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Abstract

Spiking activity from neurophysiological experiments often exhibits dy-
namics beyond that driven by external stimulation, presumably reflect-
ing the extensive recurrence of neural circuitry. Characterizing these
dynamics may reveal important features of neural computation, par-
ticularly during internally-driven cognitive operations. For example,
the activity of premotor cortex (PMd) neurons during an instructed de-
lay period separating movement-target specification and a movement-
initiation cue is believed to be involved in motor planning. We show
that the dynamics underlying this activity can be captured by a low-
dimensional non-linear dynamical systems model, with underlying re-
current structure and stochastic point-process output. We present and
validate latent variable methods that simultaneously estimate the system
parameters and the trial-by-trial dynamical trajectories. These meth-
ods are applied to characterize the dynamics in PMd data recorded
from a chronically-implanted 96-electrode array while monkeys perform
delayed-reach tasks.

1 Introduction

At present, the best view of the activity of a neural circuit is provided by multiple-electrode
extracellular recording technologies, which allow us to simultaneously measure spike trains
from up to a few hundred neurons in one or more brain areas during each trial. While the
resulting data provide an extensive picture of neural spiking, their use in characterizing the
fine timescale dynamics of a neural circuit is complicated by at least two factors. First,
extracellularly captured action potentials provide only an occasional view of the process
from which they are generated, forcing us to interpolate the evolution of the circuit between
the spikes. Second, the circuit activity may evolve quite differently on different trials that
are otherwise experimentally identical.



The usual approach to handling both problems is to average responses from different trials,
and study the evolution of the peri-stimulus time histogram (PSTH). There is little alter-
native to this approach when recordings are made one neuron at a time, even when the
dynamics of the system are the subject of study. Unfortunately, such averaging can obscure
important internal features of the response. In many experiments, stimulus events provide
the trigger for activity, but the resulting time-course of the response is internally regulated
and may not be identical on each trial. This is especially important during cognitive pro-
cessing such as decision making or motor planning. In this case, the PSTH may not reflect
the true trial-by-trial dynamics. For example, a sharp change in firing rate that occurs with
varying latency might appear as a slow smooth transition in the average response.

An alternative approach is to adopt latent variable methods and to identify a hidden dy-
namical system that can summarize and explain the simultaneously-recorded spike trains.
The central idea is that the responses of different neurons reflect different views of a com-
mon dynamical process in the network, whose effective dimensionality is much smaller
than the total number of neurons in the network. While the underlying state trajectory may
be slightly different on each trial, the commonalities among these trajectories can be cap-
tured by the network’s parameters, which are shared across trials. These parameters define
how the network evolves over time, as well as how the observed spike trains relate to the
network’s state at each time point.

Dimensionality reduction in a latent dynamical model is crucial and yields benefits beyond
simple noise elimination. Some of these benefits can be illustrated by a simple physical
example. Consider a set of noisy video sequences of a bouncing ball. The trajectory of
the ball may not be identical in each sequence, and so simply averaging the sequences to-
gether would provide little information about the dynamics. Independently smoothing the
dynamics of each pixel might identify a dynamical process; however, correctly rejecting
noise might be difficult, and in any case this would yield an inefficient and opaque rep-
resentation of the underlying physical process. By contrast, a hidden dynamical system
account could capture the video sequence data using a low-dimensional latent variable that
represented only the ball’s position and momentum over time, with dynamical rules that
captured the physics of ballistics and elastic collision. This representation would exploit
shared information from all pixels, vastly simplifying the problem of noise rejection, and
would provide a scientifically useful depiction of the process.

The example also serves to illustrate the two broad benefits of this type of model. The first is
to obtain a low dimensional summary of the dynamical trajectory in any one trial. Besides
the obvious benefits of denoising, such a trajectory can provide an invaluable representa-
tion for prediction of associated phenomena. In the video sequence example, predicting the
loudness of the sound on impact might be easy given the estimate of the ball’s trajectory
(and thus its speed), but would be difficult from the raw pixel trajectories, even if denoised.
In the neural case, behavioral variables such as reaction time might similarly be most easily
predicted from the reconstructed trajectory. The second broad goal is systems identifica-
tion: learning the rules that govern the dynamics. In the video example this would involve
discovery of various laws of physics, as well as parameters describing the ball such as its
coefficient of elasticity. In the neural case this would involve identifying the structure of
dynamics available to the circuit: the number and relationship of attractors, appearance of
oscillatory limit cycles and so on.

The use of latent variable models with hidden dynamics for neural data has, thus far, been
limited. In [1], [2], small groups of neurons in the frontal cortex were modeled using hidden
Markov models, in which the latent dynamical system is assumed to transition between a
set of discrete states. In [3], a state space model with linear hidden dynamics and point-
process outputs was applied to simulated data. However, these restricted latent models
cannot capture the richness of dynamics that recurrent networks exhibit. In particular,
systems that converge toward point or line attractors, exhibit limit cycle oscillations, or



even transition into chaotic regimes have long been of interest in neural modeling. If such
systems are relevant to real neural data, we must seek to identify hidden models capable of
reflecting this range of behaviors.

In this work, we consider a latent variable model having (1) hidden underlying recurrent
structure with continuous-valued states, and (2) Poisson-distributed output spike counts
(conditioned on the state), as described in Section 2. Inference and learning for this nonlin-
ear model are detailed in Section 3. The methods developed are applied to a delayed-reach
task described in Section 4. Evidence of motor preparation in PMd is given in Section 5.
In Section 6, we characterize the neural dynamics of motor preparation on a trial-by-trial
basis.

2 Hidden non-linear dynamical system

A useful dynamical system model capable of expressing the rich behavior expected of
neural systems is the recurrent neural network (RNN) with Gaussian perturbations

xt | xt−1 ∼ N (ψ(xt−1),Q) (1)

ψ(x) = (1 − k)x + kWg(x), (2)

where xt ∈ IRp×1 is the vector of the node values in the recurrent network at time
t ∈ {1, . . . , T}, W ∈ IRp×p is the connection weight matrix, g is a non-linear activa-
tion function which acts element-by-element on its vector argument, k ∈ IR is a parameter
related to the time constant of the network, and Q ∈ IRp×p is a covariance matrix. The
initial state is Gaussian-distributed

x0 ∼ N (p0,V0) , (3)

where p0 ∈ IRp×1 and V0 ∈ IRp×p are the mean vector and covariance matrix, respectively.

Models of this class have long been used, albeit generally without stochastic pertubation,
to describe the dynamics of neuronal responses (e.g., [4]). In this classical view, each node
of the network represents a neuron or a column of neurons. Our use is more abstract. The
RNN is chosen for the range of dynamics it can exhibit, including convergence to point
or surface attractors, oscillatory limit cycles, or chaotic evolution; but each node is simply
an abstract dimension of latent space which may couple to many or all of the observed
neurons.

The output distribution is given by a generalized linear model that describes the relationship
between all nodes in the state xt and the spike count yi

t ∈ IR of neuron i ∈ {1, . . . , q} in
the tth time bin

yi
t | xt ∼ Poisson

(
h

(
ci· xt + di

)
Δ

)
, (4)

where ci ∈ IRp×1 and di ∈ IR are constants, h is a link function mapping IR → IR+,
and Δ ∈ IR is the time bin width. We collect the spike counts from all q simultaneously-
recorded physical neurons into a vector yt ∈ IRq×1, whose ith element is yi

t. The choice of
the link functions g and h is discussed in Section 3.

3 Inference and Learning

The Expectation-Maximization (EM) algorithm [5] was used to iteratively (1) infer the
underlying hidden state trajectories (i.e., recover a distribution over the hidden sequence
{x}T

1 corresponding to the observations {y}T
1 ), and (2) learn the model parameters (i.e.,

estimate θ =
{
W,Q, k,p0,V0, {ci}, {di}}), given only a set of observation sequences.



Inference (the E-step) involves computing or approximating P
({x}T

1 | {y}T
1 , θk

)
for each

sequence, where θk are the parameter estimates at the kth EM iteration. A variant of the
Extended Kalman Smoother (EKS) was used to approximate these joint smoothed state
posteriors. As in the EKS, the non-linear time-invariant state system (1)-(2) was trans-
formed into a linear time-variant sytem using local linearization. The difference from EKS
arises in the measurement update step of the forward pass

P
(
xt | {y}t

1

) ∝ P (yt | xt) P
(
xt | {y}t−1

1

)
. (5)

Because P (yt | xt) is a product of Poissons rather than a Gaussian, the filtered state pos-
terior P (xt | {y}t

1) cannot be easily computed. Instead, as in [3], we approximated this
posterior with a Gaussian centered at the mode of log P (xt | {y}t

1) and whose covariance
is given by the negative inverse Hessian of the log posterior at that mode. Certain choices
of h, including ez and log (1 + ez), lead to a log posterior that is strictly concave in xt. In
these cases, the unique mode can easily be found by Newton’s method.

Learning (the M-step) requires finding the θ that maximizes E
[
log P

(
{x}T

1 , {y}T
1 | θ

)]
,

where the expectation is taken over the posterior state distributions found in the E-step.
Note that, for multiple sequences that are independent conditioned on θ, we use the sum
of expectations over all sequences. Because the posterior state distributions are approxi-
mated as Gaussians in the E-step, the above expectation is a Gaussian integral that involves
non-linear functions g and h and cannot be computed analytically in general. Fortunately,
this high-dimensional integral can be reduced to many one-dimensional Gaussian integrals,
which can be accurately and reasonably efficiently approximated using Gaussian quadra-
ture [6], [7].

We found that setting g to be the error function

g(z) =
2√
π

∫ z

0

e−t2dt (6)

made many of the one-dimensional Gaussian integrals involving g analytically tractable.
Those that were not analytically tractable were approximated using Gaussian quadrature.
The error function is one of a family of sigmoid activation functions that yield similar
behavior in a RNN.

If h were chosen to be a simple exponential, all the Gaussian integrals involving h could be
computed exactly. Unfortunately, this exponential mapping would distort the relationship
between perturbations in the latent state (whose size is set by the covariance matrix Q)
and the resulting fluctuations in firing rates. In particular, the size of firing-rate fluctations
would grow exponentially with the mean, an effect that would then add to the usual linear
increase in spike-count variance that comes from the Poisson output distribution. Since
neural firing does not show such a severe scaling in variability, such a model would fit
poorly. Therefore, to maintain more even firing-rate fluctuations, we instead take

h(z) = log (1 + ez) . (7)

The corresponding Gaussian integrals must then be approximated by quadrature methods.
Regardless of the forms of g and h chosen, numerical Newton methods are needed for
maximization with respect to {ci} and {di}.
The main drawback of these various approximations is that the overall observation likeli-
hood is no longer guaranteed to increase after each EM iteration. However, in our simula-
tions, we found that sensible results were often produced. As long as the variances of the
posterior state distribution did not diverge, the output distributions described by the learned
model closely approximated those of the actual model that generated the simulated data.



4 Task and recordings

We trained a rhesus macaque monkey to perform delayed center-out reaches to visual tar-
gets presented on a fronto-parallel screen. On a given trial, the peripheral target was pre-
sented at one of eight radial locations (30, 70, 110, 150, 190, 230, 310, 350°) 10 cm
away, as shown in Figure 1. After a pseudo-randomly chosen delay period of 200, 750, or
1000 ms, the target increased in size as the go cue and the monkey reached to the target. A
96-channel silicon electrode array (Cyberkinetics, Inc.) was implanted straddling PMd and
motor cortex (M1). Spike sorting was performed offline to isolate 22 single-neuron and
109 multi-neuron units.
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Figure 1: Delayed reach task and average action potential (spike) emission rate from one
representative unit. Activity is arranged by target location. Vertical dashed lines indicate
peripheral reach target onset (left) and movement onset (right).

5 Motor preparation in PMd

Motor preparation is often studied using the “instructed delay” behavioral paradigm, as
described in Section 4, where a variable-length “planning” period temporally separates an
instruction stimulus from a go cue [8]–[13]. Longer delay periods typically lead to shorter
reaction times (RT, defined as time between go cue and movement onset), and this has been
interpreted as evidence for a motor preparation process that takes time [11], [12], [14], [15].
In this view, the delay period allows for motor preparation to complete prior to the go cue,
thus shortening the RT.

Evidence for motor preparation at the neural level is taken from PMd (and, to a lesser
degree, M1), where neurons show sustained activity during the delay period (Figure 1,
delay activity) [8]–[10]. A number of findings support the hypothesis that such activity
is related to motor preparation. First, delay period activity typically shows tuning for the
instruction (i.e., location of reach target; note that the PMd neuron in Figure 1 has greater
delay activity before leftward than before rightward reaches), consistent with the idea that
something specific is being prepared [8], [9], [11], [13]. Second, in the absence of a delay
period, a brief burst of similarly-tuned activity is observed during the RT interval, consistent
with the idea that motor preparation is taking place at that time [12].

Third, we have recently reported that firing rates across trials to the same reach target
become more consistent as the delay period progresses [16]. The variance of firing rate,



measured across trials, divided by mean firing rate (similar to the Fano factor) was com-
puted for each unit and each time point. Averaged across 14 single- and 33 multi-neuron
units, we found that this Normalized Variance (NV) declined 24% (t-test, p <10−10) from
200 ms before target onset to the median time of the go cue. This decline spanned ∼119 ms
just after target onset and appears to, at least roughly, track the time-course of motor prepa-
ration.

The NV may be interpreted as a signature of the approximate degree of motor prepara-
tion yet to be accomplished. Shortly after target onset, firing rates are frequently far from
their mean. If the go cue arrives then, it will take time to correct these “errors” and RTs
will therefore be longer. By the time the NV has completed its decline, firing rates are
consistently near their mean (which we presume is near an “optimal” configuration for the
impending reach), and RTs will be shorter if the go cue arrives then. This interpretation
assumes that there is a limit on how quickly firing rates can converge to their ideal values
(a limit on how quickly the NV can drop) such that a decline during the delay period saves
time later. The NV was found to be lower at the time of the go cue for trials with shorter
RTs than those with longer RTs [16].

The above data strongly suggest that the network underlying motor preparation exhibits
rich dynamics. Activity is initially variable across trials, but appears to settle during the
delay period. Because the RNN (1)-(2) is capable of exhibiting such dynamics and may
underly motor preparation, we sought to identify such a dynamical system in delay activity.

6 Results and discussion

The NV reveals an average process of settling by measuring the convergence of firing
across different trials. However, it provides little insight into the course of motor planning
on a single trial. A gradual fall in trial-to-trial variance might reflect a gradual convergence
on each trial, or might reflect rapid transitions that occur at different times on different
trials. Similarly, all the NV tells us about the dynamic properties of the underlying network
is the basic fact of convergence from uncontrolled initial conditions to a consistent pre-
movement preparatory state. The structure of any underlying attractors and corresponding
basins of attraction is unobserved. Furthermore, the NV is first computed per-unit and
averaged across units, thus ignoring any structure that may be present in the correlated
firing of units on a given trial. The methods presented here are well-suited to extending the
characterization of this settling process.

We fit the dynamical system model (1)–(4) with three latent dimensions (p = 3) to training
data, consisting of delay activity preceding 70 reaches to the same target (30°). Spike
counts were taken in non-overlapping Δ = 20 ms bins at 20 ms time steps from 50 ms
after target onset to 50 ms after the go cue. Then, the fitted model parameters were used to
infer the latent space trajectories for 146 test trials, which are plotted in Figure 2. Despite
the trial-to-trial variability in the delay period neural responses, the state evolves along
a characteristic path on each trial. It could have been that the neural variability across
trials would cause the state trajectory to evolve in markedly different ways on different
trials. Even with the characteristic structure, the state trajectories are not all identical,
however. This presumably reflects the fact that the motor planning process is internally-
regulated, and its timecourse may differ from trial to trial, even when the presented stimulus
(in this case, the reach target) is identical. How these timecourses differ from trial to trial
would have been obscured had we combined the neural data across trials, as with the NV
in Section 5.

Is this low-dimensional description of the system dynamics adequate to describe the firing
of all 131 recorded units? We transformed the inferred latent trajectories into trial-by-trial
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Figure 2: Inferred modal state trajectories in latent (x) space for 146 test trials. Dots
indicate 50 ms after target onset (blue) and 50 ms after the go cue (green). The radius of
the green dots is logarithmically-related to delay period length (200, 750, or 1000ms).

inhomogeneous firing rates using the output relationship from (4)

λi
t = h

(
ci· xt + di

)
, (8)

where λi
t is the imputed firing rate of the ith unit at the tth time bin. Figure 3 shows the

imputed firing rates for 15 representative units overlaid with empirical firing rates obtained
by directly averaging raw spike counts across the same test trials. If the imputed firing rates
truly reflect the rate functions underlying the observed spikes, then the mean behavior of
the imputed firing rates should track the empirical firing rates. On the other hand, if the
latent system were inadequate to describe the activity, we should expect to see dynamical
features in the empirical firing that could not be captured by the imputed firing rates. The
strong agreement observed in Figure 3 and across all 131 units suggests that this simple
dynamical system is indeed capable of capturing significant components of the dynamics
of this neural circuit. We can view the dyamical system approach adopted in this work as a
form of non-linear dynamical embedding of point-process data. This is in contrast to most
current embedding algorithms that rely on continuous data. Figure 2 effectively represents
a three-dimensional manifold in the space of firing rates along which the dynamics unfold.

Beyond the agreement of imputed means demonstrated by Figure 3, we would like to di-
rectly test the fit of the model to the neural spike data. Unfortunately, current goodness-
of-fit methods for spike trains, such as those based on time-rescaling [17], cannot be ap-
plied directly to latent variable models. The difficulty arises because the average trajectory
obtained from marginalizing over the latent variables in the system (by which we might
hope to rescale the inter-spike intervals) is not designed to provide an accurate estimate of
the trial-by-trial firing rate functions. Instead, each trial must be described by a distinct
trajectory in latent space, which can only be inferred after observing the spike trains them-
selves. This could lead to overfitting. We are currently exploring extensions to the standard
methods which infer latent trajectories using a subset of recorded neurons, and then test
the quality of firing-rate predictions for the remaining neurons. In addition, we plan to
compare models of different latent dimensionalities; here, the latent space was arbitrarily
chosen to be three-dimensional. To validate the learned latent space and inferred trajecto-
ries, we would also like to relate these results to trial-by-trial behavior. In particular, given
the evidence from Section 5, how “settled” the activity is at the time of the go cue should
be predictive of RT.
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