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Abstract 

A number of recent methods developed for automatic classification of multiunit 

neural activity rely on a gaussian model of the variability of individual waveforms and 

the statistical methods of gaussian mixture decomposition. Recent evidence has shown 

that the gaussian model does not accurately capture the multivariate statistics of the 

waveform samples’ distribution. We present further data demonstrating non-gaussian 

statistics, and show that the multivariate t-distribution, a wide-tailed family of 

distributions, provides a significantly better fit to the true statistics. We introduce an 

adaptation of a new Expectation-Maximization (EM) based competitive mixture 

decomposition algorithm and show that it efficiently and reliably performs mixture 

decomposition of t-distributions. Our algorithm determines the number of units in 

multiunit neural recordings, even in the presence of significant noise contamination 

resulting from random threshold crossings and overlapping spikes. 
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Introduction 

Extracellular recordings of neural activity provide a noisy measurement of action 

potentials produced by a number of neurons adjacent to the recording electrode. 

Automatic and semiautomatic approaches to the reconstruction of the underlying neural 

activity, or ‘spike-sorting’ have been the subject of extensive development over the past 4 

decades and reviews of early and recent efforts can be found in the literature (Schmidt 

1984; Lewicki 1998). It is generally assumed that each neuron produces a distinct, 

reproducible shape, which is then contaminated by noise that is primarily additive. 

Identified sources for noise include: Johnson noise in the electrode and electronics, 

background activity of distant neurons (Fee et al. 1996b), waveform misalignment 

(Lewicki 1994), electrode micromovement (Snider and Bonds 1998) and the variation of 

the action potential shape as a function of recent firing history (Fee et al. 1996b; Quirk 

and Wilson 1999). Given this signal+noise structure, the problem of automatically 

classifying the different shapes is a clustering problem and can be addressed either in the 

context of the full time-sampled spike-shape or of a reduced feature set, such as the 

principal components or a wavelet basis (Hulata et al. 2002). 

While the application of general clustering methods such as k-means (Salganicoff 

et al. 1988), fuzzy c-means (Zouridakis and Tam 2000), a variety of neural-network 

based unsupervised classification schemes (Ohberg et al. 1996; Garcia et al. 1998; Kim 

and Kim 2000) and ad-hoc procedures (Fee et al. 1996a; Snider and Bonds 1998) have 

been pursued by some authors, a number of other studies (Lewicki 1994; Sahani et al. 

1997; Lewicki 1998; Sahani 1999), attempting to provide statistically plausible, complete 

and efficient solutions to the waveform clustering problem, have focused their attention 

on clustering based on a gaussian mixture model.  The assumption underlying the latter 

approach is that after accounting for non-additive noise sources (e.g., misalignment, 

changes during neural bursts), the additive noise component is gaussian-distributed. As a 
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result, the waveforms resulting from each neuron are samples from a multidimensional 

gaussian distribution with a certain mean and covariance matrix. Given this statistical 

structure, it is possible to construct an appropriate statistical model of the data and apply 

the powerful method of gaussian mixture decomposition to solve the clustering problem 

(Jain et al. 2000; McLachlan and Peel 2000). This allows estimation of model parameters 

such as the shape of the individual waveforms and the noise characteristics. The 

estimated model parameters are used to classify each ‘spike’ to one of several mixture 

components that correspond to different neural units (or possibly noise).  

Although the statistical framework resulting from the multivariate gaussian model 

is powerful and well studied, recent evidence suggests that it may provide an inaccurate 

description of the spike statistics (Harris et al. 2000). Examination of the distribution of 

Mahalanobis squared distances of spikes produced by a single unit reveals a discrepancy 

between the expected 2χ distribution and the empirical distribution, which exhibits wider 

tails. Algorithms based on the gaussian assumption may therefore be ill suited for the 

task of automatic spike sorting, in particular as it is well known that they are not robust 

against a significant proportion of outliers.   In this study, we provide additional evidence 

for the non-gaussian nature of spike-shape statistics and demonstrate that an alternative 

model, one using multivariate t-distributions instead of multivariate gaussians is better 

suited to model the observed statistics. Multivariate t-distributions have attracted some 

recent attention in the applied statistics literature (Lange et al. 1989), and a mixture 

decomposition algorithm for multivariate t-distributions was developed (Peel and 

McLachlan 2000), based on the Expectation-Maximization (EM) algorithm. This 

algorithm requires computation of twice as many hidden variables as in gaussian mixture 

decomposition algorithms, and involves an additional computational step for adapting the 

‘degrees of freedom’ parameter.  

In addition to the choice of a statistical model for the mixture components, 

practical EM-based mixture decomposition algorithms need to address a number of issues 
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including the determination of the number of components, the choice of an initialization 

procedure and avoiding convergence to local likelihood maxima or parameter 

singularities.  Determination of the number of components in a mixture model has been 

the subject of extensive research (reviewed in (Sahani 1999; McLachlan and Peel 2000; 

Figueiredo and Jain 2002)). The methods most widely used for this task were based on 

selecting the best mixture models from a set of candidates with different numbers of 

components. After fitting the parameters of the different models (using the EM 

algorithm) the different models are compared using a penalized likelihood function, 

which penalizes the likelihood for ‘complexity’ (i.e., a larger number of components) and 

an “optimal” model is found.  This class of methods has the disadvantage of requiring 

estimation of the parameters of multiple mixture models. Other approaches include the 

use of stochastic model estimation using model-switching Markov-Chain Monte-Carlo 

methods (Richardson and Green 1997), and deterministic annealing based approaches 

(Sahani 1999), which we have recently adapted to the case of the multivariate t-mixture 

model (Shoham 2002). These approaches suffer from significant computational 

complexity, and, in addition, annealing approaches are quite sensitive to the specific 

choice of an annealing schedule.       A recently introduced algorithm (Figueiredo and 

Jain 2002), provides a new strategy where a process involving competitive elimination of 

mixture components drives a modified EM algorithm towards the optimal model size, 

simultaneously with the model parameter estimation. This approach appears currently to 

offer the best overall profile in terms of computational simplicity, efficiency and 

selection accuracy, and tends to avoid the usual difficulties of initialization sensitivity 

and convergence to singularities associated with the EM algorithm. We provide an 

adaptation of this algorithm for the case of multivariate t-distributed components. Our 

final algorithm is statistically plausible, simple and well-behaved and can effectively deal 

with many real data sets.  
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Theory: statistics of spike-shape variability 

In mixture modeling we assume that each sample ix  (in general, a p-dimensional 

vector) originates from one of g components. In spike sorting, ix  represents a sampled 

spike waveform or a vector of features, and the different components correspond to g 
different units. Assuming that each unit accounts for a proportion jπ  of the n spikes, and 

that the distribution of spikes from unit j has parameters jθ , the likelihood of the data 

(the probability of obtaining the given data set from this model) is (Lewicki 1998; 

McLachlan and Peel 2000): 
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has been used by a number of authors (Lewicki 1998; Sahani 1999) as a model. Here jµ  

is the mean, jΣ  is the covariance and ( ) ( )jij
T

jijji µxΣµxΣµx −−= −1);,(δ  is the 

Mahalanobis squared distance between xi and the template jµ . The distribution of 

Mahalanobis squared distances of the different samples from the multivariate gaussian is 

expected to approximately follow the chi-square distribution with p degrees of freedom 

(only approximately, since we are dealing with sample mean and covariance).  

Multivariate t-distributions (Lange et al. 1989; Peel and McLachlan 2000) 

represent a heavy-tailed elliptically symmetric alternative to multivariate gaussians. 
Similar to gaussians, multivariate t-distributions are parameterized by a unique mean jµ , 

and covariance matrix jΣ . In addition, they have a ‘degrees of freedom’ (DOF) 
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parameter ν, which is a positive scalar. Effectively, ν parameterizes the distribution’s 

‘robustness’, that is, how wide the tails are or how many outliers are expected relative to 

a gaussian distribution with the same mean and covariance. The case ν→∞ corresponds 

to a gaussian distribution and when ν=1 we obtain the wide tailed multivariate Cauchy 

distribution (the expected covariance is infinite for ν≤2). The p-dimensional t-distribution 
probability density function with parameters },,{ νθ jjj Σµ=  is:  
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where Γ is the Gamma function. The distribution of Mahalanobis squared distances in the 

case of t-distributions can be evaluated analytically, and is equal to: 
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where ( )βα ,;xbeta  is the beta probability density function with parameters α  and β at 

point x. 

Algorithms: clustering with mixtures of multivariate t-distributions 

The most widely used method for estimating the parameters of mixture models is 

through an iterative loglikelihood maximization procedure called the Expectation-

Maximization (EM) algorithm (Dempster et al. 1977; Jain et al. 2000; McLachlan and 

Peel 2000). The EM algorithm for mixtures of gaussian distributions has been widely 

used for over three decades. Recently, an EM algorithm for estimating the parameters of 

mixtures of multivariate t-distributions was presented (Peel and McLachlan 2000).  As 

noted in the introduction, rather than apply the EM algorithm directly, we would like to 

apply it in conjunction with an efficient model selection scheme developed recently 

(Figueiredo and Jain 2002). This approach maximizes a penalized log-likelihood with a 

penalty based on the Minimum Message Length criterion (Wallace and Freeman 1987):  
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Where N is the number of parameters per mixture component.  This penalized 

loglikelihood function leads to a different update of the mixing proportions in the M-step, 

which causes mixture components to compete for data points and be eliminated when 

they become singular. The algorithm is initialized with a large number of components, 

and subsequently eliminates components until convergence.     This basic algorithm has a 

problematic failure mode: when it is initialized with many very small components they 

are all immediately eliminated. To circumvent this problem Figueiredo and Jain 

(Figueiredo and Jain 2002) use the component-wise EM procedure (Celeux et al. 1999) to 

re-normalize the component proportions after each sub-step. We have found that this 

particular implementation offers significant disadvantages when used with the t-

distribution model; in particular, fitting common parameters like the degrees of freedom 

parameter becomes problematic.  Instead, we found that maximizing (5) directly with 
respect to jπ  also provides the desired effect without the associated difficulty (see 

appendix).  

The full algorithm (Table 1) consists of the EM algorithm for fitting mixtures of t-

distributions (Peel and McLachlan 2000), repeated here without derivation, together with 

a modified M-step for maximizing (5), derived in the appendix.  The algorithm uses two 

sets of auxiliary variables (in the gaussian case only the memberships are used):  

ijz - Membership of spike i to unit j ( 10 ≤≤ ijz , 1 indicates unit j produced spike i).  

iju - Weights indicating ‘typicality’ of spike i w.r.t. unit  j ( 1<<iju  for outliers) 

These variables are recalculated in the E step, and subsequently used to generate new 

estimates of the model parameters in the M step.  The required calculations at step k of 

the algorithm are: 
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E step 

Update the memberships and weights using: 
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M step 

1. Update the proportions g...1π by iterating until convergence: 
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2. Update the component means and covariance using: 
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3. Estimate the DOF parameter ν (tunes the tails of the distribution) by solving 

the following nonlinear equation (Peel and McLachlan 2000): 
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Where ψ is the digamma function. Solving this equation typically involves a one-

dimensional search, which adds significant computational overhead to the EM algorithm. 

Instead, we found empirically an approximation that provides a very accurate and fast 
approximate solution to (9)  ( 03.0* <−νν  tested on simulated data with 505 <<ν ): 
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Where y is an auxiliary variable defined by: 
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and erf is the error function. 

Clustering Simulations: In order to avoid the inherent uncertainty in assessing the 

true number of units in extracellular recordings, we first tested the new algorithm on 

simulated random mixtures. We compared the clustering results of a randomly initialized 

EM algorithm (with the correct number of components) and of the new algorithm using 

100 mixtures consisting of five components with different covariance matrices and 

proportions (π={0.3,0.3,0.2,0.1,0.1}). There were 1000 five-dimensional vectors in each 

mixture, and the individual components had random means that were uniformly 

distributed in the range {-5,5} in each dimension, and diagonal covariance matrices with 

random elements uniformly distributed between 0.5 and 2. The data vectors were t-

distributed, and simulations were performed with three levels of “contamination”, 

}20,5,3{=ν . When comparing the penalized-loglikelihood (5) of the clustering results to 

those of the underlying “true” distribution of points, we found that in all cases the new 

algorithm markedly outperformed the unmodified EM algorithm, which obtained 

incorrect and significantly less likely solutions in 40-50% of the trials (see Figure 1). The 

new algorithm correctly determined the number of components (5) in 90%-98% of the 

mixtures, and in over half the cases where it found an incorrect number (always either 4 
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or 6) the “wrong” answer corresponded to a higher penalized-loglikelihood than that of 

the underlying model used to generate the data. In all cases where the correct number of 

components was found, it either corresponded to the underlying model or had better 

penalized-loglikelihood. In fact in 5%-30% of the trials it obtained solutions with a 

much-higher penalized-loglikelihood than that of the underlying model. The algorithm’s 

performance therefore appears to be limited by the uncertainty inherent to the maximum-

likelihood approach. 

While performing this simulation study we found that the theoretical value of N 

(the number of parameters per component - pppN +
+

=
2

)1(  for an unconstrained mean 

and covariance) led to over-clustering, and we replaced it with an empirically obtained 

value (i.e., we consider it to be a user-assigned parameter). We continued this practice 

when applying the algorithm to real data.  

Experimental methods  

The extracellular signals analyzed were recorded with a 100-microelectrode array 

(Jones et al. 1992) (Bionic Technologies, LLC, Salt Lake City, Utah). The array consists 

of a rectangular grid of silicon electrodes with platinized tips (200-500 kΩ impedances 

measured with a 1kHz, 100 nA sine wave). The array was chronically implanted in the 

arm region of a macaque monkey’s (M. mulatta) primary motor cortex using surgical 

implantation procedures described elsewhere (Maynard et al. 2000), with the electrode 

tips approximately located in layers IV and V. A chronic connector system was used, 

allowing simultaneous access to signals from 48 electrodes. Recordings were obtained 

while the monkey was awake and performing a manual tracking task (Paninski et al. in 

review). Signals were band-pass filtered (250-7500 Hz, 5th order Butterworth), amplified 

(5000x), digitized (30 kHz sampling), and acquired to a Pentium-based PC using a 100-

channel data acquisition system (Guillory and Normann 1999) (Bionic Technologies, 

LLC, Salt Lake City, Utah). Thresholds were manually set, at relatively low values, and 
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threshold-crossing events were saved to disk. The events consisted of 48 time samples 

(1.6 ms), 10 of which preceded the threshold crossing. Of the 48 available electrodes, 14 

provided single or multiunit activity. All of the subsequent data analysis procedures were 

performed using Matlab (Mathworks, Natick, MA.). 

Results 

I. Spike Waveform Statistics: Figure 2 shows data collected from a well-isolated 

unit with signal-to-noise ratio of 16.9 (peak to peak/noise RMS), which was selected for 

much of the analysis below. Of the nearly 200,000 threshold-crossing events recorded in 

one behavioral session, 10,000 were selected. Random threshold-crossing events, which 

constituted nearly one half of the events, were easily identifiable and manually removed 

using amplitude windows. This left approximately 5,300 events to be considered as unit 

waveforms. The absence of detectable waveform overlaps in the raw events further 

suggests that this is a single unit. The unit displayed cosine modulation (Georgopoulos et 

al. 1982) with the instantaneous direction of arm motion (data not shown).  

The waveform peak locations were estimated with subsample resolution by up-

sampling the waveform at a 10 times finer resolution, and finding the new peak (Sahani 

1999). All peaks were then aligned, and the waveforms interpolated at the original 

sampling resolution.  Five points on the waveform edges were discarded to eliminate the 

need for extrapolation, leaving 43-sample point waveforms. Simulation tests indicate that 

this technique achieves an alignment accuracy of roughly 0.1 samples (standard 

deviation). 

The left panel in Figure 3 illustrates that the empirical and 2χ  distributions have 

significant discrepancies, over the entire data range. These discrepancies are further 

illustrated in Figure 4a where the quantiles of the cumulative 2χ  distribution and the 

cumulative distribution of squared distances are compared. The two figures present 

complementary views of the overall disagreement. A few outlier data points with 
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particularly large deviation are not shown in this figure. The solid line in Figure 4a 

presents the expected cumulative distribution of 2χ with 43 degrees of freedom ( )43(2χ ), 

while the dashed line is the best fitting line plotted by Matlab on Quantile-Quantile (Q-

Q) distribution plots of this type. The discrepancy between the best-fit line and the data 

are limited to the last few percent of data, while the disagreement with the expected 

)43(2χ  model is essentially everywhere. 

Figures 3 (right panel) and 4b demonstrate the superior performance of the t- 

distributions as models of neural waveform variability. In Figure 4b the expected 

distribution (solid line) and the best fit exactly overlie each other. The t-distributions are, 

however, not a perfect fit. They clearly fail to explain a small proportion of points (0.1%-

0.2%) with extremely large Mahalanobis squared distances. In a typical sample often 

used for spike sorting (2000-3000 waveforms) this proportion amounts to two to six 

spikes. 

 To obtain a quantitative measure of the goodness-of-fit of the two distributions, 

we calculated the Kolmogorov-Smirnov statistics using the Mahalanobis squared 

distances of the observed data, and simulated data generated from distributions with the 

best-fitting parameters (5000 waveforms generated in each case). The KS statistic was 

0.11 (p<10-25, highly significant difference) for the multivariate gaussian distribution and 

0.013 (p=0.78, insignificant difference) for the multivariate t-distribution. These numbers 

demonstrate the superior fit provided by the multivariate t-distribution. 

The overall shape of the distribution, not merely the presence of a few outliers, is 

the source of the discrepancy with the gaussian distribution. Removing the 6 outliers in 

our example had only a small effect on the optimal distribution parameters ( 9.51=ν  vs. 

7.46=ν ). The optimal DOF parameter for t-distributions becomes smaller (more non-

gaussian) as we try to fit a projection onto a smaller subset of the leading principal 

components. Principal components analysis finds high-variance dimensions in the data, 

which appear to be less gaussian (Figures 3 (lower panel) and 5).  The best fitting model 
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for the waveform projections on the first 10 PCs hasν = 11.9 and on the first two PCs 

hasν = 7.8. The first 10 PCs capture ~92% of the entire ensemble variance. A consistent 

picture emerges when fitting the projections individually dimension by dimension (figure 

5d). The most significant dimensions are best fit with a t-distribution with 7-15 degrees 

of freedom. 

II: Clustering:  Results of applying our algorithm to real multi-unit motor data appear in 

Figures 6 and 7. Waveforms were realigned (as above), but not subjected to any 

additional preprocessing. The algorithm in both cases was initialized with 10 

components, and rapidly converged to a result that appears to have the correct number of 

clusters as illustrated in Figure 6 (a). In both figures there are ‘noise collection’ clusters 

that are not a neural unit, but rather capture outlier waveforms produced by noise or 

overlapping waveforms. These results were obtained using the full sampled waveforms, 

however the algorithm works well with a reduced feature set, such as the leading 

principal components. The results also illustrate that the performance is successful in 

spite of large noise contamination. The automatic tuning of the DOF parameter helps 

achieve this performance. The range of DOF in the solutions to these examples was 10-

15, while isolated spike distributions have DOF parameters in the range 30-50. When 

using the projection on the first five principal components, DOF solutions obtained were 

in the range 3-8.  

Discussion 

One of the most promising recent advances in basic and applied neuroscience 

research is the fabrication of arrays of electrodes that allow multiple site recording and 

stimulation in various neural systems (Jones et al. 1992; Hoogerwerf and Wise 1994; 

Rousche et al. 2001). Neural activity recorded with such arrays can be used to address a 

multitude of basic neuroscience questions, and has also been suggested as a brain-

computer interface for use by paralyzed individuals (Shoham 2001; Donoghue 2002). 
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However, the traditional practice of optimizing SNR by micro-manipulating the electrode 

placement is no longer possible or practical when using these arrays. In practical terms 

this means that significant effort must be expended in signal detection and classification 

under “low” SNR scenarios (Kim and Kim 2000). This need motivated the present study, 

in particular because studies suggest that automatic methods potentially possess a 

significant accuracy advantage over manual spike sorting (Lewicki 1994; Harris et al. 

2000), and are clearly more suitable for high electrodecount arrays. 

 As mixture model-based clustering algorithms appear to currently offer the best 

prospects for the classification subunit in a fully automatic spike sorting routine (Lewicki 

1998; Sahani 1999), we started out by testing the popular gaussian model, and replacing 

it with an improved, t-distribution model, at the cost of adding a single global parameter 

ν . Using a t-distribution provides a robust alternative to the use of gaussian mixture 

models, automatically down-weighing the effect of outlier waveforms. Our parameter 

estimation relies on a new algorithm that combines a recent EM algorithm for mixture 

decomposition of t-distributions (Peel and McLachlan 2000), a new EM-based 

competitive agglomeration algorithm (Figueiredo and Jain 2002), and a simple 

approximation for determining ν. Unfortunately, at present this algorithm relies on an 

empirically determined penalty parameter, which weakens the advantage of using the 

superior statistical model. A Matlab implementation of the presented algorithm (available 

online: http://www.bionictech.com/support.html) is currently used for off-line sorting of 

electrode-array data by a number of laboratories, mainly in conjunction with Bionic 

Technologies electrode arrays and data acquisition systems (CyberKinetics Inc., 

Providence, RI). The current algorithm typically clusters a sample of 2000 five-

dimensional waveforms in 5-6 seconds on a Pentium 2.4GHz computer, and can therefore 

potentially be implemented as part of a fully automatic multi-channel data acquisition 

system.  
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Our results regarding the statistics of waveform variability support those of a 

recent study (Harris et al. 2000) (figure 3A) where intracellular recordings were used to 

reliably identify the action potentials fired by individual neurons. Our results are, in fact, 

stronger in rejecting the gaussian model, possibly because Harris et al. (Harris et al. 

2000) presented the best fitting line in their 2χ  distribution plot, rather than the 

distribution with the correct degrees of freedom (see Figure 4).   Two earlier studies of 

waveform variability ((Lewicki 1994) (Figure 2b) and (Fee et al. 1996b) (Figure 1e)) 

used a different data analysis approach, collapsing together the residuals from different 

time-delays thereby reducing a multivariate distribution to a univariate one (in contrast, 

the distribution of Mahalanobis squared distances is a measure that is well suited for 

looking at the distribution of multivariate elliptical distributions). Close examination of 

the distribution plots appearing in these studies reveals larger-than-normal tails (in fact, 

the plotted gaussians were matched to the central region of the bell curve, rather than the 

standard variation). An additional study looked at the multivariate statistics of the 

background noise (Sahani 1999) (Figure 5.4), examining the marginal distributions along 

different principal directions, and demonstrated that the distribution exhibited extra 

kurtosis along the first few (i.e. most significant) principal directions. 

 The reason for the superior fit provided by the multivariate t-distributions is 

clearly the flexibility provided by the degrees of freedom parameter, and its wider tails. 

However, it may also be viewed as related to underlying characteristics of the 

background noise process. A previous study (Fee et al. 1996b) provided compelling 

evidence that the neural background noise is highly nonstationary, and therefore the spike 

waveform distribution results from the mixed contributions of noise samples with 

different characteristics. This “double randomness” is a characteristic of compound 

probability models of which the t-distribution is a member (Johnson et al. 1994). t-

distributed variables can be generated as normally distributed with covariance matrix 

u/Σ  where u is a random variable itself with a gamma distribution (Peel and McLachlan 
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2000). The nonstationarity of the background noise thus provides a potential reason why 

the noise statistics do not follow the normal distribution, in spite of the central limit 

theorem.  

Alternatives and possible extensions 

Another solution to the problem of non-gaussian waveform distributions 

(Banfield and Raftery 1993; Sahani 1999) is adding an additional large component whose 

influence encompasses the entire data set and serves as a ‘garbage collector’. We found 

that adding the resulting component is highly sensitive to the definition of the ‘data 

range’. Instead, in our implementation, following the clustering procedure we use 

heuristics to select those components thought to contain random threshold crossings and 

overlapping waveforms. Additional robust mixture-based clustering algorithms found in 

the literature are based on Huber’s M-estimators (Huber 1982) like the hybrid of a 

gaussian distribution with laplacian tails (Tadjudin and Landgrebe 2000) or Least 

Trimmed Squares estimators (Medasani and Krishnapuram 1998). It is quite possible that 

mixtures with nonelliptical mixture components (in contrast to multivariate gaussian or t-

distributions) will improve the fit to the real statistics.     Next generations of this 

algorithm can also incorporate additional information regarding the behavior of spike 

trains into the process of spike sorting, including the existence of refractory periods and 

waveform changes during bursts. Examples of how to extend the probabilistic modeling 

approach we have used to include this domain-specific information are provided in a 

recent study (Sahani 1999).  

 

 

Appendix 

Following the ideas of the ECME algorithm (Liu and Rubin 1994), we are 
interested in maximizing the penalized loglikelihood directly with respect to jπ : 
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            The maximization is subject to the constraint: 1
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optimization problem we use a Lagrange multiplier; we now have to maximize: 
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Differentiating with respect to jπ , we obtain: 
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Substituting λ from (15) back into (14) and rearranging, we get the formula: 
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Which can be solved iteratively. As in (Figueiredo and Jain 2002) we also enforce the 
additional constraint jπ ≥0 during the iterations, which leads to (7). 
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Table 1 

algorithm 
Initialization: use simple clustering method (e.g. k-means or FCM) to 
determine centers max...1 gµ  of gmax>>gtrue components. Set 

ΝL
g gg  determinepre;;50;;1

max...1
max

...1 −−∞==== νπ IΣ  

While g≥gmin 
      Repeat 
            E Step 
                Update memberships zij and weights uij  (6) 
            M step 

                While 4

1
101 −

=

>−∑
g

j
jπ  

         For j=1:g 
                            Update jπ  (7) 

                        End For 
                        g ← # of  0>jπ  

                End While 
                Purge components where 0=jπ   

                Update µj, Σj  (8) 
                Update ν (11),(10) 
            Update Pij (3) 
            Update L (5) 
      Until Convergence ( 1.0<∆L & 210−<∆ν ) 
       If  L>Lmax 

                 Lmax=L; store parameters {πj, µj, Σj,ν} as ‘optimal’; 

                 Set smallest component to zero; g=g-1; 
      Else 
            Break 
      End if 
End While  



Figure Legends 
Figure 1.  Representative statistics for a well-isolated motor cortical unit. (a) collection of 
~5300 aligned waveforms. (b) Projection of waveforms from (a) onto their first two 
principal-components. (c) ISI histogram. Cell fired at an average rate of roughly 30Hz.  
(d) Histogram of collapsed residuals from (a) after the removal of the mean waveform. 
Inset shows right ‘tail’.  
 
Figure 2.   Comparison of predicted and actual distributions of Mahalanobis squared 
distances. Plots show results for the same unit as in Figure 1, using both gaussian (left 
panels) and t-distribution (right panels) models. Both upper panels are the distributions 
using the full sampled waveforms (43 dimensions), and the lower panels are calculated 
using the first two principal components. The t-distributions used had 7.46=ν (upper) 
and 4.7=ν (lower). The predicted distributions (solid lines) are chi-square (gaussian), 
and a beta distribution (t). 
 
Figure 3.   Analysis of cluster shape using cumulative distribution plots (a) 2χ  
cumulative distribution plot (43 degrees of freedom). 2χ (43) is the expected distribution 
of distances for normally distributed residuals. (b) Cumulative distance distribution using 
a beta distribution model. A beta distribution of the distances is expected for t-distributed 
residuals.  Inserts in both plots are blow-up views of the central region. 
 
Figure 4.   Q-Q plots for the Mahalanobis squared distances for the gaussian (black) and 
t-distribution (light gray) models. The data used were from same unit as in Figure 1. A 
good model fit is indicated when the plot falls along the slope 1 line. Both axes of all 
plots are in squared distance units.  
 
Figure 5. Failures of EM and new algorithm with simulated data. Plots display 
projections on first two principal components. Left panels: clustering results with regular 
EM (a) and new algorithm (b-c). Right panels: Underlying mixture. Ellipses indicate 2σ 
lines. Note that the while the EM failures are gross, erroneous solutions obtained by the 
new algorithm are nearly equivalent.    
 
Figure 6.   Clustering of multi-unit motor data I. (a) Snapshots of the algorithm progress 
illustrated in the space of the first two principal components (ellipses mark the 2σ lines). 
Top: initialization (10 components). Middle: Intermediate stage (four components). 
Bottom: final (three components representing two units + noise waveforms).  (b) Top: 
Aligned raw data (3000 events). Middle: Classified waveforms. Bottom: ISI histogram 
for the two units and the noise cluster (shown in black). Insert shows the waveform 
templates.  
 
Figure 7.  Clustering of multiunit motor data II. (a) Raw data (3000 events), and its 
projection on the first two principal components. (b) Results of automatic clustering 
algorithm. Insert in right panel shows the learned templates. Ellipses on right mark the 2σ 
lines. Gray cluster consists of random threshold crossings and local field potential 
waveforms. Black cluster includes overlapping waveforms and noise waveforms. 
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