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Abstract
A white noise technique is presented for estimating the response properties of
spiking visual system neurons. The technique is simple, robust, efficient and
well suited to simultaneous recordings from multiple neurons. It provides a
complete and easily interpretable model of light responses even for neurons
that display a common form of response nonlinearity that precludes classical
linear systems analysis. A theoretical justification of the technique is presented
that relies only on elementary linear algebra and statistics. Implementation is
described with examples. The technique and the underlying model of neural
responses are validated using recordings from retinal ganglion cells, and in
principle are applicable to other neurons. Advantages and disadvantages of the
technique relative to classical approaches are discussed.

1. Introduction

This paper describes a technique for quantifying the spatial, temporal and spectral response
properties of spiking visual system neurons. Classically this has been accomplished by
presenting pulsed, modulated or drifting stimuli such as spots, bars or gratings, measuring
spike rate for a period during and after stimulation and assuming linearity to construct a model
of neural response. The method presented here, based on white noise stimulation, has several
advantages over this conventional paradigm. The stochastic, highly interleaved stimulus
spans a wide range of visual inputs, is relatively robust to fluctuations in responsivity, avoids
adaptation to strong or prolonged stimuli and is well suited to simultaneous measurements from
multiple neurons. The analysis yields a full characterization of a neuron’s spatial, temporal
and chromatic sensitivity even when the response exhibits a common form of nonlinearity (see
below) that precludes classical linear systems analysis.

White noise stimulation combined with Wiener kernel analysis can in principle be used to
characterize neurons with arbitrarily complex nonlinear response properties (see Sakai 1992,
Rieke et al 1997). However the practical benefits of this approach are limited because of the
large data sets required and the difficulty of interpreting high-order kernels (but see Marmarelis
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and Naka (1972), Citron and Emerson (1983), Korenberg et al (1989); see Rieke et al (1997),
Sakai (1992) for a fuller discussion). For this reason, white noise methods have often been used
to probe stimulus selectivity qualitatively without an explicit model of neural response (e.g.
Meister et al 1995, Brown et al 2000), or with an assumption of response linearity that greatly
simplifies analysis (e.g. Reid and Alonso 1995, DeAngelis et al 1993). However many neurons
display significant response nonlinearities, such as spike threshold and response saturation, that
preclude linear analysis.

This paper focuses on a relatively simple form of white noise analysis that yields a
quantitative model of neural response in spite of such nonlinearities (Marmarelis and Naka
1972, Korenberg and Hunter 1986, Hunter and Korenberg 1986, Korenberg et al 1989, Sakai
1992). It is assumed that the neuron’s spike rate at any instant depends only on the value at the
same instant of a generator signal which is a linear combination of visual inputs over space
and recent time (e.g. a sum of synaptic currents proportional to local contrast). However,
the instantaneous relationship between the generator signal and spike rate can be linear or
nonlinear (e.g. spike generation). Under these conditions, the analysis technique presented
here is useful (e.g. Emerson et al 1992, Sakai et al 1995, Anzai et al 1999, Chichilnisky and
Baylor 1999) because it produces a full, quantitative model of neural response that is almost
as simple as a strictly linear model but accounts for the response nonlinearity. This can be
particularly useful in characterizing subthreshold responses of neurons with low maintained
discharge (e.g. DeAngelis et al 1995) to explore subtle aspects of light response, or in analysing
spatio-temporal sensitivity and detailed properties of visual inputs without confounds due to
response nonlinearities (e.g. Chander and Chichilnisky 1999, Chichilnisky and Baylor 1999).

The purpose of this paper is to make this analysis technique clear and accessible to
neuroscientists in the form of a self-contained guide. The procedure for building a complete
quantitative input–output model of a visual system neuron using white noise stimulation
is justified theoretically and described with examples. An empirical test of the model is
formulated and applied to experimentally measured responses of retinal ganglion cells.

2. Definitions and assumptions

2.1. Stimulus and response

The period in which stimuli are presented and spikes are recorded is divided into bins of size
�t , typically a few milliseconds. The neural response ft is defined as the number of spikes
observed in time bin t . A successful model will predict the average number of spikes per time
bin observed after the presentation of any stimulus.

Each stimulus is specified by a vector of dimension k. The entries of the stimulus vector
st indicate intensity as a function of space and time immediately preceding t . The duration of
each stimulus vector is assumed to exceed the memory of the neuron, that is, the period over
which a stimulus can affect the response (empirically determined; see section 3.1). Thus the
response ft at time t depends only on st .

Example. Suppose the stimulus is a spatially uniform grey field with variable intensity over
time. The stimulus vector st indicates the intensity in the k time bins preceding t .

Example. Suppose the stimulus is generated using a colour computer display refreshing at
75 Hz (�t = 1

75 s), and the memory of the neuron is 200 ms (15�t). Then each stimulus
vector st denotes the red, green and blue phosphor intensity at each spatial location in each
of 15 time bins preceding t . For a display with just 256 distinct pixels, st has dimension
k = 256 × 3 × 15 = 11 520.
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Figure 1. (a) Section of a spatially uniform, monochromatic Gaussian white noise sequence for
a neuron with a memory of four time units. The contrast values in the stimulus vector s15, for
example, are presented in time bins 11–14. The response f15 to this stimulus vector is the number
of spikes in time bin 15. Note that distinct stimulus vectors such as s15, s16 and s17 overlap in
time. (b) Gaussian white noise sequence with spatial, temporal and chromatic modulation for a
neuron with a memory of four time units.

2.2. Stochastic stimuli: Gaussian white noise sequences

Each stimulus vector can be represented as a point in a k-dimensional stimulus space S; that
is, a Cartesian coordinate system. Stimulus vectors are assumed to be drawn randomly from
S. The probability of drawing a particular stimulus vector s is given by P(s). This probability
distribution is assumed to be radially symmetric about the origin in stimulus space. That is,
any two stimulus vectors s, s∗ ∈ S with equal vector length have equal probability of being
drawn:

|s| = |s∗| ⇒ P(s) = P(s∗). (1)

Radial symmetry about the origin implies that some stimulus vectors must contain negative
entries. A standard notation is to specify the contrast, or deviation from mean intensity, in the
entries of stimulus vectors.

An efficient way to generate a set of stimulus vectors over time satisfying the above
requirements is to use a Gaussian white noise sequence. Each stimulus vector st is created
by filling the entries of a k-dimensional vector with independent draws from a Gaussian
distribution. Thus the ensemble of stimulus vectors forms a multi-dimensional Gaussian
distribution satisfying the radial symmetry assumption.

Example. Consider the case of a spatially uniform grey field of variable intensity. Suppose the
memory of the neuron is four time units, and choose k = 4. At each time bin, a new contrast is
selected and presented according to a random draw from a Gaussian distribution, as illustrated
in figure 1(a).

Example. A more general Gaussian white noise sequence consists of a random, independent
sequence of intensities for each spatial location, time bin and colour. This stimulus looks like
a flickering coloured checkerboard pattern with no spatial, temporal or chromatic structure.
Sample frames from such a stimulus are shown in figure 1(b).

Stimuli are presented sequentially without gaps in time, so each stimulus vector in a
Gaussian white noise sequence overlaps in time with stimulus vectors that immediately precede
and follow it (see figure 1). Thus stimulus vectors are not statistically independent.
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Figure 2. Model for neural response. First, a linear operation (inner product with w) on the recent
stimulus s produces a real-valued generator signal w · s. Second, an instantaneous nonlinear
function of the generator signal produces the spike rate R(s). Third, a Poisson process determines
the spike count f.

2.3. Model of neural response

The neural response to be modelled is the average value of the spike count f in the time bin
immediately following a stimulus s, or the expected response to the stimulus:

R(s) = 〈f | s〉 =
∑

f

fP (f | s). (2)

Here the notation 〈〉 denotes the expected value or average across repeated experiments.
The function R() can take on any non-negative real value (as opposed to the spike count, f,
which is integer valued).

The goal is to estimate R(). To make this tractable a simplifying assumption is imposed,
namely, that R() is a static nonlinear function of a real-valued linear function of the stimulus:

R(s) = N(w · s). (3)

Here w is a fixed vector of the same dimension as s, w · s represents the dot (scalar,
inner) product of vectors, and N() is an arbitrary real-valued function of one variable. In the
model of equation (3), stimulus intensities over space and time are weighted by the entries
of the fixed vector w, which defines the neuron’s stimulus selectivity, and summed to give a
single number w · s, the generator signal. Most standard models of visual responses have
just this linear architecture (e.g. Enroth-Cugell and Pinto 1970, Movshon et al 1978), but in
equation (3) the generator signal controls firing rate via the (generally nonlinear) function N().
This architecture is useful because it allows for typical nonlinearities in neurons, such as spike
threshold and response saturation, while remaining mathematically tractable: as will be shown
below, w and N() can be estimated easily and efficiently from neural responses. The model
is depicted schematically in figure 2.

Note that equation (3) describes the dependence of the response on the stimulus, not on
the recent response history. It is assumed that there is no dependence on the response history
per se, that is, spikes are generated by a Poisson process1 with a rate parameter equal to the
expected response R(s).

Example. Suppose that the total post-synaptic current in a neuron depends linearly on the
stimulus, but that spike probability depends nonlinearly on current because of the biophysical
properties of the ion channels that control spike generation. The static nonlinear model
subsumes this case, a strictly linear model does not.

1 While Poisson spike generation in real neurons is impossible because of refractoriness caused by inactivation of
sodium channels, if the refractory period is short compared to �t , Poisson spike generation may be a reasonable
approximation. For non-Poisson spiking (such as gamma or integrate-and-fire processes) the average spike rate
is an incomplete but still useful measure of response, and can be predicted using the same model (Victor, personal
communication). For simplicity, only the Poisson case is considered here. See Rieke et al (1997) for a fuller discussion
of the statistics of neural responses.



A simple white noise analysis of neuronal light responses 203

3. Estimating the stimulus–response relationship

3.1. Spike-triggered average and relation to R()

The first step in characterizing R(), which defines the relation between the stimulus and the
expected number of spikes, is achieved by examining the spike-triggered average stimulus or
STA. This is defined as the average stimulus preceding a spike in the cell, i.e. the sum of the
stimuli that preceded each spike divided by the total number of spikes:

a =
∑T

t=1 st ft∑T
t=1 ft

. (4)

Here T represents the length of the recording period. The STA, a, is a vector with the same
dimension as each stimulus vector. It indicates what stimulus, on average, caused the cell to
spike. More importantly the STA is related in a simple way to w (Hunter and Korenberg 1986,
Korenberg et al 1989). To establish this relation, first divide the numerator and denominator
in equation (4) by T :

a =
1
T

∑T
t=1 st ft

1
T

∑T
t=1 ft

. (5)

Assume recording happens for a long time, i.e. T → ∞. The denominator in equation (5)
is the total number of spikes divided by the recording time—the average firing rate. As
T → ∞ it is assumed that this value approaches a nonzero limit 〈f〉. Similarly it is assumed
that the numerator approaches a limit 〈sf〉. This expectation can be expressed equivalently
as the sum over all stimulus–response pairs weighted by the probability of observing that
stimulus–response pair:

〈sf〉 =
∑

s

∑

f

sfP (s & f).

This can be simplified using the identity P(s & f) = P(s)P (f | s), re-arranging terms
and substituting from equation (2):

〈sf〉 =
∑

s

∑

f

sfP (s)P (f | s)

=
∑

s

sP(s)
∑

f

fP (f | s)

=
∑

s

sP(s)R(s).

Hence for large values of T ,

a = 1

〈f〉
∑

s

sP(s)R(s). (6)

Thus the STA approaches a sum of stimulus vectors, each weighted by its probability of
being drawn and the average response it induces, normalized by the average firing rate, as
might be expected intuitively from equation (4).

A key simplification of equation (6) (Meister, personal communication) is achieved using
the two assumptions above, namely the static nonlinear form of the response (equation (3))
and the radial symmetry of the stimulus distribution (equation (1)). For each stimulus s ∈ S,
radial symmetry implies that there is another stimulus s∗ ∈ S in a location symmetric about the
linear weighting vector w (see figure 3) with equal probability of being drawn: P(s) = P(s∗).
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Figure 3. Symmetry of the stimulus distribution. The coordinate axes represent a two-dimensional
stimulus space S, for example contrast at two spatial locations or two time points prior to the
response. By assumption (equation (1)), for each stimulus s ∈ S there is another stimulus s∗
symmetric about w with equal probability of being drawn.

Substituting N(w · s) for R(s) from equation (3), and grouping the terms in the sum of
equation (6) into pairs,

a = 1

〈f〉
∑

s,s∗
[sP(s)N(w · s) + s∗P(s∗)N(w · s∗)].

The pairs can be combined because P(s) = P(s∗), and because s and s∗ are symmetric
about w so w · s = w · s∗:

a = 1

〈f〉
∑

s,s∗
(s + s∗)N(w · s)P (s).

Finally, since s and s∗ are symmetric about w, their sum is proportional to w. The
remaining terms in the sum are all scalar quantities. Therefore each term in the sum is
proportional to w, and so is the sum:

a ∝ w.

This is the main result: the linear part of the model, w, is directly proportional to the STA,
which is easily estimated directly from the spike train (Hunter and Korenberg 1986, Korenberg
et al 1989).

Why is this useful? The linear part of the model indicates how the neuron weights different
spatial, temporal and spectral components of the stimulus. For example, the spatial structure
of w describes the neuron’s spatial receptive field. The temporal structure of w describes
the impulse response of the underlying linear summation. The memory of the neuron can
be assessed by examining the duration of the impulse response, i.e. the time offset from the
spike at which the STA converges to zero. Finally, the chromatic structure of w reflects the
weighting of inputs from different spectral classes of photoreceptor. Thus the linear weighting
vector w contains essential information about how the neuron integrates visual inputs.

Example. The linear component of visual responses was estimated for macaque monkey retinal
ganglion cells recorded in vitro at low photopic light levels (experimental methods given
by Chichilnisky and Baylor (1999)). The intensities of the red, green and blue phosphors
of a colour computer display were selected randomly and independently from a Gaussian
distribution at each spatial location and each point in time (see figure 1(b)). For each cell
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Figure 4. (a) Spatial profile of the STA from a macaque ON-centre retinal ganglion cell 45 ms
before a spike. Each square stimulus element was 60 µm on a side. (b) Time course of the STA
at the centre of the receptive field. Red, green and blue phosphors are shown in corresponding
colours. The mean of the Gaussian intensity distribution for each gun was 0.5 and the standard
deviation was 0.16. Contrast refers to the difference from the mean intensity. (c) Static nonlinearity
N(g) estimated from this cell. The smooth curve is a parametrized form of the cumulative normal
function fitted to the data. See the text for details. (d) Same as (a), for a simultaneously recorded
OFF cell. (e) Same as (b), for the cell in (d). (f ) Same as (c), for the cell in (d). �t = 15 ms.

the STA was computed. The STA was a movie, containing contrast values (deviations from
mean intensity of 0.5) for each of the three guns at each spatial location in a sequence of time
bins preceding a spike. Figure 4(a) shows a frame of this movie 45 ms prior to a spike. This
ON-centre cell spiked, on average, after a brightening in the region of the display where the
STA had entries significantly greater (brighter) than zero (grey)—the centre of the neuron’s
spatial receptive field. A weak antagonistic surround (darker than grey) encircles the centre.
The STA tapered to near zero far from the centre indicating that stimulus perturbations at these
locations were not correlated with spikes. Figure 4(b) shows the red, green and blue phosphor
intensities in the STA summed over the centre of the receptive field plotted as a function of
time prior to the spike. The tapering to zero at about 200 ms prior to the spike indicates that
stimulus perturbations before this time were not correlated with spikes and thus defines the
memory of the cell. Since the STA is proportional to the linear weighting of visual inputs
w, these time courses represent the time-reversed impulse responses to red, green and blue
phosphor modulation in the centre of the receptive field. The biphasic form of these impulse
responses indicates temporal bandpass filtering. The relative amplitude of the red, green and
blue traces reflects the relative strength of inputs to the cell from the three types of cone
photoreceptor. The STA time course in the surround was weaker and of opposite polarity (not
shown). Similar results from a simultaneously recorded OFF-centre ganglion cell are shown
in figures 4(d) and (e).
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3.2. Estimating the nonlinearity

Since the STA is proportional to w, completing the model (equation (3)) involves only
estimating the constant of proportionality and the (generally nonlinear) function N().

The constant of proportionality is indeterminate because the units of the inferred generator
signal are arbitrary and are confounded with N(). For example, in equation (3), w could be
doubled and the input sensitivity of N() halved with no effect on the predictions of the model,
so without loss of generality one may assume that the constant of proportionality is unity and
a = w.

Estimation of N() is simple because it is a real-valued function of one variable. Since
a = w, an estimate for the generator signal at time t is gt = a · st . Since the spike count ft at
time t is known one might visualize N() by plotting the spike count ft as a function of gt for
each time point 1 � t � T . Unfortunately ft is discrete, noisy and typically small. Hence this
plot would contain many superimposed and indistinguishable points with roughly the same
range of f spanned for each value of g, and so would be difficult to visualize.

A better approach is to examine the average spike count in time bins with nearly equal
generator signals. Since many different stimuli were presented over the recording interval,
roughly the same generator signal will be observed at many times in the course of stimulation.
(The range of values taken by the generator signal during the recording period depends on
w and on the standard deviation σ of the Gaussian distribution used to generate the stimulus
sequence.) Suppose H is a collection of time bins that all have similar generator signal values,
a · st ≈ ḡ for all t ∈ H . Averaging the spike counts observed in these time bins yields an
estimate of the expected spike count given a value ḡ of the generator signal, 〈f | w · s ≈ ḡ〉,
but from equations (2) and (3) this is N(ḡ). To estimate the entire function N() this process is
repeated for many different values of the generator signal g achieved at some point during the
stimulation period. (In practice, to avoid estimation biases it is sometimes important to use
separate periods of recording to estimate w and the function N().)

Examples are shown for two macaque retinal ganglion cells in figures 4(c) and (f ). In
these examples N() is an accelerating function of its inputs, a common finding. With stronger
stimuli (larger σ ), N() often begins to saturate and assumes a sigmoidal shape (see figure 5(b)).

While the points in figure 4(c) provide estimates of N() for particular generator
signal values, generating predictions from the model typically requires a continuous-valued
approximation to N(). For retinal ganglion cells, a parametrized form of the cumulative
normal density (the indefinite integral of the normal distribution) usually provides an excellent
fit. Specifically, if C() is the cumulative normal density, N(x) ≈ αC(βx + γ ) where the
parameters α, β and γ are selected to fit the data in the graph of N() with least squared error.
An example is shown by the smooth curves in figures 4(c) and (f ). The parameters have the
following interpretation:

• α—maximum firing rate of the neuron;

• β—sensitivity of the nonlinearity to the generator signal;

• γ —maintained drive to the cell that determines the spike rate in the absence of net visual
stimulation (e.g. s = 0). Negative values of γ indicate a drive that must be overcome to
produce spikes, as in the case of a spike threshold.

While the cumulative normal density may not describe the form of N() for other cell types,
a similar procedure can be used to create a smooth functional approximation with interpretable
parameters. The characterization of N() completes the model (equation (3)) of firing rate as a
function of the stimulus.
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Figure 5. (a) Time course of STA from a single macaque retinal ganglion cell stimulated with a
spatially uniform Gaussian white noise sequence. The negative polarity of the main lobe indicates
this is an OFF cell. (b) Static nonlinear function N() estimated from the same cell. (c) Rasters of
responses to 25 repeated presentations of a 20 s Gaussian white noise sequence different from that
used in (a). 1 s of the recording is shown. (d) Average spike rate as a function of time estimated
from spikes shown in (c) (black trace) and model predictions (red trace). �t = 15 ms.
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Figure 6. (a) RMS error of predictions of spike counts over time as a function of number of
repeated trials for the macaque retinal ganglion cell shown in figure 5. The red trace shows the
RMS difference between observed spike counts and model predictions. The black trace shows the
RMS difference between observed spike counts and predictions from repeated trials. (b) The same
plot for a second macaque ganglion cell. �t = 15 ms.

4. Test of the model

The cells in figure 4 display significant response nonlinearities: if their responses were linear,
the points in figures 4(c) and (f ) would fall on a straight line. The great majority of several



208 E J Chichilnisky

hundred macaque and salamander retinal ganglion cells from several dozen retinas analysed
this way display similar nonlinearities (data not shown), so using classical linear methods to
characterize their light responses would fail. How well does the static nonlinear model describe
their light responses?

What follows is a test of the accuracy of the model. Predictions of the model were
compared to the firing rate measured directly by repeatedly presenting the same stimulus
and averaging the number of spikes recorded in each time bin. The latter is the maximum-
likelihood, unbiased estimate of firing rate—a perfect model of firing rate would match it
exactly.

The STA and static nonlinearity for one macaque monkey OFF retinal ganglion cell
obtained with spatially uniform white noise stimulation are shown in figures 5(a) and (b)
(experimental procedures are given by Chichilnisky and Baylor (1999)). The model based on
these estimates of w and N() was then used to predict firing rate over time in response to a
different spatially uniform Gaussian white noise sequence presented repeatedly. Rasters of
spikes recorded in repeated trials are shown in figure 5(c). The vertical structure in the plot
results from repeated presentation of the same stimulus. The firing rate as a function of time
obtained by averaging spike counts across trials is shown by the black trace in figure 5(d). The
firing rate as a function of time predicted by the model is shown by the red trace. Qualitatively,
the model captures the time course of firing rate modulations, though significant deviations
are sometimes observed.

How well does the model predict light responses in individual trials? The root mean
square (RMS) difference between the spike rate predicted by the model and the observed spike
counts in the tenth trial of the repeat sequence was 0.384 spikes per bin for the cell in figure 5.
In comparison, the RMS difference between the spike rate over time obtained by averaging
counts from the nine previous repeat trails and the spike counts in the tenth trial was 0.382
spikes per bin. That is, the model prediction of spike counts over time was nearly as accurate
as the prediction obtained by averaging the results from prior repeats of the same experiment.

The robustness of this finding to the number of repeat trials used is examined in figure 6(a),
for the same cell as figure 5. The red curve shows the RMS difference between the model
prediction of firing rate over time and the observed spike counts over time on the nth trial. This
curve is fairly flat, indicating stable recordings and light responses. The black curve shows the
RMS difference between the spike rate over time estimated by averaging the first n − 1 trials
and the observed spike counts over time on the nth trial. Since estimates of firing rate obtained
from a finite number of repeated trials are variable and quantized, more trials provide better
predictions up to a point and thus the black curve initially declines. Since spike counts in each
trial are variable and quantized, the RMS error of even a perfect model of spike rate is bounded
from below and thus the black curve asymptotes to a nonzero value. However, model accuracy
closely matches the asymptotic accuracy of predictions from averaging previous trials.

The same analysis on a second cell is shown in figure 6(b). For this cell the accuracy of
predictions from averaging previous trials exceeds that of model predictions at about ten trials.
That is, the model provides predictions about as accurate as ten repeated experiments, but more
repeats provide better spike count predictions (asymptotic RMS error 0.465 spikes/bin) than
the model does (average RMS error 0.499 spikes/bin).

The average model error is plotted as a function of the asymptotic error of the repeat trial
predictions for 25 cells from three macaque retinas in figure 7(a). Model predictions generally
approach the ideal accuracy of repeated trials. Results from 12 cells from one tiger salamander
retina are shown in figure 7(b). Firing rates are on average much lower in this species, but the
quality of model predictions is similar.
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Figure 7. (a) RMS model prediction error as a function of asymptotic RMS repeat prediction error
for 25 cells from three macaque monkey retinas. Included in the sample are ON and OFF non-
opponent cells with large and small receptive fields (possibly parasol and midget), and blue–yellow
colour opponent cells. (b) The same plot for 12 cells from one salamander retina, of both ON and
OFF types. Cells were selected only for stability of responses to repeated trials. �t = 15 ms.

5. Discussion

5.1. Summary of the procedure

White noise stimulation and the analysis presented here can be used to obtain a full
characterization of the spatial, temporal and chromatic sensitivity of spiking neurons whose
responses conform to the static nonlinear model. The essential steps in the procedure are:

(i) choose a stimulus space and present a sequence of randomly selected stimuli which are
distributed radially symmetrically in this space;

(ii) compute the spike-triggered average to estimate the linear weights and generator signal;
(iii) compute the mean spike rate as a function of the generator signal to estimate the

nonlinearity.

Simple tests based on repeated trials (see section 4) may be used to empirically evaluate
the model’s accuracy.

5.2. Advantages and disadvantages

What are the advantages and disadvantages of the method presented here compared to
conventional methods for estimating signaling properties of visual neurons?

Advantages

Nonlinearities. The method deals naturally and easily with instantaneous nonlinearities that
are common in neurons, such as spike threshold and saturation. Evidence of such nonlineari-
ties is given in figures 4(c), (f ) and 5(b). These nonlinearities preclude standard linear systems
analysis, such as spatial and temporal frequency sensitivity characterizations with sinusoidal
contrast modulations (Fourier analysis). However, the weights in the linear stage of the static
nonlinear model are easily interpretable, just as they are in a purely linear model: they define
the relative sensitivity of the neuron to different aspects of the stimulus. Also, unlike Fourier
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analysis, results are expressed directly in the domain of space and time, not spatio-temporal
frequency. This avoids additional steps commonly taken to estimate the spatial receptive field
and temporal impulse response from responses to sinusoids, such as extracting the fundamental
response component and fitting models to the spatio-temporal frequency spectrum (e.g. Croner
and Kaplan 1995), which imposes additional assumptions and may introduce systematic errors.
Note that in some cases frequency-domain methods are desirable and efficient (Victor 1979,
Ringach et al 1997).

Interleaving. Because white noise stimuli are interleaved at a fine timescale, estimates of
the relative sensitivity of the neuron to different stimuli are fairly robust to non-stationarity in
neural responses or unanticipated interruption or termination of the experiment. Also, since
the memory of the cell is assessed post hoc from a continuous stimulus sequence (section 3.1),
there is no need to impose a long delay between successive stimulus presentations to prevent
interaction between stimuli. This contrasts with recording the time course of responses to
flashed stimuli, where a conservatively long inter-stimulus interval is important.

Adaptation. Because a Gaussian white noise sequence has approximately constant mean
and standard deviation over short and long timescales, and because strong and weak stimuli
are highly interleaved, effects of adaptation are minimized. This contrasts with stimuli such
as pulsed spots and bars that drive the cell strongly for a brief period preceded and followed
by no drive.

Multi-neuron recording. The method is easily extended to simultaneous recordings from
multiple neurons by stimulating a larger area of the visual field and applying the analysis
described here to each cell separately. By contrast, methods that involve centring a stimulus on
the receptive field force the experimenter to characterize cells serially. Parallel stimulation and
recording is more efficient, provides information about correlated activity and provides internal
controls in experiments where global fluctuations in sensitivity can complicate comparisons
between cells analysed sequentially.

Disadvantages

On-line interpretation. Since white noise stimuli are random and rapidly interleaved, it can be
difficult for the experimenter to immediately assess specific aspects of the neural response (e.g.
is it a colour-opponent cell?) by directly observing spike trains over time during stimulation.
Instead, computation of the STA is usually required as a first step.

Response variability. Since a Gaussian white noise sequence essentially never repeats,
the method provides no direct information about response variability. This must be inferred
by grouping responses to stimuli of similar strength or by performing repeat experiments (see
section 4).

5.3. Additional issues

Can the above analysis be performed using a stimulus generated by a non-Gaussian white
noise process? Many experimenters have used a binary pseudo-random sequence in which the
contrast at each point in space and time takes one of two values, for example black or white (e.g.
Emerson et al 1992, Reid and Alonso 1995). Such stimuli can achieve higher contrasts as well
as precisely, rather than asymptotically, balanced statistics (see Sutter 1987, Reid et al 1997).
Such stimulus vectors are not distributed radially symmetrically in stimulus space, and the STA
is not in general proportional to the neural weighting of visual inputs. However proportionality
does hold in some cases. First, proportionality is preserved in neurons with precisely linear
or half-wave rectified responses. Second, if the integration time of the elementary inputs to
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the neuron being studied (e.g. photoreceptors) is long compared to �t , then at each point
in time the inputs effectively respond to a sum of many draws from the binary distribution.
The central limit theorem implies that this sum approaches a Gaussian distribution in the
limit of long integration times. Thus the applicability of non-Gaussian sequences depends
on the properties of the cell and its inputs, while Gaussian sequences are more generally
applicable.

Does the dependence on a radially symmetric stimulus distribution constrain the coordinate
frame (e.g. colour space) in which stimuli are generated? The STA is guaranteed to be
proportional to the linear weighting vector only in a coordinate frame in which the stimulus
distribution is radially symmetric, and the resulting weights are valid only for stimuli
represented in this coordinate frame. However, if there exists a linear transformation M that
symmetrizes the stimulus distribution, the above analysis can be applied to the transformed
stimuli to obtain weights valid for the transformed stimuli. It is easily shown that these weights
can be transformed to be valid for stimuli in the original coordinate frame using the transpose
(not inverse) of M .

Can the technique be applied to neurons outside the visual system? This paper focused on
examples in the visual system for concreteness, but none of the theory or application depended
on using visual stimuli. Application to another system would rely on defining the entries of
stimulus vectors to be quantities that are represented approximately linearly in the inputs to the
neuron being studied, such as contrast in the case of retinal ganglion cells. While the method
was formulated for spiking neurons here, it is readily applied to continuous-time signals as
well (see Sakai 1992).

How accurately does the static nonlinear model describe light responses? The test
presented in section 4 showed that retinal ganglion cell spike counts over time were predicted
approximately as accurately by the spike rate predictions of the model as by spike rates obtained
from repeated stimulus presentations. In other words the model provided a good description
of spike rate over time for the stimulus and the temporal resolution tested. As with classical
models, this leaves open how accurately it can describe responses to very different stimuli
as well as spike train structure at fine temporal resolution (Berry et al 1997). For example,
important phenomena such as adaptation and refractory periods are not accounted for in the
model. Extensions of the model to account for such phenomena may be useful in specific
cases. For example, if adaptation is roughly constant during white noise stimulation (since
the mean and variance of stimulus intensity are constant), the model may provide a good
approximation to responses obtained in that state of adaptation (Sakai et al 1995). Changes in
the linear weighting function with light level or contrast might capture the effects of adaptation
(Chander and Chichilnisky 1999).

How accurately does the static nonlinear model describe the responses of more central
neurons? Arguably, the model is most likely to be applicable in the early visual pathways
(e.g. retina) while additional linear, static nonlinear or more complex transformations in the
chain of neurons conveying signals to more central neurons (e.g. cortex) may make the model
inapplicable. Perhaps surprisingly, the model can describe light responses of some cortical
cells (DeAngelis et al 1993, Anzai et al 1999), perhaps because collections of nonlinear
inputs spanning different contrast ranges can combine to form a roughly linear spatio-temporal
sensitivity profile. More complex nonlinearities observed in some cortical neurons might also
be approached with extensions of the technique. For example, consider a direction-selective
neuron that does not linearly integrate contrast but sums local optic flow signals computed by
its inputs. In this case a moving stimulus with direction and speed modulated according to a
Gaussian white noise process may be useful to probe spatial and temporal sensitivity while
accounting for the neuron’s instantaneous spiking nonlinearity.
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Apart from such extensions of the technique, the static nonlinear model is perhaps best
viewed as a very tractable and more accurate substitute for the classical and commonly used
strictly linear model of spike rate (Enroth-Cugell and Pinto 1970, Movshon et al 1978) that
fails to capture obvious and nearly ubiquitous response nonlinearities in neurons.
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