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In the previous chapter we focused on linear regression models with Gaussian noise. Gen-
eralized linear models substitute more appropriate nonnegative, discrete count models, and
will allow us in the next chapter to develop a full point process theory for spike trains, instead
of just trying to predict the spike count in one time bin at a time, as has been our focus in
the regression-based chapters.

1 The Poisson regression model allows us to apply regression
methods to nonnegative count data

Let’s begin with the model nt ∼ Poiss[λtdt], for the spike count nt in a single time bin of
length dt. Our first task, as usual, is to write down the likelihood in this model. This implies
that

log p(nt) = nt log λt − λtdt+ const. (1)

Now we need to specify the rate λt. Let’s assume, following our discussion of regression
modeling, that λt is a function of some observed covariates Xt and model parameters θ. The
simplest approach would seem to be to just let λt be a linear function Xtθ, as in the linear
regression model. However, this doesn’t quite work, since λt must be nonnegative, and Xtθ
may not be. We can fix this easily by including a nonlinearity to ensure that λt ≥ 0, which
leads us to the standard “Poisson regression model”:

λ(t) = f(Xtθ),

for some function f(.) ≥ 0. (In the statistics literature, f(.) is often chosen to be the exponen-
tial function exp(.), for reasons we will discuss further below, but it will be useful to consider
more general choices for f(.) below.) In the neuroscience literature this is often referred to as
the “linear-nonlinear-Poisson” (LNP) model, since the covariate Xt is linearly weighted by θ,
then plugged into the nonlinearity f , leading to the Poisson output nt.

How do we estimate the model parameters θ here? We begin by writing down the likelihood
p(D|θ, ~x) of the observed spike data D given the model parameter θ and the observed stimulus
~x, and then we may employ standard likelihood optimization methods to obtain the maximum
likelihood (ML) or maximum a posteriori (MAP) solutions for θ. It is helpful to draw an
analogy to standard linear regression here: imagine that we want to fit the standard linear
regression model to our data. Recall that this model hypothesizes that each bin of observed
spike train data nt of width dt is generated according to nt = θ · ~x(t)dt + εt, where εt is
discrete Gaussian white noise. If we write down the likelihood of this model using the log of
the Gaussian probability density function we have

log p(D|X, θ) = c1 − c2
∑
t

(nt − (θ · ~x(t))dt)2 ,

where c1, c2 are constants that do not depend on the parameter θ. Maximizing this likelihood
gives the usual least-squares regression solution θLS ∝ (XtX)−1XT~n.

Now, if we repeat the same exercise under the more plausible assumption that spike counts
per bin follow a Poisson instead of Gaussian distribution (under the LNP model), we have

nt ∼ Poiss[λ(t)dt] = Poiss[f(θ · ~x(t))dt],
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implying

log p(D|X, θ) = c+
∑
t

(nt log f(θ · ~x(t))− f(~x(t) · θ)dt) .

This likelihood no longer has a simple analytical maximizer, as in the linear regression case,
but nonetheless we can numerically optimize this function quite easily if we are willing to
make two assumptions about the nonlinear rectification function f(.): if we assume 1) f(u)
is a convex (upward-curving) function of its scalar argument u, and 2) log f(u) is concave
(downward-curving) in u, then the loglikelihood above is guaranteed to be a concave function
of the parameter θ, since in this case the loglikelihood is just a sum of concave functions
of θ (Paninski, 2004). This implies that the likelihood has no non-global local maxima,
and therefore the maximum likelihood parameter k̂ML may be found by numerical ascent
techniques. Functions f(.) satisfying these two constraints are easy to think of: for example,
the standard linear rectifier and the exponential function both work. For more examples, see
(Paninski, 2004); it turns out that any such function f(u) must be monotonic and must decay
exponentially or faster as f(u) → 0. (Note that the convexity assumption on f(.) appears
problematic here, since convex functions can not saturate, but we know that real neurons
have finite upper bounds on their firing rates enforced by the absolute refractory period. We
will address this concern by incorporating spike-history effects in the firing rate in a later
subsection, once the basic theory has been introduced.)

To optimize this loglikelihood, it is useful to compute the gradient and Hessian (second
derivative matrix) of this function with respect to the model parameters θ. It’s worth writing
out these quantities here, in order to point out some useful analogies to the linear regression
setting. Define the vectors ~f (i) and ~g(i) as

f
(i)
t =

∂i

∂si
f(s)

∣∣∣∣
s=θT ~x(t)

and

g
(i)
t = nt

∂i

∂si
log f(s)

∣∣∣∣
s=θT ~x(t)

.

Then it is not hard to see that

∇θ log p(D|X, θ) = ∇θ

(
c+

∑
t

(nt log f(θ · ~x(t))− f(~x(t) · θ)dt)

)
= XT (~g(1) − ~f (1)dt),

and similarly,
J ≡ ∇∇θ log p(D|X, θ) = XTdiag[~g(2) − ~f (2)dt]X.

Note that our log-concavity and convexity condition of f(.) guarantee the nonpositivity of ~g(2)

and −~f (2), respectively, and clearly whenever (~g(2) − ~f (2)dt) is guaranteed to be nonpositive
then the Hessian J is guaranteed to be negative semidefinite; this furnishes another proof of
the concavity of the log-likelihood in this model.

If we examine the Newton search direction1 in this model, we find a familiar form:

J−1∇ =
(
XTdiag[w(2)]X

)−1
XTw(1),

1Recall the Newton-Raphson method for optimization of a smooth, concave function f(~x): this approach
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where we have abbreviated the weight vector ~w(i) = ~g(i) − ~f (i)dt. This may be considered a
“weighted” version of the familiar least-squares form (XTX)−1(XT~n), where the weights ~w(i)

are recomputed iteratively, with each Newton update step. Thus Newton’s method for fitting
generalized linear models is often referred to as iteratively reweighted least squares (IRLS or
IRWLS) (McCullagh and Nelder, 1989).

The theory of the statistical efficiency of GLM estimators mirrors the theory in the linear-
Gaussian case, in many respects. In the GLM, the single-observation quadratic loglikelihood
term from the linear-Gaussian model, − 1

2σ2 (XT
t θ − nt), is replaced by the single-observation

Poisson loglikelihood nt log f(XT
t θ)−f(XT

t θ)dt. Both functions are concave and both depend
on θ only through the “rank-1” projection XT

t . Thus the resulting picture and corresponding
geometric intuition in terms of intersection of soft constraints are quite similar. The analog of
the 1

2σ2X
TX matrix, which sets the inverse covariance of the estimate θ in the linear regression

case, is the “observed Fisher information” matrix, which is simply −J , the negative of the
Hessian matrix defined above, evaluated at the MLE. We will discuss this matrix in much
more depth below. Similarly, we can penalize the GLM loglikelihood with concave penalty
functions to combat overfitting exactly as in the linear-Gaussian case.

Once we have obtained a model estimate, how do we decide how good the model is
compared to other potential models? We will discuss model checking and goodness-of-fit in
more depth after we have introduced some relevant point process theory, but for now we note
that one helpful model score is the cross-validated loglikelihood. In this context it is important
to normalize the loglikelihood to obtain a more meaningful number for comparisons; if the
loglikelihood under the model may be written as

log p(D|X, θ) =
∑
t

log p(nt|XT
t θ)

then it is useful to normalize by the number of time bins T/dt and to subtract off a measure
of how predictable the firing rate is a priori, i.e., compute

1

T/dt

∑
t

log p(nt|XT
t θ)−

1

T/dt

∑
t

log p(nt) =
1

T/dt

∑
t

log
p(nt|XT

t θ)

p(nt)
≈ I(nt;X

T
t θ),

where p(nt) is the marginal probability of observing the response nt in time bin t. The
approximate equality follows by the law of large numbers; the right-hand side is the mutual
(Shannon) information I between the response per bin n and the projected predictor XT

t θ
(Cover and Thomas, 1991). This information is measured in a standardized unit (bits), and is
a natural way to quantify how predictable nt is given Xt and the model parameters θ. (Note
that I here depends on the size of the time bin dt; I is roughly proportional to dt for small
enough dt.)

is based on the second-order Taylor expansion of f(~x) about the current guess ~x0 at the best ~x:

arg max
~x

f(~x) ≈ arg max
~x

(
f(~x0) +∇~xf(~x0)T (~x− ~x0) +

1

2
(~x− ~x0)∇∇~xf(~x0)T (~x− ~x0)

)
= ~x0 −

(
∇∇~xf(~x0)

)−1∇~xf(~x0).

Thus, iteratively setting ~xi+1 to be the minimizer of the objective function in the direction defined by a solution
~u to the linear equation

−
(
∇∇~xf(~xi)

)
~u = ∇~xf(~xi)

is known to lead to an efficient method for optimizing f(~x).
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2 Estimation of time-varying firing rates

With the above general comments out of the way, we’ll start by focusing on a rather classical
question as an important special case: how do we estimate the time-varying firing rate of a
single neuron, observed over multiple trials, given repeated presentations of a fixed stimulus?
The standard method for estimating a firing rate in this setting is to construct the peri-
stimulus time histogram (PSTH). As we will see, we can use GLM methods to generalize and
improve upon these classical techniques.

2.1 The simplest histogram binning approach can be interpreted in the
context of the Poisson regression model

Assume that we observe spike counts over N trials indexed by i, each with multiple time bins

indexed by t, with each spike count n
(i)
t drawn independently from n

(i)
t ∼ Poiss[λtdt]. Note

that the firing rate λt depends on t but not i here. Then we can write the loglikelihood as

log p({n(i)t }) =
∑
it

[n
(i)
t log λt − λtdt] + const. (2)

=
∑
t

[
∑
i

n
(i)
t ] log λt −Nλtdt+ const. (3)

An interesting implication of the this equation is that the PSTH
∑N

i=1 n
(i)
t is a sufficient

statistic for this model: data from different trials can be combined by simply adding spikes,

without any loss of information (since the loglikelihood only depends on {n(i)t } through this
sum). This is a very special feature of the Poisson spiking model; it is not true of more general
point process data!

To make a connection with the Poisson regression model we need to define λt here in
terms of some covariate matrix X and a corresponding parameter vector θ. This is easy: set
Xt to the t-th unit vector (with a 1 in the t-th bin and zeros everywhere else). Then the
loglikelihood breaks up into an independent sum over each time bin t, which means that if
we want to compute the MLE for θ we can simply optimize each element θt independently
of the rest. We find that the MLE for λt can be computed analytically, and is simply the
normalized PSTH,

λ̂MLE
t =

1

Ndt

N∑
i=1

n
(i)
t .

The choice of the binwidth dt here is important, and affects the smoothness of the esti-
mated λ̂MLE

t : when dt is small, the estimate tends to follow the data closely, but is very rough

(due to the random noise in the sum over n
(i)
t ), while when dt is large the estimate averages

over more time and therefore becomes less noisy, but may incorrectly coarsen fine temporal
variations in the true underlying rate λt. Thus binwidth selection involves a “bias versus
variance” tradeoff: small dt reduces the bias of the estimate (and increases its variance) while
large dt reduces the variance (but increases the bias). To obtain a consistent estimator, dt
should decrease as the information available in the data grows: more informative data allows
us to fit richer models. Asymptotic expressions for the bias and variance are may be easily
derived here (we leave these computations as an exercise); we find that dt should not go to
zero faster than 1/N , or else we won’t have a consistent estimator (since we need to average
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over an increasing number of spikes within each bin in order to guarantee that the variability
in the estimate eventually goes to zero).

2.2 Local likelihood and kernel smoothing

Histogram estimates are necessarily “blocky”: they are constant within timebins and dis-
continuous at the timebin boundaries. Many methods are available to obtain smoother esti-
mators. One approach that provides a conceptual bridge between likelihood-based methods
(which will be our focus) and more intuitive, simple smoothing methods (such as simply ap-
plying some kind of post-hoc smoothing filter to the PSTH) is based on “local likelihood”
methods. The idea is that, for each time t, we can fit a Poisson regression model λt = f(Xtθt)
for appropriately chosen covariates Xt, just as before, but now note that we fit a different
parameter θt for each desired time t, and we use a different objective function. Rather than
using the full loglikelihood over all times t to fit θt, we instead optimize a locally-weighted
version of the loglikelihood:

θ̂localt = arg max
θt

∑
s

[
w(s− t)

(∑
i

n(i)s

)
log f(Xsθt)−Nf(Xsθt)

]
ds; (4)

this is almost the same as the full loglikelihood, except we have included a weighting function
w(.) ≥ 0 which is centered at s − t = 0 (i.e., w(u) peaks at u = 0 and decreases to zero as
|u| grows). This term up-weights observations near t, and allows us to ignore observations at
times s far from t.

In general it may be expensive to compute a new θ̂localt for each desired value of t, but in
some cases the computations simplify considerably. For example, if we set X = 1 and w(.)
integrates to one, then the resulting rate estimate can be computed analytically:

λ̂localt =

∫ T
0 w(s− t) 1

N

∑
i n

(i)
s ds∫ T

0 w(s− t)ds
. (5)

Here T is the length of the trial. If 0 � t � T , then the denominator is close to one, while
if w(u) is symmetric around u = 0, then the numerator is simply a convolution of w with

the normalized PSTH 1
N

∑
i n

(i)
s ; this convolution can in turn be computed efficiently using

fast Fourier-domain techniques. This approach is often referred to as “kernel smoothing,”
with w(.) the “kernel” function. (There is a distant connection between these kernels and the
“kernel trick” we discussed previously, but in practice these two types of kernel approaches
are fairly distinct and should not be confused.)

How to choose w(.) here? It is convenient to parameterize w(.) by some “bandwidth”
parameter h:

w(u) =
1

h
w0

(u
h

)
,

where w0 is a fixed nonnegative symmetric function that integrates to one and h is the
“bandwidth” parameter that sets the width of w(.). For example, if w0 is chosen to be
a standard Gaussian probability density function (pdf), then w corresponds to a Gaussian
pdf with standard deviation h. This bandwidth parameter plays a similar role as dt in the
histogram setting: small h means that we average only very locally near t, reducing bias
but increasing the variance of the estimate, while while large h leads to much coarser (more
biased) but smoother (less variable) estimates.
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2.3 Representing time-varying firing rates in terms of a weighted sum of
basis functions

So far we have considered quite simple versions of the covariate vectors Xt: letting Xt be
indicator functions (equal to 1 within a timebin, and zero outside) led to the histogram
estimator, and letting Xt = 1 in the local likelihood setting led to the kernel smoother. What
other choices of Xt are convenient? Remember that we are representing the firing rate as
λt = f(Xtθ) here: if we rewrite Xtθ =

∑p
j=1X

j
t θ
j , where p is the length of the parameter

vector θ, we see that f−1(λt) is just a weighted sum of the p time-varying functions Xj
t . Note

that this representation makes the bias-variance tradeoff here quite clear: the larger the span
of the basis Xj

t , the more functions λt we can represent exactly (i.e., the smaller the bias of
our estimator), but this leads to potentially larger estimator variances.

What basis Xj
t should we choose? For computational reasons, it is useful to choose basis

functions with local support: i.e., Xj
t should be zero except on a small interval. (Or more

generally, we need to be able to easily transform the basis we use into such a locally-supported
basis.) Recall the Newton method for optimizing the loglikelihood: we need to iteratively solve
linear matrix equations of the form Hx = ∇, where H is the Hessian and ∇ is the gradient of
the loglikelihood. If the basis Xj

t has local support, then the basis elements can be ordered
so that H is a banded matrix; in particular, the bandwidth b (the number of nonzero off-
diagonal elements per row) of H will correspond to the number of basis elements Xj

t with
overlapping support. Banded matrix equations Hx = ∇ can be solved in time that scales
as O(b2p), whereas general matrix equations require O(p3) time; when b is small, banded
Newton methods are much faster.

There are many potential smooth, locally-supported bases. “Splines” are one popular
choice, with various implementations in most software packages; the basis elements here are
piecewise polynomial, with the constraint that any element in the span of the spline basis
must be continuous (and typically differentiable) at the “knot” points at which the piecewise
polynomials are joined. The user controls the number and location of the knots: we may, for
example, place more knot points in regions where we believe the function of interest may be
more rapidly varying. (Again, more knots corresponds to a larger basis dimension p, which
typically reduces bias and increases variance.)

Since computation time scales linearly with p in these locally-supported bases, it is com-
mon to use a large p and incorporate prior information to constrain the estimate to avoid
excess variance. For example, if we believe a priori that zt = Xtθ is a smooth function of t,
then we can incorporate this information in our prior directly. A common choice is to use an
(improper) log-prior of the form

log p({zt}) ∝ −
∑
i

ai

∫ T

0

(
dizt
dti

)2

dt,

for some set of coefficients ai: larger values of ai correspond to stronger prior constraints on
the integrated variance of the i-th derivative of zt. Thus this log-prior serves to penalize the
roughness of zt. Note that computation of the MAP estimator here remains highly tractable,
since the Hessian of this log-prior remains banded. (There are also some close connections
between this class of priors and “state-space” models, which we will discuss in depth later.)
The prior coefficients ai here must be chosen via some model selection criteria here, e.g.,
marginal likelihood, cross-validation, generalized cross-validation, etc.
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It is also natural to try to adapt the basis to the observed data. For example, the firing
rate might be more-or-less stationary during one part of the trial (e.g., before a sensory
stimulus is presented), but vary sharply during another part (after the stimulus is presented).
We can always adapt the basis by hand; the goal is to choose the span of the basis to cover
the set of the firing rates λt that we expect to observe, while keeping the basis dimension
low to reduce estimator variability and overfitting effects. There are also automated methods
for basis selection; for example, the Bayesian adaptive regression spline (BARS) approach of
(DiMatteo et al., 2001) uses Monte Carlo methods to place spline knots in a data-dependent
manner. We will discuss these methods at more length in a later chapter, after we develop
some suitable background in Monte Carlo computational methods.

Finally, similar methods may be applied to estimate firing rate maps which depend on two
variables instead of just one. For example, it is often desirable to model a given neuron’s activ-
ity as a function of a spatial variable instead of a function of time; see e.g. (Brown et al., 1998)
for a detailed analysis of hippocampal place field activity. In the spatial case, the relevant
matrices remain highly structured but are no longer simply banded; nevertheless, fast compu-
tational methods are still available in this case. See, e.g., (Rue and Held, 2005; Rahnama Rad
and Paninski, 2010) for further discussion. In higher-dimensional cases (greater than three
or so), the curse of dimensionality kicks in, and different techniques become necessary, as we
discuss below.

3 Overdispersion, latent variables, and estimating equations*

4 Consistency of the MLE and connections to the spike-triggered
average

In the above we have focused on the computational properties of GLMs. However, we have
not yet said much about how good an estimator the MLE, for example, actually is: for
example, does the MLE asymptotically provide the correct θ, given enough data (i.e., is the
MLE “consistent” for θ? If not, how large is the asymptotic bias? We can answer both of
these questions easily in the case that the “link” function f is chosen correctly (that is, when
we fit the responses with a model f that corresponds exactly to the true response properties
of the cell under question, and therefore only the parameter θ is considered unknown): in
this (admittedly idealized) case, standard likelihood theory (Schervish, 1995) establishes that
the MLE is consistent for θ, and in fact the MLE is asymptotically optimal (achieves the
Cramer-Rao bound, i.e., has the smallest possible asymptotic error).

What if we do not choose the correct link function f(.)? It turns out consistency may
be established in this case, too, under certain symmetry conditions. Assume the observed
spike train is generated by a GLM with rate function g, but that we apply the MLE based
on the incorrect rate function f . Our results will be stated in terms of an input probability
distribution, p(~x), from which in the simplest case the experimenter draws independent and
identically-distributed inputs ~x, but which in general is just the “empirical distribution”
of ~x, the observed distribution of all inputs ~x presented to the cell during the course of the
experiment. We begin with a simple but important result about the “spike-triggered average”
(STA) introduced in the context of linear regression: recall that this is just proportional to
the cross-correlation between the observed spikes nt and the observed covariates Xt.
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4.1 The spike-triggered average gives an unbiased estimate for the linear-
nonlinear model parameters under elliptical symmetry conditions

It turns out that the STA provides a good estimator for θ under certain conditions, even
though it does not require estimation of the nonlinear function f(.). The notion of “elliptically
symmetric” distributions p(~x) is key here: we say that p(~x) is “elliptically symmetric” if
p(~x) = q(||A~x||2) for some scalar function q(.), some symmetric matrix A, and the usual
two-norm ||~y||2 = (

∑
i y

2
i )

1/2; that is, p is constant on the ellipses defined by fixing ||A~x||2. A
function is “radially,” or “spherically,” symmetric if A is proportional to the identity, in which
case the elliptic symmetries above become spherical. Multivariate Gaussian distributions with
mean zero are elliptically symmetric; multivariate Gaussians with zero mean and covariance
proportional to the identity are radially symmetric.

Now the key result is that if the stimulus distribution p(~x) is radially symmetric, then the
STA is unbiased for θ. Recall that an estimator θ̂ for a parameter θ is unbiased if Eθθ̂ = θ for
all values of θ. In this case, θ is considered as a one-dimensional subspace rather than as a
vector: thus, we mean that E(θ̂) is proportional to θ when the data are generated according
to the GLM with parameter θ.) The proof of this fact is quite straightforward (Bussgang,
1952; Chichilnisky, 2001; Paninski, 2003; Schnitzer and Meister, 2003; Simoncelli et al., 2004),
relying on the fact that the expectation

E(θ̂STA) ∝
∫
p(~x)g(θT~x)d~x ∝ θ

whenever p(~x) is radially symmetric. This may be seen by a simple symmetry argument
(Chichilnisky, 2001): since the function g(θT~x)p(~x) is symmetric around the axis θ (by the
symmetry assumption on p(~x)), the average

∫
p(~x)g(θT~x)d~x of this function must lie on the

axis spanned by θ2.
A similar result holds in the elliptically symmetric case, where p(~x) = q(||A~x||2) for some

A that is not proportional to the identity. In this case a bit of algebra and a change of
variables imply that A2XT~n — a simple linear transformation of the STA — is unbiased for θ
(Paninski, 2003). An application of the law of large numbers is enough to establish consistency
for this estimator: A2(1/T )XT~n converges to its expectation, which in turn is proportional
to θ. (We may moreover establish rate of convergence results and a central limit theorem for
this estimator; see (Paninski, 2003) for details.) More generally we have to estimate A from
data, but since we typically may collect or generate an arbitrarily large number of samples

2A nice generalization to the multineuronal “multispike-triggered average” is described by (Schnitzer and
Meister, 2003). Imagine we are observing two neurons simultaneously, and both neurons respond to the
stimulus as independent linear-nonlinear encoders:

p(n1 = 1, n2 = 1|~x) = f1(θT1 ~x)f2(θT2 ~x),

where θ1 and θ2 denote the receptive fields of cell 1 and 2, respectively. Now if p(~x) is radially symmetric,
then an identical argument establishes that the multi-spike triggered average E(~x|n1 = 1, n2 = 1) must lie in
the subspace spanned by θ1 and θ2, i.e.,

E(~x|n1 = 1, n2 = 1) = a1θ1 + a2θ2

for some scalars a1 and a2. Thus if we measure E(~x|n1 = 1, n2 = 1) experimentally and find significant
departures from the subspace spanned by θ1 and θ2, we can reject the hypothesis that both neurons respond
to the stimulus as independent linear-nonlinear encoders. This argument may clearly be extended to more
than two neurons.
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Figure 1: Simulations of an LNP model demonstrating bias in the STA for two different
nonspherical stimulus distributions. The true θ is indicated by the solid line in both panels,
and the firing rate function f(.) is a sigmoidal nonlinearity (corresponding to the intensity
of the underlying grayscale image in the left panel). In both panels, the black and white
“target” indicates the recovered STA. Left: Simulated response to “sparse” noise. The plot
shows a two-dimensional subspace of a 10-dimensional stimulus space. Each stimulus vector
contains a single element with a value of ±1, while all other elements are zero. Numbers
indicate the firing rate for each of the possible stimulus vectors. The STA is strongly biased
toward the horizontal axis, pulled downwards by the asymmetry in p(~x). Right: Simulated
response of the same model to uniformly distributed noise. The STA is now biased upwards
toward the corner. Note that in both examples, the estimate will not converge to the correct
answer, regardless of the amount of data collected, i.e., an asymptotic bias remains. Adapted
from (Simoncelli et al., 2004).

from p(~x), this is straightforward: if p(~x) has zero mean, as we may assume without loss of
generality, then the sample second moment matrix Ê(~x~xT ) is a consistent estimator for A−2,
and therefore our familiar least-squares estimator (XTX)−1XT~n is consistent for θ under the
elliptical symmetry condition — without exact knowledge of f(.).

But wait — we have established that the expectation of the STA is proportional to θ in
the radially symmetric setting. But what if the proportionality constant is zero? In this case,
the STA will converge to its expectation, and we will estimate θ to be zero — not very useful.
Thus for the STA to be useful we need one additional condition:∣∣∣∣∫ p1(x1)g(x1)dx1

∣∣∣∣ > 0,

where x1 = θT~x and p1 is the corresponding marginal distribution of this one-dimensional
projection x1. This condition guarantees that the STA will not just converge to zero.

Finally, it is interesting to note that the elliptical symmetry condition on p(~x) is not only
sufficient for consistency of the STA estimator, but also necessary (Paninski, 2003), in the
sense that if p(~x) is not elliptically symmetric, then there exists an f(.) for which the STA
estimator has a nonnegligible bias (i.e., is inconsistent) for the θ; see Fig. 1 for an illustration.
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4.2 Similar symmetry conditions guarantee the consistency of the MLE,
even under model misspecification

Now let’s return to our discussion of the MLE. We can establish the following proposition:
the MLE assuming some convex and log-concave f is consistent for any true underlying g,
provided p(~x) is elliptically symmetric and the spike-triggered mean, Ep(~x|spike)~x, is different
from zero. In other words, given our usual symmetry condition on the input distribution
p(~x), an asymmetry condition on g, and enough data, the MLE based on f will always give
us the true θ. (Note that the input distribution p(~x) is assumed to have mean zero, which
may be enforced in general via a simple change of variables.) We present the proof here both
to illustrate its simplicity and its similarity to the corresponding proof for the STA-based
estimator, as discussed above.

Proof. General likelihood theory (van der Vaart, 1998) says that ML estimators, according to
the law of large numbers, asymptotically maximize E[log p(D|X, θ)], the expectation of the
likelihood function under the true data distribution. We need to prove that this function has
a unique maximum at αθ0, for some α 6= 0. We have

E[log p(D|X, θ)] =

∫
p(~x) [g(θ0~x) log f(θ~x+ b)− f(θ~x+ b)] d~x.

The key fact about this function is that it is concave in (θ, b) and, after suitable change of
variables (multiplication by a whitening matrix), symmetric with respect to reflection about
the θ0 axis. This immediately implies that a maximizer lies on this axis (i.e., is of the form
αθ0, for some scalar α); the strict convexity of f or − log f implies that any such maximizer
is unique. The proof that α 6= 0 follows without too much effort; see (Paninski, 2004) for
details.

This result for the MLE bears a striking similarity to our consistency result for the STA;
the conditions ensuring the asymptotic accuracy of these estimators are exactly equivalent
(and by much the same symmetry argument). This leads us to study the similarities of these
two methods more carefully.

We base our discussion on the solution to the equations obtained by setting the gradient
of the likelihood to zero. The MLE solves

1

T

∑
i

~xi
f ′

f
(θMLE~xi+ bMLE) =

∫ T

0
f ′(θMLE~xt+ bMLE)dt =

∫
p(~x)f ′(θMLE~x+ bMLE)~x, (6)

with T the length of the experiment; in the last line we have replaced an expectation over
time t with an expectation over space ~x. In the case of elliptically symmetric stimuli, as we
saw in our analysis of the STA, the right hand side converges to a vector proportional to
CθMLE (recall that f ′ is monotonically increasing), where C denotes the covariance matrix of
the input distribution p(~x). The left hand side, on the other hand, is itself a kind of weighted

STA — an average of (weighted) spike-triggered stimuli ~x — with the weight f ′

f (θ~xi + b)
positive and monotonically non-increasing in θ~xi, by the log-concavity of f . (We interpret
this weight as a “robustness” term, decreasing the strength of very large — possibly outlying
— ~x; see (Paninski, 2004) for more details on the robustness properties of the MLE in this
model.)
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Thus, denoting the left-hand side as θWSTA, for weighted STA, we have that the MLE
asymptotically behaves like

θMLE = C−1θWSTA;

this is exactly analogous to θLS ≡ C−1θSTA, the basic correlation-corrected estimator for
cascade models (Paninski, 2003). Also note that, in the case that f(.) = exp(.), the weight
f ′

f (θ~xi + b) is constant for all ~x. Thus, in the case of elliptically symmetric p(~x), θLS and
the MLE under the exponential nonlinearity are asymptotically equivalent. More generally,
the least-squares estimator provides a useful starting point for iterative maximization of the
GLM likelihood.

4.3 Expected loglikelihood approximations can lead to much faster com-
putation

Let’s examine the loglikelihood further in the special case that f(.) = exp(.). In this case the
log and the exp in the loglikelihood cancel partially, leaving us with

L(θ) =
∑
t

(
(XT

t θ)nt − exp(XT
t θ)dt

)
= θT

∑
t

XT
t nt −

∑
t

exp(xTt θ)dt.

The first term here is easy to deal with, once we obtain
∑

tXtnt. We recognize this term as
proportional to the spike-triggered average. Since the spiking data only enter into this term
(not the term involving the exp(.)), we can conclude that the STA is a sufficient statistic
for the spiking data in this model; in other words, once the STA has been computed, we
can throw away all other details about the spike times and the likelihood will be unchanged.
This simple linear structure of the first term is a special feature of the fact that we used the
“canonical” link function for the Poisson model, f(.) = exp(.); our results below depend on
this canonical assumption.

Evaluating
∑

t exp(xTt θ) is the hard part. But recall the logic we employed in the last
section: this is a big sum, independent of the spiking data, and therefore in many cases
we can approximate this sum as an expectation over p(~x). In particular, we can define the
“expected loglikelihood” (EL), denoted by L̃(θ), as an approximation to the log-likelihood
that can alleviate the computational cost of the non-linear term. We invoke the law of large
numbers to approximate the sum over the non-linearity by its expectation (Paninski, 2004;
Field et al., 2010; Park and Pillow, 2011; Sadeghi et al., 2013):

L(θ) = θT
∑
t

XT
t nt −

∑
t

exp(xTt θ)dt (7)

≈ θT
∑
t

XT
t nt − TE~x exp(xT θ) ≡ L̃(θ), (8)

where the expectation is with respect to p(~x). The EL trades in the O(KTp) cost of comput-
ing the nonlinear sum for the cost of computing the expectation over exp(xT θ) at K different
values of θ, resulting in order O(Kz) cost, where z denotes the cost of computing the expec-
tation. Thus the nonlinear term of the EL can be be computed about Tp

z times faster than
the dominant term in the exact GLM log-likelihood. Similar gains are available in computing
the gradient and Hessian of these terms with respect to θ.
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How hard is it to compute this integral in practice? I.e., how large is z? First, note that
because exp(xT θ) only depends on the projection of x onto θ, calculating this expectation
only requires the computation of a one-dimensional integral:

E(exp(xT θ)) =

∫
exp(xT θ)p(~x)d~x =

∫
exp(q)ζθ(q)dq, (9)

where ζθ is the (θ-dependent) distribution of the one-dimensional variable q = xT θ. If ζθ is
available analytically, then we can simply apply standard unidimensional numerical integra-
tion methods to evaluate the expectation.

In certain cases this integral can be performed analytically. For example, if p(x) is Gaus-
sian with mean zero and covariance C, then∫

exp(xT θ)
1

(2π)
p
2 |C|

1
2

exp
(
− xTC−1x/2

)
dx = exp

(θTCθ
2

)
, (10)

where we have recognized the moment-generating function of the multivariate Gaussian dis-
tribution.

Note that in the Gaussian case, the expectation turns out to depend only on θTCθ. This
will always be the case if p(x) is elliptically symmetric, by logic similar to that described
in the last section; see (Ramirez and Paninski, 2013) for details. Thus we only need to
compute this integral once for all values of ||θ′||22 = θTCθ, up to some desired accuracy. This
can be precomputed off-line and stored in a one-dimensional lookup table before any EL
computations are required, making the amortized cost z very small.

What if p(x) is non-elliptical and we cannot compute ζθ easily? We can still compute the
integral approximately in most cases with an appeal to the central limit theorem (Sadeghi
et al., 2013): we approximate q = xT θ as Gaussian, with mean E(θTx) = θTE(x) = 0 and
variance var(θTx) = θTCθ. This approximation can be justified by the classic results of
(Diaconis and Freedman, 1984), which imply that under certain conditions, if d is sufficiently
large, then ζθ is approximately Gaussian for most projections θ. (Of course in practice
this approximation is most accurate when the vector x consists of many weakly-dependent,
light-tailed random variables and θ has large support, so that q is a weighted sum of many
weakly-dependent, light-tailed random variables.) Thus, again, we can precompute a lookup
function for E(exp(xT θ)), this time over the two-dimensional table of all desired values of the
mean and variance of q. Numerically, this approximation often works quite well; see (Ramirez
and Paninski, 2013) for further discussion.

Further speedups are available when we think about optimizing the expected loglikelihood
(as an approximation to the MLE) or the penalized expected loglikelihood (as an approxi-
mation to the MAP estimate). Somewhat surprisingly, the maximum expected loglikelihood
estimator (MELE) can be computed analytically for this model (Park and Pillow, 2011) if
p(x) is Gaussian and we modify the model slightly to include an offset term so that the
Poisson rate in the t-th time bin is given by

λt = exp(θ0 + xTt θ), (11)

with the likelihood and EL modified appropriately. The details are provided in (Park and
Pillow, 2011); the key result is that if one first analytically optimizes the EL with respect
to the offset θ0 and then substitutes the optimal θ0 back into the EL, the resulting “profile”
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expected log-likelihood maxθ0 L̃(θ, θ0) is a quadratic function of θ, which can be optimized
easily to obtain the MELE:

arg max
θ

(
max
θ0

L̃(θ, θ0)

)
= arg max

θ

(
θTXTn−

T∑
t=1

nt
θTCθ

2

)
(12)

=

(
(
∑
t

nt)C

)−1
XTn. (13)

Note that this is essentially the same quadratic problem that arises in the context of least-
squares estimation, with (

∑
t nt)C replacing XTX. In many cases C is a highly structured

matrix (e.g., diagonal in a computationally-tractable basis), and can therefore be inverted
easily. Thus in many cases it is even easier to optimize the EL than it is to compute the least-
squares estimator; see (Park and Pillow, 2011; Sadeghi et al., 2013; Ramirez and Paninski,
2013) for further discussion. (Ramirez and Paninski, 2013) further notes that the statistical
accuracy of the MLE and maximum EL estimators are often comparable; in cases where this
is not true, the EL can be used to speed up the computation of the MLE, by providing a
good initialization and preconditioner for the likelihood optimization.

5 Incorporating nonlinear terms; connections to the spike-
triggered covariance

We have seen above that standard GLM estimators are effective if the stimulus distribution
p(~x) is elliptically symmetric, and if the spike-triggered average (or weighted STA in the case
that f(.) 6= exp(.)) is nonzero. However, it is easy to think of cases where the STA will
converge to zero. This occurs, for example, whenever the true nonlinearity f(.) is symmetric
with respect to its argument, i.e., when the neuron is sensitive only to the magnitude of the
stimulus, not the sign, as is the case for complex cells in the primary visual cortex (Simoncelli
and Adelson, 1996), for example. In this case, STA-based techniques fail to recover any
meaningful information at all (since the STA converges to zero).

We might also consider the following simple generalization of the LN model: E(n|~x) =
f(KT~x), where K is an m-by-d matrix and f(.) is now an m-dimensional nonlinearity. Clearly
in this case the STA fails to capture all of the information in K; even in the radially symmetric
case, it is easy to see (by a direct generalization of our symmetry argument above) that the
expectation of the STA estimate now falls within the subspace spanned by the columns of K.
But is there a way to capture all the columns of K, instead of just a single linear combination?

Clearly we can incorporate nonlinear covariate terms in the Poisson regression model,
just as in the standard regression model. This is one powerful approach to make the GLM
methodology much more flexible, though as discussed in the previous chapter, choosing the
nonlinear covariate terms appropriately is often a challenging task. One example where a
good deal of the theory has been worked out is the second-order Volterra series case, where
the nonlinear covariates are chosen to be all possible quadratic interactions of the vector ~x,
so that the log-firing rate is taken to be

log λt = XtAX
T
t +Xtθ + b

for a suitable matrix A, vector θ, and scalar offset b. (Recall we discussed this class of
quadratic models, along with the associated rank-penalizing priors, in the linear regression
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context the previous chapter.) There are close links between this quadratic GLM and the
method of spike-triggered covariance (STC) (Brenner et al., 2001; Simoncelli et al., 2004;
Rust et al., 2005), which we’ll describe in a bit more detail now.

The basic idea behind STC approaches is that, if the first moment of the conditional
distribution p(~x|n) (the STA) is not different from that of the prior distribution p(~x), then
perhaps an analysis of the second moment matrix will be more revealing. In the simplest case,
assume that ~x has a multivariate Gaussian distribution and (after a standardizing transfor-
mation of ~x → Cov(~x)−1/2[~x − E(~x)], if necessary) that Cov(~x) = I. Then it is easy to see
that the posterior second moment matrix Cpost ≡ E(~x~xT |n = 1) can in general only differ
from I in directions spanned by the columns of K. To see this, break ~x into two orthogonal
components ~x = ~xK + ~x\K , where ~xK lies within the subspace spanned by K, and ~x\K in the
orthogonal subspace, and note that

p(~x\K |~xK , n) =
p(~x\K , ~xK , n)

p(~xK , n)

=
p(~x\K , ~xK)p(n|~x)

p(~xK , n)

=
p(~x\K , ~xK)p(n|~xK)

p(~xK , n)

=
p(~x\K)p(~xK)p(n|~xK)

p(~xK , n)

=
p(~x\K)p(~xK , n)

p(~xK , n)

= p(~x\K);

i.e., the conditional distribution in the orthogonal subspace is equal to the prior distribution,
and therefore any conditional moments in this subspace must be equal to the prior moments.
The key equality here — namely, p(~x\K , ~xK) = p(~x\K)p(~xK) — is due to the Gaussian
assumption on p(~x).

This suggests a straightforward principal components-based estimator for K: we compute
the eigenvectors of the matrix formed by the difference Ĉpost − I, where Ĉpost is a consistent
estimator of Cpost (typically the sample second moment matrix). Our estimator for the
subspace spanned by K is now

K̂ = eig(Ĉpost − I),

where the operator eig(A) extracts the eigenvectors of the matrix A which are significantly
different from zero3. Constructing a bona fide significance test in this setting is a slightly more
difficult proposition; see, e.g., (Rust et al., 2005) for a bootstrap-based analysis. In general we
prefer to consider this STC analysis an exploratory method, useful for identifying subspaces
K in which the neuron is tuned, and therefore more qualitative definitions of significance —
i.e., choose all eigenvectors corresponding to eigenvalues which appear qualitatively different
in magnitude from the “bulk spectrum” (Johnstone, 2000), i.e., the remaining eigenvalues
— are sufficient for our purposes. It is straightforward to prove that this simple approach

3Note that we can only hope to identify the column space of K, not K itself, since any nonsingular
linear transformation of K may be absorbed in the definition of the nonlinear function f(.), just as in the
one-dimensional θ case. It is also worth remembering that the eigenvectors of any symmetric matrix (e.g.,
Cpost − I) must be orthogonal; thus the estimate K̂ always has orthogonal columns.
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provides a consistent estimator for K in this case of a standard Gaussian p(~x) (Paninski,
2003); a simple extension of the approach provides a consistent estimator in the more general
case of elliptically symmetric stimuli (Samengo and Gollisch, 2013).

It is worth noting that estimating the matrix Cpost requires a fair amount of data. It is
known that the usual empirical estimate of Cpost (the sample second-order matrix) is unbiased,
but if d = dim(~x) is on the same order as N , the number of spikes, then the corresponding
empirical eigenvalue spectrum is in fact strongly biased (Fig. 3). Dealing with this bias is
an active research area in random matrix theory (Johnstone, 2000; Ledoit and Wolf, 2004;
Schafer and Strimmer, 2005; El Karoui, 2007), though to date few of these more recent
methods have been applied in the context of neural data.

(Park and Pillow, 2011) provide a detailed discussion of the links between this STC
analysis and the GLM with quadratic interaction terms. The basic idea is to begin with the
loglikelihood, as usual:

L(A, θ, b) =
∑
t

nt
(
XtAX

T
t +Xtθ + b

)
−
∑
t

exp
(
XtAX

T
t +Xtθ + b

)
dt,

and then to note that the sum on the left may be written in terms of the STA and STC;
just as the STA is a sufficient statistic for the spiking data in the standard GLM, here we
see that the STA, STC, and total spike count form a sufficient statistic for the spiking data
in this quadratic GLM. (Park and Pillow, 2011) further show that the maximum expected
loglikelihood estimator for this model can be interpreted in terms of the STC and STA. More
importantly, once the STC components are incorporated in a proper likelihood function we
can bring Bayesian methods to bear and use matrix penalizers to improve the estimation of
the model parameters here. See (Park and Pillow, 2011) for further discussion.

6 Fully semiparametric estimators give correct estimates more
generally than do the STA or STC estimators

We have seen that STA- and STC-based methods can work well under certain assumptions,
e.g., elliptical symmetry of the stimulus distribution p(~x). It is natural to seek an estimator
for K which is guaranteed to be consistent more generally. Several such estimators have
been constructed (Weisberg and Welsh, 1994; Paninski, 2003; Sharpee et al., 2004); however,
the gains in generality are offset by the fact that the resulting estimators are much less
computationally tractable than the STA or STC techniques, which require only simple linear
algebraic operations and convex optimizations.

Several approaches have been proposed. The first (Weisberg and Welsh, 1994) is to use
maximum likelihood to simultaneously fit both K and the function f(.), where f(.) is repre-
sented in a finite dimensional basis which is allowed to become richer with increasing sample
size N . Note that if K is known, then we can use low-dimensional parametric or nonparamet-
ric methods to estimate the firing rate as a function of the low-dimensional projection KT~x.
Standard results for the consistency of maximum likelihood estimators may be adapted to
establish the consistency of the resulting sequence of estimators for K; however, computa-
tionally solving this likelihood optimization problem is difficult (and becomes more difficult
as the data length T increases, as the dimensionality of the space in which we must search
for an optimal f(.) increases).
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Figure 2: Simulated characterization of a two-dimensional linear-nonlinear cascade model via spike-triggered
covariance (STC). In this model, the spike generator is driven by the squared response of one linear filter divided
by the sum of squares of its own response and the response of another filter. Both filters are 6×8, and thus live in
a 48-dimensional space. The simulation is based on a sequence of 200, 000 raw stimuli, with 8, 000 spikes. Top,
left: simulated raw and spike-triggered stimulus ensembles, viewed in the two-dimensional subspace spanned
by the filters θ1 and θ2. The covariance of these ensembles within this two-dimensional space is represented
geometrically by an ellipse that is three standard deviations from the origin in all directions. The raw stimulus
ensemble has equal variance in all directions, as indicated by the black circle. The spike-triggered ensemble
is elongated in one direction and compressed in another direction (white ellipse). Top, right: Eigenvalue
analysis of the simulated data. The principal axes of the covariance ellipse correspond to the eigenvectors of
the spike-triggered covariance matrix, and the associated eigenvalues indicate the variance of the spike-triggered
stimulus ensemble along each of these axes. The plot shows the full set of 48 eigenvalues, sorted in descending
order. Two of these are substantially different the others (one significantly larger and one significantly smaller),
indicating the presence of two axes in the stimulus space along which the model is differentially responsive.
Also shown are three example corresponding eigenvectors. Bottom, one-dimensional plots: Spike-triggered
and raw histograms of responses along the two distinguished eigenvectors, along with the nonlinear firing
rate functions estimated from their quotient. Bottom, two-dimensional plot: the quotient of the two-
dimensional spike-triggered and raw histograms provides an estimate of the two-dimensional nonlinear ring
firate function f(.). This is shown as a circular-cropped grayscale image, where intensity is proportional to
firing rate. Superimposed contours (red) indicate four different response levels. Adapted from (Simoncelli
et al., 2004).
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Figure 3: Illustration of the bias in a sparsely-sampled covariance spectrum (Johnstone, 2000).
400 samples were drawn from a 200-dimensional standard normal distribution (mean zero,
identity covariance), and then the eigenvalues of the empirical covariance matrix were com-
puted. These eigenvalues display a good deal of variability around their true value (identically
1 in this case), and this variability is converted into systematic bias when the eigenvalues are
sorted; unsorted eigenvalues shown on the left, and sorted eigenvalues shown on the right.

A second approach has been employed more recently in the machine learning and statis-
tics literature, where models with LN form are often referred to as “multi-index models” (or
“single-index models” in the case that K contains just one row, i.e., K~x is one-dimensional).
The idea is to maximize a semi-parametric likelihood, as before, but include a penalty on the
rank of the Hessian of an estimate of the firing rate as a function of ~x; this approach exploits
the fact that if the firing rate is well-described by a function of LN form f(K~x), then the Hes-
sian of this function will have rank equal to the rank of K, rather than dim(~x). This method
can exploit recent sophisticated methods for optimization of rank-penalizing functions, but
constructing the Hessian of the estimated firing rate function can be computationally chal-
lenging. See, e.g., (Hemant and Cevher, 2012) for further details.

Another approach is to construct an objective function, M(V ) (here V denotes a matrix of
the same size as K), with the property that M(V ) obtains its optimum if and only if V = K.
Then we construct our estimator by maximizing some empirical estimator M̂(V ). The idea is
that if M̂(V ) is a good estimator for M(V ), then given enough data the maximizer of M̂(V )
should be close to the maximizer of M(V ), i.e., K. See, e.g., (van der Vaart, 1998) for more
details on this argument.

The objective function chosen is based on the so-called “data processing inequality” from
information theory (Cover and Thomas, 1991). The basic idea is that V T~x is equivalent to
KT~x plus some “noise” term that does not affect the spike process (more precisely, this noise
term is conditionally independent of n given KT~x); this noise term is obviously 0 for V = K.
Thus if we optimize the objective function

M(V ) ≡ I(V T~x;n),
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with I(X;Y ) denoting the mutual information between the random variables X and Y ,

I(X;Y ) =

∫
p(x, y) log

p(x, y)

p(x)p(y)
dxdy,

the data processing inequality (Cover and Thomas, 1991) says that M(V ) obtains its maxi-
mum at the point V = K. Another way to put it is that M(V ) measures how strongly V T~x
modulates the firing rate of the cell: for V near K, the conditional measures p(n = i|V T~x)
are on average very different from the prior measure p(n = i), and M(V ) is designed to de-
tect exactly these differences; conversely, for V orthogonal to K, the conditional distributions
p(n = i|V T~x) will appear relatively “unmodulated” (that is, p(n = i|V T~x) will tend to be
much nearer the average p(n = i)), and M(V ) will be comparatively small.

Under weak conditions (e.g., that the support of p(~x) covers every possible point ~x — i.e.,
all points are sampled with some probability, roughly speaking), this maximum of M(V ) at
V = K is unique (up to equivalence of column spaces), by the converse to the data processing
inequality (Cover and Thomas, 1991). Thus if we choose some uniformly consistent estimator
M̂(V ) of M(V ) (Beirlant et al., 1997), it is easy to show that the estimator

K̂ = arg max
V

M̂(V )

is consistent for K under weak conditions (Paninski, 2003; Sharpee et al., 2004). However, as
emphasized above, maximizing M̂(V ) is often fairly computationally difficult, since M̂(V ) is
typically non-convex and many local maxima may occur in general. In fact, it turns out that
an equivalence may be drawn between the semiparametric maximum likelihood approach and
the information-theoretic objection function approach; see (Williamson et al., 2013) for a nice
discussion of these issues.

7 We may also easily incorporate spike history effects and
interneuronal interactions

Above we have described how to adapt standard spike-triggered averaging techniques for
the GL model. However, it is clear that this simple model suffers from a number of basic
deficiencies: for example, the fact that we have assumed that the nonlinearity f(.) is a convex
function implies that the firing rate of our basic LNP model does not saturate: as we increase
the magnitude of the stimulus ~x, the rate must continue to increase at least linearly, whereas
the firing rate of a real neuron will invariably saturate, leveling off after some peak discharge
rate is attained. Moreover, neurons display a number of other related strongly nonlinear
effects that are not captured by the model: e.g., refractory effects, burstiness and bistability
of responses, and firing-rate adaptation. In other words, it seems the LNP model does not
satisfy our first requirement of any good encoding model: the LNP model is insufficiently
flexible to accurately model real spiking responses.

Luckily, it turns out that we may simultaneously fix these problems and greatly enhance
the GLM’s flexibility, by the simple trick of enlarging our input matrix X. Recall that in the
discussion above, the t-th row of this matrix consisted of the stimulus ~x(t). However, there
is no mathematical reason why we cannot incorporate other observables into this matrix as
well. For example, as usual, appending a column of ones to X corresponds to incorporating a
constant “offset” parameter b in our model, λ(t) = f(θ ·~x(t)+b), which provides an important
degree of flexibility in setting the threshold and baseline firing rate of the model.
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Figure 4: Schematic diagrams of some of the encoding models discussed here. A: the linear-
nonlinear-Poisson (LNP) model is strictly feedforward, with no spike-history terms. B: Illus-
tration of the connection between the GLM with spike-history terms and the integrate-and-
fire cell with a probabilistic (“soft”) threshold. C: GLM incorporating both spike-history and
interneuronal coupling terms h(.).

More importantly, we may incorporate terms corresponding to the neuron’s observed past
activity nt−j , to obtain models of the form λ(t) = f(b + θ · ~x(t) +

∑J
j=1 hjnt−j) (Fig. 4c).

Depending on the shape of the “spike history filter” ~h, the model can display all of the effects
described above (Paninski et al., 2004c); for example, a negative but sharply time-limited
~h corresponds to a refractory period (and firing rate saturation: increasing the firing rate
will just increase the “hyperpolarizing” effect of the spike history terms

∑
j hjnt−j), while a

biphasic ~h induces burst effects in the spike train, and a slower negative ~h component can
enforce spike-rate adaptation. Fitting these new model parameters proceeds exactly as above:
we form the (augmented) matrix X (where now Xt =

(
1 ~x(t) nt−J nt−J+1 . . . nt−1

)
), then

calculate the log-likelihood log p(D|X, θ) =
∑

t (nt log f(Xt · θ)− f(Xt · θ)dt), and compute

the ML solution for the model parameters θ = {b, θ,~h} by a concave optimization algorithm.
(Note that, while we still assume that the spike count nt within a given short time bin is drawn
from a one-dimensional Poiss(λ(t)dt) distribution, the resulting model displays strong history
effects and therefore the output of the model, considered as a vector of counts D = {nt}, is
no longer a Poisson process, unless ~h = 0.) See Fig. 5 for an application to data from a
retinal ganglion cell (Uzzell and Chichilnisky, 2004; Pillow et al., 2005b), and Fig. 6 for an
illustration in model data of how these spike-history effects induce interesting dynamic effects
in the response of the neuron to a simple step current.

In the beginning of this chapter, we focused on the problem of “PSTH smoothing,” in
which we wanted to estimate the firing rate of a single neuron observed over multiple repeated
trials, given fixed stimulus conditions. In this context we emphasized the importance of finding
computational methods that scaled linearly with the trial length T , in order to keep the
computations tractable. In particular, by enforcing bandedness of the loglikelihood Hessian
we obtained methods with computational complexity that scaled linearly with T . These
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Figure 5: Example predictions of a single retinal ganglion ON-cell’s activity using the GL
encoding model with and without spike history terms. Conventions are as in Figs. 3 and 4
in (Pillow et al., 2005b); physiological recording details as in (Uzzell and Chichilnisky, 2004;
Pillow et al., 2005b). A: Recorded responses to repeated full-field light stimulus (top) of true
ON-cell (“RGC”), simulated LNP model (no spike history terms; “LNP”), and GL model
including spike-history terms (“GLM”). Each row corresponds to the neuron’s spike train
response during a single stimulus presentation. Peristimulus rate and variance histograms are
shown in panels C and D, respectively. B: Magnified sections of rasters, with rows sorted in
order of first spike time within the window in order to show spike timing details. Note that
the predictions of the model including spike history terms are in each case more accurate than
those of the Poisson (LNP) model.

methods can still be used if we incorporate spike history effects. The key trick is to split the
parameter vector θ into the terms θ1 we had before (e.g., the spline coefficients, if we are
modeling the log-firing rate in a spline basis) and new terms θ2 involving the spike-history
effects. The new Hessian, involving the full vector θ, is not banded in general, since typically
many of the cross-terms involving both θ1 and θ2 will be nonzero. However, the block of the
Hessian involving just θ1 terms will still be banded, and Schur decomposition methods can
be used in this case to recover our previous O(T ) scaling.

Finally, we may expand the definition of X to include observations of other spike trains,
and therefore develop GL models not just of single spike trains, but network models of how
populations of neurons encode information jointly (Chornoboy et al., 1988; Paninski et al.,
2004a; Paninski et al., 2004a; Truccolo et al., 2005; Pillow et al., 2005a). The resulting model
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Figure 6: Mean response of a simulated GLM neuron to step inputs. Red trace shows the
empirical average firing rate, E[λ(t)] (where the expectation is taken over the random spike
history effects

∑
j hjnt−j) given the step input I(t). The spike-history function here was

chosen to be h(t) = −3 exp(−t/τ), t > 0, with τ = 20 ms; the firing rate was given by
λ(t) = exp(I(t) +

∑
j hjnt−j). Response of the corresponding inhomogeneous Poisson neuron

(with h set to zero) shown for comparison. Note that the inhibitory spike-history term here
increases the transience of the response and decreases the overall spike count; we will discuss
analytical methods for computing this time-varying mean firing rate E[λ(t)] in a later chapter.

is summarized (Fig. 4c):

ni,t ∼ Poiss(λi(t)dt); λi(t) = f

(
bi + θi · ~x(t) +

∑
i,i′,j

hi′,i,jni′,t−j

)
,

with λi(t) denoting the instantaneous firing rate of the i-th cell at time t, θi the cell’s linear
receptive field, and ~hi′,i a post-spike effect from the i′-th observed neuron in the population of
cells from which we are recording simultaneously; these terms are summed over all past spike
activity ni′,t−j in the network. The ~hi,i terms (corresponding to the i-th cell’s own past activ-

ity) plays the role of ~h above; the ~hi′,i terms from the other cells in the population correspond
to interneuronal interaction effects. Once again, the loglikelihood remains jointly concave in
all the parameters ({bi,~ki,~hi′,i}). In addition, the loglikelihood has a nicely separable form:
we can break up this objective function into a sum of N terms, each of which involve only
the parameters governing the firing of the i-th neuron, and which can therefore be solved in
parallel. This means that the full loglikelihood — which appears forbidding, since it involves
a highly nonlinear, recurrently connected network — turns out to be highly tractable.

What basis should we choose to represent these spike-history effects? The simplest basis
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is the “histogram” basis composed of nonoverlapping step functions (functions which are zero
everywhere except on a convex set, where the function is constant). In some cases it makes
sense for some of the basis functions to be of different widths: for example, to represent the
spike history function h(.), it makes sense to put more narrow basis functions at time delays
near zero (where we expect h(.) to vary quickly) and fewer, wider basis functions at large
time delays (where h(.) should vary more slowly). However, note that it is important not to
“oversample” here: if we use basis functions that are narrower than the smallest observed
interspike interval, then the MLE for the corresponding basis coefficient will be pushed towards
negative infinity, in order to enforce the observed zero firing rate on short intervals following
a spike. This results in unstable algorithms and highly variable estimators.

The step basis is discontinuous, so the inferred kernel or spike-history function will not be
smooth. A smoother basis is composed of “spline” functions. Splines are piecewise polynomial
(i.e., smooth) functions; these piecewise polynomials are defined over nonoverlapping intervals
which meet at a single point, the “knot”; the spline is constrained to be continuous and
differentiable at these knots. The more knots are used, the higher the dimensionality of the
basis (and the less smooth the resulting representation, in general). Splines may be used to
represent both post-spike effects and effects that depend on the time since the beginning of
the trial (PSTH effects) (Kass and Ventura, 2001). In the former case, as in the step basis
setting, it is a good idea to place more knots near the spike time (to allow more flexibility in
representing h(.) here), since we may expect h(.) to be more smoothly varying for larger t.

Another useful basis is composed of decaying exponentials (with logarithmically-spaced
time constants), for example to represent the spike history function h(.): again, this basis
varies more quickly for small t and smoothly approaches zero for large times. This exponential
basis has some mathematical advantages that we will discuss later, in the context of Markovian
models of spike trains.

8 The point-process GLM is closely connected to biophysical
models such as the soft-threshold integrate-and-fire model

As emphasized above, one of our key goals in constructing an encoding model is to connect the
model parameters to the underlying biophysics and known physiology. Thus it is worthwhile
to consider the relationship between the GLM and the more biophysically motivated models
employed in studies of intracellular dynamics (Reich et al., 1998; Gerstner and Kistler, 2002).
One connection is provided by the following model: consider the inhomogeneous Poisson
process with rate given by f(V (t) + b), where f is a convex, log-concave scalar function, b is
a constant offset term, and V (t) is the solution of the “leaky integrate-and-reset” differential
equation model for the dynamics of the intracellular voltage V (we’ll discuss this model in
much more depth in a later chapter):

∂V

∂t
= −gV (t) + θ · ~x(t) +

i−1∑
j=0

h(t− tj),

with initial value
V (ti−1) = Vreset,
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namely

V (t) = Vresete
−g(t−ti−1) +

∫ t

ti−1

θ · ~x(s) +
i−1∑
j=0

h(s− tj)

 e−g(t−s)ds,

the linear convolution of the input current with a negative exponential of time constant 1/g.
Here g denotes the membrane leak conductance, θ · ~x(t) the projection of the input signal
~x(t) onto the spatiotemporal linear kernel θ, and h is a post-spike current waveform which
is summed over the previously observed spikes. As usual, in the absence of input, V decays
back to 0 with time constant 1/g. We allow h, in turn, to take values in some low-dimensional
vector space; this allows the shape and magnitude of h to be varied to fit different intrinsic
spiking patterns (including burstiness, adaptation, saturation, etc.) (Gerstner and Kistler,
2002; Paninski et al., 2004c). V (t) in the above is the subthreshold, and therefore unobserved
(“hidden”), solution of the usual leaky integrate and fire (LIF) equation (Dayan and Abbott,
2001), for which the voltage resets to Vreset after the spike is emitted at ti.

We have written the above equations to emphasize the similarity to the form of the
“spike-response model” introduced by Gerstner and colleagues (Gerstner and Kistler, 2002;
Jolivet et al., 2003) and employed in (Paninski et al., 2004c; Paninski et al., 2004b) to
model extracellularly-recorded spike train responses. The combined IF-GL model described
above is conceptually identical to a simple version of the “escape-rate” approximation to the
noisy LIF-type model given in (Plesser and Gerstner, 2000; Gerstner and Kistler, 2002) (see
also (Stevens and Zador, 1996)); this escape-rate approximation, in turn, was introduced to
partially alleviate the difficulties associated with computing the passage time density and
firing rate of the LIF model driven by noise (again, see (Paninski et al., 2004c) for more
details).

Thus this “IF-GLM” can be seen as a direct approximation to the noisy LIF model
developed in (Paninski et al., 2004c) (which in turn is a tractable approximation to more
detailed biophysical models for spiking dynamics). Indeed, since this differential equation is
linear, V (t) here may be written in the form θg · ~x(t) +~hg · ~n(t), where θg and ~hg correspond

to the original parameters θ and ~h temporally convolved with the exponential function e−gt;
that is, this soft-threshold IF model is just a version of the generalized linear spike train
model we have been considering above, and therefore the GLM parameters may be indirectly
interpreted in biophysical terms.

The main result of interest here is that the loglikelihood for the IF-GLM is jointly concave
in the parameters {θ, h, Vreset, b}, for any data {~x, ti}, ensuring the tractability of the MLE.
(The loglikelihood is not necessarily concave in g here, but one-dimensional maximizations
are eminently tractable; it is worth noting that the convolution kernel e−gt can be generalized
as well, to possibly nonstationary kernels (Stevens and Zador, 1998; Jolivet et al., 2003), at
the expense of the possible addition of a few more parameters.)

9 The observed Fisher information matrix is useful for large-
sample approximations of confidence ellipses and errorbars

Once we have obtained an estimate for the parameters θ in the GLM, how can we quantify
our uncertainty about this estimate?

As we have discussed previously, we can measure the scale of the posterior distribution
along an arbitrary axis in a fairly simple manner: since we know (by the concavity of the
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log-posterior, under the appropriate assumptions) that the posterior is characterized by a
single “bump,” and the position of the peak of this bump is already characterized by θMAP ,
it is enough to measure the curvature of this bump at the peak θMAP . One way to measure
this curvature is to compute the negative Hessian matrix J of second-derivatives of the log-
posterior, Jij = −∂2 log p(θ|X,D)/∂θi∂θj . We have already seen one example of this: in the
linear case, where the posterior was of the form

log p(θ|X,D) = −1

2
θTAθ + bT θ + const.

for some matrix A and vector b, we have that the negative Hessian is simply J = A. Moreover,
just as in the linear case, the eigendecomposition of this matrix J tells us exactly which axes of
parameter space we are most uncertain about: small eigenvalues of J correspond to directions
of small curvature, where the observed data D poorly constrains the posterior distribution
p(θ|X,D) (and therefore the posterior variance will be relatively large in this direction), while
conversely large eigenvalues in J imply relatively precise knowledge of θ, i.e., small posterior
variance. Note that the Hessian is the sum of two terms, one from the log-prior and one from
the loglikelihood; recall that the negative Hessian of the loglikelihood evaluated at the MLE
is the “observed Fisher information” matrix. When the likelihood term is strong compared
to the prior (e.g., if T is very large), this Fisher information will be the dominant component
of J .

We can furthermore use this Hessian to construct a useful approximation to the poste-
rior p(θ|X,D). The idea is simply to approximate this log-concave bump with a Gaussian
function, where the parameters of the Gaussian are chosen to exactly match the peak and
curvature of the true posterior; this Gaussian approximation makes it much easier to com-
pute various quantities that are quite difficult to compute for general distributions p(θ|X,D)
(de Ruyter van Steveninck and Bialek, 1988; Kass and Raftery, 1995; Brown et al., 1998).
Specifically,

p(θ|X,D) ≈
(
|J |
2π

)dim(~θ)/2

exp

(
−1

2
(~θ − θMAP )TJ(θ − θMAP )

)
, (14)

where J here plays the role of the inverse covariance matrix: cov(θ) ≈ J−1. This Gaussian
approximation is typically referred to as the “Laplace approximation” (confusingly!) in the
statistics and machine learning literature.

Now errorbars around a single parameter may be formed by computing the marginal
standard deviation under this Gaussian model4:

σ̂i =
[(
cov(~θ|X,D)

)
ii

]1/2
≈
[(
J−1

)
ii

]1/2
.

4A common mistake is to take J−1
ii as the approximate variance here, instead of the correct value

(
J−1

)
ii

.

In fact, it is possible to show that J−1
ii ≤

(
J−1

)
ii

(i.e., the mistaken value is biased systematically downwards
from the correct value); this follows from an application of Schur complements to the symmetric positive
semidefinite matrix J . In particular (assuming i = 1, without loss of generality), we may write

J =

(
J11 B
BT C

)
for some matrix B and symmetric positive semidefinite matrix C. Now by using the Schur complement (Strang,
1988) we have (

J−1)
11

=
(
J11 −BC−1BT

)−1

;

since BC−1BT ≥ 0, clearly J−1
ii ≤

(
J−1

)
ii

.
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It worth noting that it is often not necessary to compute the full inverse of J ; specialized
algorithms are available if only a few diagonal (or near-diagonal) elements of J−1 inverse are
needed, for example.

A useful application of this Gaussian approximation is as follows. Suppose that the matrix
X is very large — large enough that it would be useful to split it up into several (say, M)
chunks, which may be processed in parallel on M independent machines, or perhaps only
because matrices of size(X)/M fit more comfortably into our computer’s memory than do
matrices of size X. It would be nice to solve the MAP problem

max
θ

log p(D|X, θ) + log p(θ)

using only these chunks of X. This Gaussian approximation gives us a good way to combine
these chunks in a principled manner:

log p(θ|{X1, X2, . . . XM}, {D1, D2, . . . DM}) = c+ log p({D1, D2, . . . DM}|{X1, X2, . . . XM}, θ) + log p(θ)

= c+

(
M∑
i=1

log p(Di|Xi, θ)

)
+ log p(θ)

= c+

M∑
i=1

(
log p(Di|Xi, θ) +

1

M
log p(θ)

)

≈ c+

M∑
i=1

(
−1

2
(~θ − θMAP,i)

TJi(θ − θMAPi)

)
= c− 1

2
(~θ − θ∗MAP )TJ∗(θ − θ∗MAP ),

where we have used the conditional independence of the spiking data Di given the stimulus
X and the parameter θ in the second line, our Gaussian approximation in the fourth line,
and made the abbreviations

J ≈ J∗ =
M∑
i=1

Ji

and

θMAP ≈ θ∗MAP = (J∗)−1

(
M∑
i=1

JiθMAP,i

)
.

Note in the special case that all the Ji matrices are the same (this will be approximately true
asymptotically under certain conditions), we obtain the simple and intuitive result that

θ∗MAP =
1

M

M∑
i=1

θMAP,i,

i.e., we simply take the average of the chunked MAP estimates θMAP,i.
How do we compute errorbars on other quantities of interest, such as (Xθ)t? This is

straightforward — just use the formula for linear transformations of covariances, Cov(Xθ) =
XCov(θ)XT . If we have used the Laplace approximation to estimate Cov(θ) ≈ J−1, we then
obtain a posterior confidence interval of size proportional to

√
[XJ−1X ′]tt.
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What about errorbars on the estimated firing rate λ = f(Xtθ)? We could compute the
first two moments E(λ) =

∫
p(Xtθ)f(Xtθ) and E(λ2) =

∫
p(Xtθ)f(Xtθ)

2, using the Gaussian
approximation for p(Xtθ); this would provide an estimate of the mean and variance of λ.
However, if f(.) = exp(.) and Xtθ is Gaussian, then f(Xtθ) will have fairly heavy tails, and
it is more appropriate to compute approximate quantiles for λ: since f(.) is assumed to be a
monotonically increasing function, the a-th quantile for f(Xtθ) is just f(.) evaluated at the
a-th quantile for Xtθ.

10 Bootstrap techniques provide another method for construct-
ing confidence intervals*

confidence intervals can also be computed via MCMC methods; we will discuss these later.

11 The observed Fisher information matrix may be used to
help select stimuli adaptively

In many experimental settings we have a good deal of control over what stimulus ~x is pre-
sented at time t. “Optimal experimental design” is a branch of statistics (“active learning”
is the relevant branch of machine learning) that studies the question of how to choose stim-
uli ~x optimally, in some sense (Fedorov, 1972; Mackay, 1992; Chaloner and Verdinelli, 1995;
Mascaro and Bradley, 2002; Paninski, 2005). Classical experimental design, for example, typ-
ically focuses how to construct the design matrix X optimally in a standard linear regression
setting. Our objective is to select, in an online, closed-loop manner, the stimuli that will most
efficiently characterize the neuron’s response properties (Fig. 7a).

An important property of GL models is that not all stimuli will provide the same amount
of information about the unknown coefficients θ. As a concrete example, we can typically learn
much more about a visual neuron’s response properties if we place stimulus energy within the
receptive field, rather than “wasting” stimulus energy outside the receptive field. To make this
idea more rigorous and generally applicable, we need a well-defined objective function that
will rank any given stimulus according to its potential informativeness. Numerous objective
functions have been proposed for quantifying the utility of different stimuli (Mackay, 1992;
Nelken et al., 1994; Machens, 2002). When the goal is estimating the unknown parameters of a
model, it makes sense to choose stimuli ~x(t) which will on average reduce the uncertainty in the
parameters θ as quickly as possible (as in the game of 20 questions), given D = {~x(s), ns}s<t,
the observed data up to the current trial. If we use the entropy (Cover and Thomas, 1991) of
the posterior distribution on the model parameters p(θ|~x(t), D) to quantify this uncertainty,
we arrive at the objective function

I(θ,D|~x) =

∫
p(θ,D|~x) log

p(θ,D|~x)

p(θ|~x)p(D|~x)
dθdD,

the mutual (Shannon) information between the response nt and the model parameters θ given
the stimulus and past data (Mackay, 1992; Paninski, 2005).

Unfortunately, it is quite difficult to perform this optimization in real time, for two reasons:
1) computing the information I(θ,D|~x) for any given value of ~x requires an integration over θ
and D, each of which may be very high dimensional; 2) I(θ,D|~x) may in general have many
local optima as a function of the high-dimensional variable ~x.
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Here the special structure of the GLM comes into play. We saw in the last section how a
Gaussian approximation of the posterior distribution p(θ|X,D) can greatly simplify various
computations in this model. (This Gaussian approximation may be justified by the same log-
concavity arguments as before; moreover, asymptotic theory guarantees that this Gaussian
approximation will be accurate — and moreover the MAP estimate θ̂MAP will converge to
the true underlying parameter θ — given a sufficiently long observation time T (Paninski,
2005).)

As discussed above, the observed Fisher information describes the uncertainty in our esti-
mate of θ: for example, the determinant of this matrix measures the volume of the confidence
ellipsoid under the Gaussian approximation. Our goal in collecting data is to make this el-
lipsoid as small as possible, and thus it is reasonable to choose ~x to make this determinant
as small as possible on average (where the average is taken over all possible responses D);
this is known as “D-optimal” design (Fedorov, 1972). (Of course, the determinant is only
one such measurement of the overall size of this confidence ellipsoid; other choices are pos-
sible. For example, “A-optimal” design corresponds to minimizing the trace of this matrix.)
Another connection is furnished by the Gaussian approximation: the entropy of a Gaussian
distribution with inverse covariance marix J is given by the log-determinant

H = −1

2
log |J |+ const.,

so maximizing the determinant of J is equivalent to minimizing the posterior entropy. Com-
puting the information has therefore been reduced from an intractable integration problem
to the much more tractable computation of an average log-determinant of a Hessian matrix;
i.e., we will attempt to optimize the observed Fisher information instead of the Shannon
information.

While much simpler than the original integration problem, the determinant computation
is in general still too slow for our goal of online, closed-loop stimulus optimization. Thus we
make use of one more key feature of the GLM: the log-likelihood

log p(nt|θ, ~xt) = c+ nt log f(θ · ~xt)− f(θ · ~xt)dt

depends on θ only through the one-dimensional projection θ · ~xt. This effectively one-
dimensional nature of the log-likelihood implies that the Hessian Jt of the log-posterior distri-
bution given t observations is simply a rank-one perturbation of the Hessian Jt−1 after t− 1
observations:

Jt = −∂2θ log p(θ|Dt) = −∂2θ [log p(θ|Dt−1) + log p(nt|θ, ~x(t))] = Jt−1 − ∂2θ log p(nt|θ, ~x(t)),

where the last term is a matrix of rank one. (The equalities above are simple manipulations
with Bayes rule and the definition of the Hessian.) This one-dimensional structure makes
possible a very efficient recursive computation of the posterior log determinant (using the
Woodbury lemma for rank-one matrix updates); after making a few more simple approxi-
mations it turns out to be possible to reduce the full d-dimensional optimization problem to
a simple one-dimensional optimization, and this one-dimensional optimization problem can
be solved numerically rapidly enough to be used online. (See (Lewi et al., 2006) for a full
derivation.) The entire optimization process — updating the posterior distribution, solv-
ing the one-dimensional optimiation, and choosing the corresponding optimal stimulus — is
quite fast (Fig. 7b), with the running time growing only as O[dim(θ)2] (as opposed to the
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Figure 7: A) Closed-loop vs. open-loop stimulus design. B) Plot of the total running time on
a desktop computer for each iteration of the model-based stimulus optimization algorithm, as
a function of the dimensionality of the stimulus ~x. A quadratic polynomial (O[dim(θ)2]) fits
the data quite well; note that < 15 ms are necessary to optimize a 100-dimensional stimulus.
C) Plots of the estimated receptive field for a simulated visual neuron whose responses were
generated by a GLM. The neuron’s true receptive field θ has the Gabor structure shown
in the last panel; the nonlinearity f(.) was assumed known a priori and the spike-history
terms were assumed to be zero, for simplicity. Individual panels show θMAP after observing t
stimulus-response pairs (the prior p(θ) was taken to be Gaussian with mean zero), comparing
the accuracy of the estimates using information-maximizing vs. random stimuli (all stimuli
were constrained to have unit norm, ||~x||2 = 1 here); the closed-loop approach is an order of
magnitude more efficient in this case. See (Lewi et al., 2006) for details.

exponential growth in the general, non-model-based case). Moreover, despite the approxima-
tions in the derivation, the closed-loop optimization procedure leads to much more efficient
experiments than does the standard open-loop approach of stimulating the cell with randomly-
chosen stimuli that are not optimized adaptively for the neuron under study (Fig. 7c); see
(Lewi et al., 2006) for details.
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