the connectivity
from neurons i′ to i is sparse in the sense that only a few cells i′ are connected to i. We might
fit a matrix hi(i

′, τ) of inputs, indexed by time delay τ and cell i′. Enforcing sparseness in
this matrix by an L1 penalty Q(h) =

∑
i′,τ |hi(i′, τ)| does not give us exactly what we want,

unfortunately: this might lead to a sparse hi(., .) matrix overall (in the sense that only a few
values h(i′, τ) are nonzero), but may leave many cells i′ connected to i (albeit at only a sparse

18

subset of delays τ). A better penalty in this case is

Q(h) =
∑
i′

||hi(i′, .)||2 =
∑
i′

(∫
|hi(i′, t)|2dt

)1/2

:

i.e., enforce sparseness on the number of i′ terms for which hi(i
′, .) is nonzero at any time t

(the L2 norm in this case provides a nice, radially-symmetric way to detect departures from
zero in the vectors hi(i

′, .)). Because this penalty is just a sum of convex functions (the p-
norm is convex for any p ≥ 1), the penalty remains convex. This technique is referred as a
“groupwise LASSO” in the statistics literature.

Several more matrix examples appear in the subsections below.

8.1 Example: low-rank approximations for spatiotemporal receptive fields

One common case that leads to a very large number of parameters involves the estimation of
a spatiotemporal receptive field in vision (Sharpee et al., 2006; Butts and Paninski, 2006) or
somatosensory studies, or a spectrotemporal receptive field in audition (Sahani and Linden,
2003; Gill et al., 2006). In each case, it is often a reasonable approximation to represent the
STRF as a “separable” function of space and time (Fig. 7), that is, the product form

k(x, y, t) = ks(x, y)kt(t).

The gain here is that the number of parameters is reduced from ST to S + T , where S and
T denote the number of parameters required to describe the spatial component ks(x, y) and
the temporal component kt(t), respectively; typically ST � S + T .

To fit such a separable model, it is reasonable to employ a simple alternating maximization
strategy: if we hold ~kt fixed, then the log-likelihood is concave with respect to ~ks, and vice
versa. In fact, in the linear regression setting, we can write the optimization with respect
to ~kt with ~ks held fixed (or vice versa) as a regression problem, with a quadratic objective
function, and solve each optimization via the corresponding normal equations. Unfortunately,
we are no longer guaranteed to find a global maximum using this strategy, despite the fact
that the loglikelihood is concave as a function of ~k, since the class of receptive fields of this
separable form does not form a convex set: the sum of two separable functions is typically
not separable. In addition, we must place restrictions on the model to ensure identifiability,

since clearly
(
c~kt(t),

1
c
~ks(x, y)

)
specifies the same model as

(
~kt(t),~ks(x, y)

)
, for any c 6= 0;

see (Ahrens et al., 2008) for details.
This separable receptive field idea can be quite useful. However, in many cases the recep-

tive field is highly non-separable. (For example, consider a motion-detecting receptive field,
k(x, t) = g(x−vt), for some function g(.) and velocity v 6= 0.) In such cases we may generalize
the separable idea slightly. Consider a one-dimensional spatial variable for simplicity (we may
always concatenate the x and y variables in general): we may represent k(x, t) as a matrix
K. A separable receptive field corresponds to a matrix of rank one:

K = ~ks~k
T
t .

A natural generalization is to consider a matrix of higher rank r:

K = KsK
T
t ,

19

where the vectors ~ks and ~kt above have been replaced by the matrices Ks and Kt, of size
S × r and T × r, respectively. As in the separable case, we may fit the model parameters by
straightforward alternating maximization: with Kt held fixed, solve a regression to optimize
the likelihood for Ks, and vice versa. (Once again, certain restrictions on the model are
necessary to ensure identifiability.) If (S + T)r � ST , clearly we achieve a reduction in the
number of parameters, often at no great loss of accuracy in the resulting model.

Because of the loss of our convergence guarantees in this low-rank model, the choice
of initialization of the parameter search becomes somewhat more important. One useful
approach is to take a preliminary estimate of the full-rank K and then to perform a singular
value decomposition of the matrix K = UWV ; then the first r rows of U serve to initialize
Ks, while the first r columns (multiplied by the first r singular values in W) serve to initialize
Kt.

An alternative approach is to optimize K directly, but use a penalization approach to
force the solution to have low rank. One such penalty that has received quite a bit of recent
attention is the “nuclear norm” ||K||∗ of the matrix K, which is simply the sum of the
singular values of K. This is a convex function of K, and acts to sparsen the singular values
of K in much the same way as the L1 penalty acts to sparsen vectors (Candès and Tao,
2010), as discussed in the previous section. Thus we proceed by maximizing the penalized
log-likelihood log p(D|K,X) − λ||K||∗; the advantage of this approach is that, in the cases
of interest in this section, the resulting objective function is concave over a convex set (the
set of matrices K), and therefore we do not have to worry about getting caught in local
optima; a number of authors argue that this is a major practical advantage over the (non-
convex) alternating maximization approach (see, e.g., (Mazumder et al., 2010) for further
discussion). The disadvantage is that, as emphasized above, the dimensionality of K is
much larger than that of Ks and Kt, and in addition the function ||K||∗ is not everywhere
differentiable as a function of K, which complicates the optimization somewhat. As in the
L1 case, nuclear-norm-penalized maximization problems have recently enjoyed a great deal
of attention in the optimization and machine learning literatures. Again, it is beyond our
scope to discuss algorithms for this optimization problem in depth, but one flexible strategy
is to decompose the full penalized objective function into two simpler functions which can be
optimized easily; typically in this approach one problem corresponds to a smoothly penalized
likelihood optimization (which can be solved using standard techniques such as Newton’s
method or conjugate gradient), while the second my be solved by a simple SVD shrinkage
operation. See (Goldfarb et al., 2010) and (Mazumder et al., 2010) for further details.

8.2 Example: “energy” models as low-rank Volterra series models

We may also apply this low-rank idea to the Volterra series analysis discussed above. Recall
that the second-order Volterra model is

E[nt] = b+ ~kT~x+ ~xTA~x,

for some matrix A. As we discussed previously, we require a good deal of data to fit all
the elements of the matrix A accurately; instead, we may assume that A is of low rank,
A = AlAr, where Al and Ar are of size dim(x)× r and r × dim(x), respectively. Once again,
the loglikelihood is concave in the parameters (b,~k,Al) with Ar held fixed, or in (b,~k,Ar)
with Al held fixed, and so either the alternating maximization or the nuclear-norm-penalty

20

Figure 7: Low-rank models for the spatiotemporal visual receptive field of a neuron in the
lateral geniculate nucleus. We model the full spatiotemporal receptive field as a sum of two
rank-1 (separable) matrices, corresponding to a product of a temporal and spatial kernel
(only one dimension of the 2-d spatial kernel is shown). This allows us to estimate the spatial
and temporal kernels reliably in a generalized linear model framework using relatively few
samples.

approach may be applied. (One small note: since

~xTAlAr~x = ~xTArAl~x = ~xT
(
AlAr +ArAl

2

)
~x,

we are actually fitting a rank-2r model for A here, instead of the usual rank-r model, since
the matrix (AlAr +ArAl)/2 has rank 2r.)

One key example of this low-rank Volterra model is the classical “energy model” for
complex cells in primary visual cortex (Adelson and Bergen, 1985; Okajima and Imaoka,
2001). In this model the firing rate is given by

E[nt] = (~kT1 ~x)2 + (~kT1 ~x)2,

where the linear filters ~k1 and ~k2 are in quadrature pair (and therefore the response of the
model is invariant with respect to the phase of the stimulus ~x). This may be rewritten in
more standard Volterra form as

(~kT1 ~x)2 + (~kT1 ~x)2 = ~xTA~x+ bT~x,

with A = ~k1
~kT1 + ~k2

~kT2 and b = 0; thus the energy model may be considered a rank-two
Volterra model.

8.3 Example: estimating input nonlinearities

Another useful application appears in (Ahrens et al., 2008). In many cases we might not
know a neuron’s “preferred units” a priori (Gill et al., 2006): for example, it might make
more sense to represent ~x in logarithmic instead of linear units, or perhaps the neuron’s
response is invariant with respect to the sign of ~x; we would like to learn this representation
directly from data. Thus we might fit an “input nonlinearity” model (Fig. 8), of the form

E[nt|~xt] =
∑
i

aig(xt−i),

21

Figure 8: Schematic view of the bilinear “input nonlinearity” model. The parameters in the
gray boxes are learnt from the data.

where xt is the scalar input at time t, g(.) is an unknown nonlinearity which transforms
this input (for example, g(.) could apply a logarithmic or squaring transformation), ~a is a
temporal filter, and f(.), as usual, is a convex and log-concave scalar function. To fit this
model we represent the input nonlinearity function g(.) as a weighted sum of some set of
known functions gl(.),

g(u) =
∑
l

blgl(u),

and rewrite

E[nt|~xt] =
∑
i

aig(x(t− i)) =
∑
i

ai
∑
l

blgl(x(t− i)) =
∑
il

aiblgl(x(t− i)).

Now if we think of the fixed (known) stimulus terms gl(x(t)) as elements of a matrix indexed
by t and l, we may reinterpret the double sum∑

il

at−iblgl(x(t)) =
∑
il

Kilgl(x(t))

as a sum over a rank-one matrix K = ~a~bT , just as in the examples given above. Of course, it
is now straightforward to generalize further, to let the matrix K be of rank r, for example, or
to use the same trick to infer more complex linear-nonlinear-linear-etc. cascade models. See
(Ahrens et al., 2008) for details.

8.4 Example: finding a good basis for estimating multiple receptive fields
simultaneously

As a final example, imagine we have observed the responses of many neurons in a given
brain region. We might expect many of these neurons to have similar tuning characteristics.
Indeed, we would like to exploit any such similarities (for example, the more we know about a
brain area a priori, the easier it should be to estimate the receptive fields of any new neurons
we enounter in this area) and to quantify the heterogeneity of tuning properties in a given
brain area, cortical layer, etc. How can we effectively “share” this kind of information across
neurons?

22

0 250 500 750 1000 1250

0

20

40

time (ms)

s
p

ik
e

 r
a

te
 (

H
z
)

black: IN model

white: linear model

gray: true spike rate

Figure 9: Input-nonlinearity models of a cortical whisker barrel neuron’s responses (Ahrens
et al., 2008) comparing three terms: position, velocity and acceleration. Left: temporal filters;
pos., vel. and acc. terms in black, red, and blue, respectively. Velocity is the dominant term.
Middle: inferred input nonlinearities; gray areas show 1 s.d. errorbar. Note that inferred
nonlinearities are close to quadratic. Right: Predicted firing rates given a novel stimulus.
Note accuracy of input-nonlinearity model predictions; linear model fails completely.

This basic idea has been quite successfully exploited in the statistics literature, in the
context of “hierarchical” or “multilevel” models (Gelman and Hill, 2006). We will discuss
such approaches at more length in a later chapter. However, for now we restrict our attention
to a simple illustrative case. Let’s introduce a simple linear model for each observed neuron:

E[nit|~xt] = ~ki~xt,

where nit denotes the i-th neuron’s response at time t. (Nonlinear generalizations will be
discussed at more length later.) We can represent the collection of linear filters {~ki} in
matrix form, by simply concatenating the vectors ~ki into a matrix K. Now we can impose a
low-rank structure on K using methods basically identical to those discussed above; see (Yuan
et al., 2007) for some statistical applications of this basic idea. In other words, we model K in
terms of a low-rank projection, K = UV ; V projects the stimulus ~xt onto a low-dimensional
subspace, and U weights the basis vectors of this subpsace appropriately to form the filters ~ki.
The attractive feature of this approach is that we do not have to predefine the subspace V ;
instead, an optimal subspace is estimated directly from the data. (Geffen et al., 2009) discuss
an application of related ideas, in which the filters ~ki are estimated one-by-one, by standard
regression (without sharing any information across neurons), and then PCA is applied to the
matrix of the estimated filters ~ki to obtain an interesting low-dimensional subspace in which
the filters seem to concentrate most of their power.

9 *Regression methods are often used for neural decoding

Up to now we’ve been talking about encoding; to decode, just turn the regression around
(Humphrey et al., 1970; Bialek et al., 1991).

23

10 *When decoding temporally-varying signals, it is useful to
analyze the errors in the frequency domain

10.1 *The discrete Fourier transform performs harmonic regression across
all available harmonic frequencies

10.2 *For a stationary time series, smoothing the periodogram produces
an estimate of the spectrum

10.3 *Uncertainty following the discrete Fourier transform may be propa-
gated to produce surrogate time series

References

Adelson, E. and Bergen, J. (1985). Spatiotemporal energy models for the perception of
motion. J. Opt. Soc. Am. A, 2:284–299.

Ahrens, M., Paninski, L., and Sahani, M. (2008). Inferring input nonlinearities in neural
encoding models. Network: Computation in Neural Systems, 19:35–67.

Barbieri, R., Frank, L., Nguyen, D., Quirk, M., Solo, V., Wilson, M., and Brown, E. (2004).
Dynamic analyses of information encoding in neural ensembles. Neural Computation,
16:277–307.

Bialek, W., Rieke, F., de Ruyter van Steveninck, R., and Warland, D. (1991). Reading a
neural code. Science, 252:1854–1857.

Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Oxford University Press.

Bühlmann, P. and van de Geer, S. (2011). Statistics for High-Dimensional Data: Methods,
Theory and Applications. Springer series in statistics. Springer.

Butts, D. and Paninski, L. (2006). Contrast adaptation in descriptions of visual neurons that
incorporate spike-history dependence. CNS*06 Meeting, Edinburgh.

Candès, E. J. and Tao, T. (2010). The power of convex relaxation: near-optimal matrix
completion. IEEE Transactions on Information Theory, 56:2053–2080.

Chichilnisky, E. (2001). A simple white noise analysis of neuronal light responses. Network:
Computation in Neural Systems, 12:199–213.

de Boer, E. and Kuyper, P. (1968). Triggered correlation. IEEE Transactions on Biomedical
Engineering, 15:159–179.

Devroye, L. and Lugosi, G. (2001). Combinatorial Methods in Density Estimation. Springer-
Verlag, New York.

Donoho, D. and Elad, M. (2003). Optimally sparse representation in general (nonorthogonal)
dictionaries via L1 minimization. PNAS, 100:2197–2202.

Donoho, D. L., Johnstone, I. M., Kerkyacharian, G., and Picard, D. (1995). Wavelet shrinkage:
Asymptopia? J. R. Statist. Soc. B., 57(2):301–337.

24

Duda, R. and Hart, P. (1972). Pattern classification and scene analysis. Wiley, New York.

Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. (2004). Least angle regression. Annals
of Statistics, 32:407–499.

Friedman, J. H., Hastie, T., and Tibshirani, R. (2010). Regularization paths for generalized
linear models via coordinate descent. Journal of Statistical Software, 33:1–22.

Geffen, M. N., Broome, B. M., Laurent, G., and Meister, M. (2009). Neural encoding of
rapidly fluctuating odors. Neuron, 61:570–586.

Gelman, A. and Hill, J. (2006). Data Analysis Using Regression and Multilevel/Hierarchical
Models. Cambridge.

Gill, P., Zhang, J., Woolley, S., Fremouw, T., and Theunissen, F. (2006). Sound representa-
tion methods for spectro-temporal receptive field estimation. Journal of Computational
Neuroscience, 21:5–20.

Goldfarb, D., Ma, S., and Scheinberg, K. (2010). Fast alternating linearization methods
for minimizing the sum of two convex functions. Columbia University IEOR Technical
Report.

Harris, K., Csicsvari, J., Hirase, H., Dragoi, G., and Buzsaki, G. (2003). Organization of cell
assemblies in the hippocampus. Nature, 424:552–556.

Hastie, T., Tibshirani, R., and Friedman, J. (2001). The Elements of Statistical Learning.
Springer.

Humphrey, D., Schmidt, E., and Thompson, W. (1970). Predicting measures of motor per-
formance from multiple cortical spike trains. Science, 170:758–762.

James, W. and Stein, C. (1960). Estimation with quadratic loss. Proceedings of the Fourth
Berkeley Symposium on Mathematical Statistics and Probability, 1:361–379.

Keat, J., Reinagel, P., Reid, R., and Meister, M. (2001). Predicting every spike: a model for
the responses of visual neurons. Neuron, 30:803–817.

Klinger, A. (1998). High-dimensional generalized linear models. PhD thesis, University of
Munich.

Kutner, M., Nachtsheim, C., Neter, J., and Li, W. (2005). Applied Linear Statistical Models.
McGraw-Hill.

Machens, C., Wehr, M., and Zador, A. (2003). Spectro-temporal receptive fields of subthresh-
old responses in auditory cortex. NIPS.

Marmarelis, P. and Marmarelis, V. (1978). Analysis of physiological systems: the white-noise
approach. Plenum Press, New York.

Mazumder, R., Hastie, T., and Tibshirani, R. (2010). Spectral regularization algorithms for
learning large incomplete matrices. J. Mach. Learn. Res., 11:2287–2322.

25

Ng, A. (2004). Feature selection, L1 vs. L2 regularization, and rotational invariance. ICML,
21.

Okajima, K. and Imaoka, H. (2001). A Complex Cell-Like Receptive Field Obtained by
Information Maximization. Neural Computation, 13(3):547–562.

Paninski, L. (2003). Convergence properties of some spike-triggered analysis techniques.
Network: Computation in Neural Systems, 14:437–464.

Paninski, L. (2004). Maximum likelihood estimation of cascade point-process neural encoding
models. Network: Computation in Neural Systems, 15:243–262.

Paninski, L., Pillow, J., and Simoncelli, E. (2004). Maximum likelihood estimation of a
stochastic integrate-and-fire neural model. Neural Computation, 16:2533–2561.

Pillow, J., Paninski, L., Uzzell, V., Simoncelli, E., and Chichilnisky, E. (2005). Prediction and
decoding of retinal ganglion cell responses with a probabilistic spiking model. Journal of
Neuroscience, 25:11003–11013.

Pillow, J., Shlens, J., Paninski, L., Sher, A., Litke, A., Chichilnisky, E., and Simoncelli, E.
(2008). Spatiotemporal correlations and visual signaling in a complete neuronal popula-
tion. Nature, 454:995–999.

Rust, N., Mante, V., Simoncelli, E., and Movshon, J. (2006). How MT cells analyze the
motion of visual patterns. Nature Neuroscience, 11:1421–1431.

Sahani, M. (2000). Kernel regression for neural systems identification. Presented at NIPS00
workshop on Information and statistical structure in spike trains; abstract available at
http://www-users.med.cornell.edu/∼jdvicto/nips2000speakers.html.

Sahani, M. and Linden, J. (2003). Evidence optimization techniques for estimating stimulus-
response functions. NIPS, 15.

Scholkopf, B. and Smola, A. (2002). Learning with Kernels: Support Vector Machines, Reg-
ularization, Optimization and Beyond. MIT Press.

Sharpee, T., Sugihara, H., Kurgansky, A., Rebrik, S., Stryker, M., and Miller, K. (2006).
Adaptive filtering enhances information transmission in visual cortex. Nature, 439:936–
942.

Smyth, D., Willmore, B., Baker, G., Thompson, I., and Tolhurst, D. (2003). The receptive-
field organization of simple cells in primary visual cortex of ferrets under natural scene
stimulation. Journal of Neuroscience, 23:4746–4759.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society. Series B, 58:267–288.

Tipping, M. (2001). Sparse Bayesian learning and the relevance vector machine. Journal of
Machine Learning Research, 1:211–244.

Truccolo, W., Eden, U., Fellows, M., Donoghue, J., and Brown, E. (2005). A point process
framework for relating neural spiking activity to spiking history, neural ensemble and
extrinsic covariate effects. Journal of Neurophysiology, 93:1074–1089.

26

Victor, J., Mechler, F., Repucci, M., Purpura, K., and Sharpee, T. (2006). Responses of V1
neurons to two-dimensional hermite functions. Journal of Neurophysiology, 95:379–400.

Yuan, M., Ekici, A., Lu, Z., and Monteiro, R. (2007). Dimension reduction and coefficient
estimation in multivariate linear regression. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 69:329–346.

27

