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So far we have focused on the problem of estimating encoding models for which all the
necessary pieces are completely observed: for example, in the GLM setting, we have assumed
that both the spike times and the stimuli X are observed noiselessly, and there were no other
unobserved (“latent”) components of the model that we needed to observe in order to compute
the likelihood. In many important cases this assumption of complete observations is overly
restrictive: spike times may be observed with some noise, for example, or we might have
reason to believe that there are unobserved variables (e.g. the attentive state of the animal)
that affect the probability of spiking. Indeed, much of the remainder of this book will deal
with “state-space” (aka “hidden Markov”) models, where the hidden Markovian state-space
variables play a key role in the system dynamics and in our approach to inference in these
models. Thus we would like to develop techniques to deal with these phenomena; as we will
see, this extension grants us a great deal of additional flexibility.

The “expectation-maximization” (EM) algorithm (Dempster et al., 1977; McLachlan and
Krishnan, 1996) will be a primary tool in dealing with these situations. In this chapter
we will derive this algorithm, discuss its properties, and illustrate its use in a variety of
neural examples. To properly introduce the basic ideas behind the EM method, we will
need to develop just a bit of background on an optimization technique known as “bound
optimization.” However, first it is useful to begin with an important concrete example, to
give the basic flavor of the algorithm.

1 Example: Mixture models and spike sorting

The standard model of spike waveforms in extracellular recordings in illustrated in Fig. 1
(Lewicki, 1998; Pouzat et al., 2004; Quian Quiroga, 2007): the extracellular voltage signal is
filtered and thresholded, and then each snippet of voltage triggered on a threshold crossing is
classified, using some clustering algorithm, as a spike or non-spike. The simplest probabilistic
model underlying this clustering process is a Gaussian mixture model (McLachlan and Peel,
2000), in which each voltage waveform snippet ~V may be represented as a sample from a
mixture distribution

p(~V ) =
J∑

z=0

αzpz(~V ),

with J denoting the number of distinct units present in the recording, z indexing the different
units, and the individual distributions given, for example, by the multivariate Gaussian

pz(~V ) = N~µz ,Cz
(~V )

with means ~µz and covariance matrices Cz
1. The mixture probabilities αz satisfy

∑
z αz = 1

and αz ≥ 0 for all z, as usual. Thus the parameter vector θ of interest here includes our
information about the underlying mixture components and weights,

θ = {(~µz, Cz, αz)0≤z≤J}.

How can we go about estimating the parameters of this model? Assume we observe a
set of voltage snippets {~Vi}. Define zi to be the identity of the mixture component from

1Typically we take ~µ0 = 0; this is the “noise” cluster corresponding to the absence of a spike. In addition,
it is often a reasonable approximation (particularly in low-SNR recordings) to take all the covariances to be
equal, Cz = C. However, it turns out to be a little simpler to describe the case of general ~µz and Cz here; the
constrained-Cz case may then be derived as a fairly straightforward extension.
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Figure 1: Schematic overview of the process of sorting spikes from extracellular recordings
(adapted from (Quian Quiroga, 2007)). Step i) The continuous raw data is band-pass filtered,
e.g. between 300 Hz and 3000 Hz, to discard slow fluctuations in the voltage signal and high-
frequency noise, respectively. Step ii) Spikes are detected, usually using simple threshold-
crossing methods. Step iii) Relevant features of the spike shapes are extracted, often via
PCA or some other dimensionality reduction method. Step iv) These features are the input
of a clustering algorithm that performs the classification of the spike waveforms.

which the i-th voltage sample was actually drawn; of course, we do not observe zi directly.
Now if we knew all of the identities {zi}, then estimating θ by maximum likelihood would be
easy: we just divide the data set {~Vi} into J + 1 groups, according to the labels {zi}, and
then estimate ~µz and Cz by maximum likelihood individually within each group. Similarly,
the maximum likelihood estimate of the mixture probability vector αz is just given by the
empirical frequency of each label z.

Conversely, given the parameter vector θ we could very easily estimate the labels {zi},
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by computing the posterior probability p(zi = j|θ, Vi) that zi is equal to j given θ and the
observed snippet ~Vi, for j = 0, 1, . . . or J . Of course, we don’t know θ; this is parameter
we are trying to infer. But if we have a decent initial guess about what θ might be, then it
is natural to iterate these two steps: (1) given our current estimate of θ, infer the posterior
probability of the mixture labels {zi} given θ and the observed data {~Vi}, and (2) given
these “soft” probabilistic assignments of the mixture labels {zi}, use some likelihood-based
estimate, possibly weighted by our confidence in the assignments {zi}, to update our estimate
of the parameter θ. It turns out that the EM algorithm for this mixture model has exactly
this alternating form, as we will see in more detail in section 5 below. However, first we must
lay some groundwork for the derivation of EM in the general case.

2 The method of bound optimization via auxiliary functions
provides a useful alternative optimization technique

Perhaps the simplest derivation of the EM algorithm is based on the idea of optimization via
auxiliary bound functions. This idea is useful in its own right and is easy to describe: in
many settings it may be difficult to directly maximize an objective function F (x) by standard
gradient-based methods (conjugate gradient descent or Newton-Raphson). An alternate ap-
proach which is sometimes more effective involves the construction of an “auxiliary” function
Q(x, x′) with the following three properties:

1. Q(x, x′) is a lower bound on F (x):

F (x) ≥ Q(x, x′) ∀x′; (1)

2. the values of F (x) and Q(x, x′) match at x = x′:

F (x) = Q(x, x). (2)

3. Q(x, x′) may be efficiently maximized as a function of x, for any fixed x′;

If these conditions are met, it is not hard to see that the algorithm

xj+1 = arg max
x

Q(x, xj)

leads to a monotonically increasing method for optimizing the original function F (x), since:

F (xj+1) ≥ Q(xj+1, xj) ≥ Q(xj , xj) = F (xj);

the first inequality is by property (1) of the auxiliary function Q(., .), the second is by the
fact that xj+1 = arg maxx Q(x, xj), and the last equality is by property (2). See Fig. 2 for
an illustration. If Q(x, .) is significantly easier to optimize than F (x), then this auxiliary
function approach can lead to more efficient optimization schemes than the direct approaches
discussed above (Darroch and Ratcliff, 1972; Dempster et al., 1977; Collins et al., 2000; Sha
et al., 2003)2. Of course, it is very important to remember that this bound optimization
method is only guaranteed to increase the objective function on each iteration; thus if F (x)
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Figure 2: Illustration of the bound optimization idea: the j-th function evaluation F (xj) is
always less than or equal to F (xj+1). Also note that the first derivative of F (x) and Q(x, xj)
are equal at the point x = xj (as discussed further in section 11), while we have the bound
d2Q(x, xj)/dx2|x=xj

≤ d2F (x)/dx2|x=xj
on the second derivatives (as discussed further in

section 12).

is multimodal the bound optimization method may be just as prone to finding suboptimal
local maxima as any other ascent algorithm.

One simple but useful application of this idea is as follows (Krishnapuram et al., 2005).
If F (x) is a smooth, strictly concave function such that the Hessian of F (x), H(x), satisfies
the lower bound

H(x) ≥ Hlb ∀x

(where the matrix inequality H ≥ Hlb is interpreted, as usual, to mean that H − Hlb is a
positive semidefinite matrix), then the quadratic function

Q(x, x′) = F (x′) + ∇F (x′)t(x − x′) +
1

2
(x − x′)tHlb(x − x′)

satisfies our three auxiliary function conditions. Clearly, we have

arg max
x

Q(x, x′) = x′ − H−1
lb ∇F (x′),

so the auxiliary updates in this case reduce to the simple Newton-like updates

xj+1 = xj − H−1
lb ∇F (xj).

The nice thing about this choice is that we only need to compute H−1
lb once for all x′, so each

step may be computed in just O(dim(x)2) time for the matrix multiplication, instead of the

2Also, note that we may relax the definition of xj+1 to be any x such that Q(x, xj) ≥ F (x), and the proof
still holds; thus, we may do partial maximizations and still ensure that F (.) increases (or stays the same) on
each iteration. This is helpful because partial optimizations on each iteration may be much quicker and just
as effective as full optimizations.
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usual O(dim(x)3) required to invert a general matrix in the full Newton step. (Of course, if
H−1

lb has any useful structure — e.g., if H−1
lb is Toeplitz or if Hlb or H−1

lb is banded — then
further speedups are possible.)

For example, consider modeling a neuron whose firing rate is given by λ(t) = f(~k · ~x(t)),
with f chosen so that 0 ≤ d2f(u)/du2 ≤ c1 and −c2 ≤ d2 log f(u)/du2 ≤ 0 for some finite
constants c1, c2. The likelihood here is, as usual,

L(~k) ≡
∑

i

log f(~k · ~x(ti)) −

∫ T

0
f(~k · ~x(t))dt,

and the Hessian of this likelihood (which depends on ~k) may be bounded from below by a
fixed matrix Hlb:

∇∇~k
L(~k) =

∑

i

d2 log f(u)

du2

∣∣∣∣
u=~k·~x(ti)

~x(ti)~x(ti)
t −

∫ T

0

d2f(u)

du2

∣∣∣∣
u=~k·~x(t)

~x(t)~x(t)tdt

≥ −c2

∑

i

~x(ti)~x(ti)
t − c1

∫ T

0
~x(t)~x(t)tdt

≡ Hlb,

with Hlb independent of ~k. Thus a convergent, simple update rule for maximizing the likeli-
hood may be derived quite easily: ~kj+1 = ~kj − H−1

lb ∇L(~kj), where, again, H−1
lb need only be

computed once, greatly accelerating the iteration when dim(~k) is large. On the other hand,
as we will discuss further in section 12, this bound optimization method may require more
iterations to converge than direct Newton-Raphson optimization.

3 The EM algorithm for maximizing the likelihood given hid-
den data may be derived as a bound optimization algorithm

We are now in a position to introduce the famous EM (Expectation-Maximization) algorithm
(Dempster et al., 1977; McLachlan and Krishnan, 1996). As discussed above, in many cases,
we are interested in “latent variable” models, in which the likelihood is of the form

p(y|θ) =

∫
p(y, z|θ)dz,

with y the observed data, θ the parameter of interest, and z some “latent,” unobserved, data.
Note that a direct approach towards maximizing this likelihood requires that we marginalize
out z, and this integration may be difficult in general. The EM algorithm was developed as
a clever method for estimating θ without having to compute this integral.

One method for deriving the EM algorithm is via the auxiliary function approach described
above3. We define our objective function as the log-likelihood

F (θ) = log p(y|θ) = log

∫
p(y, z|θ)dz.

3It is also possible to justify the EM algorithm in terms of alternating maximization of a certain “free
energy” function (Neal and Hinton, 1999; Saad and Opper, 2001; Beal and Ghahramani, 2003), but we will
not take this approach here.
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Now our strategy is to use Jensen’s inequality to develop a bound on F (θ), and from there
obtain a suitable auxiliary function. We have

F (θ) = F (θ′) + log
p(y|θ)

p(y|θ′)

= F (θ′) + log

∫
p(z|y, θ′)

p(z|y, θ)p(y|θ)

p(z|y, θ′)p(y|θ′)
dz

= F (θ′) + log

∫
p(z|y, θ′)

p(y, z|θ)

p(y, z|θ′)
dz

≥ F (θ′) +

∫
p(z|y, θ′) log

p(y, z|θ)

p(y, z|θ′)
dz

= F (θ′) −
1

p(y|θ′)
D
(
p(y, z|θ′); p(y, z|θ)

)

≡ Q(θ, θ′), (3)

where the equalities follow from straightforward algebraic manipulations, D(p; q) denotes the
Kullback-Leibler divergence between the two distributions p and q,

D(p; q) =

∫
p(z) log

p(z)

q(z)
dz,

and in the last line we have defined our auxiliary function Q(θ, θ′); the inequality is an
application of Jensen’s bound, and establishes property (1) of our auxiliary function. To
establish property (2), simply note the well-known fact that D(p; p) = 0 (which, in turn,
follows from the equality conditions of Jensen’s inequality). Thus we have established Q(θ, θ′)
as a suitable auxiliary function for our marginal log-likelihood objective function log p(y|θ)
here.

Now to compute arg maxθ Q(θ, θ′) we write out Q(θ, θ′) and drop all the terms which are
independent of θ to obtain

arg max
θ

Q(θ, θ′) = arg max
θ

∫
p(z|y, θ′) log p(y, z|θ)

= arg max
θ

Ep(z|y,θ′) log p(y, z|θ).

Thus we may break up each iteration of the auxiliary function optimization into two steps: an
“E-step” corresponding to the computation of the expectation Ep(z|y,θ′) log p(y, z|θ), and an
“M-step” corresponding to a maximization of this function as a function of θ. Each iteration
of these two steps is guaranteed never to decrease the loglikelihood log p(y|θ), and therefore
we can use these iterations as a tool for (locally) optimizing p(y|θ).

In many cases it turns out to be much easier to optimize Ep(z|y,θ′) log p(y, z|θ) as a function
of θ, rather than the original objective function log p(y|θ); indeed, we will see a number of
examples below in which the former optimization can be performed analytically (and therefore
effectively instantaneously), while directly optimizing log p(y|θ) is relatively intractable. On
the other hand, EM may require more iterations to reach the optimizer than do “direct”
approaches like Newton-Raphson or conjugate-gradient; we will discuss the convergence rate
of EM in more detail in section 12. It is also worth noting that we never need to explicitly
calculate the function log p(y|θ); again, this is useful because in many cases computing the
integral

∫
p(y, z|θ)dz directly may be intractable. Finally, the quantities computed in the
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E-step are often of independent interest; for example, we can easily read off the gradient
∇θ log p(y|θ) from the output of the E-step (see section 11). We will discuss a variety of
further examples below.

4 EM may easily be adapted to optimize the log-posterior
instead of the log-likelihood

So we have demonstrated that the EM algorithm may be used to (locally) maximize the
likelihood. Of course, the MLE computed via EM is just as susceptible to overfitting effects
as the MLE computed via any other algorithm — in fact, in situations where we have hidden
variables and may therefore apply EM, overfiting is an even bigger concern, since in general
complete observations are more informative than incomplete observations (and as we discussed
previously, overfitting is in some sense a symptom of not having sufficient information to
constrain our parameter estimates).

Therefore it is natural to ask if we can use EM to optimize a log-posterior, instead of a
log-likelihood. Luckily, the required modification is quite straightforward: it turns out that
the E-step remains unchanged, and the M-step is the same as before but with another term
(corresponding to the log-prior) included in the objective function. In particular, we know
that the function Q(θ, θ′) defined in eq. (3) is an auxiliary function (i.e., satisfies conditions (1)
and (2)) for the loglikelihood log p(y|θ); therefore, Q(θ, θ′) + log p(θ) is an auxiliary function
for the (unnormalized) log-posterior log p(y|θ) + log p(θ). To evaluate this auxiliary function
Q(θ, θ′) + log p(θ) we need to compute the expectation Ep(z|y,θ′) log p(y, z|θ) just as before;
thus the E-step is unchanged. Maximizing this auxiliary function (the M-step) requires that
we optimize Q(θ, θ′)+ log p(θ) as a function of θ, instead of just maximizing Q(θ, θ′). We will
encounter a number of examples below.

5 Example: Deriving the EM algorithm for the mixture model
(spike sorting) case

Now we may return to the spike sorting example discussed in section 1 above, and show
how to derive the EM algorithm in this particular case. First we must identify the ingredi-
ents of the general EM algorithm discussed above: the observed data y are the N observed
voltage snippets ~Vi, and the unobserved latent variable z corresponds to the identities of
the mixture components from which each voltage sample was actually drawn. We have al-
ready identified the parameter θ as the set of mixture means, covariances, and probabilities
{(~µz, Cz, αz)0≤z≤J}. We may now write the complete log-likelihood as

log p(y, z|θ) = log p(z|θ) + log p(y|z, θ)

=
N∑

i=1

log p(zi|θ) +
N∑

i=1

log p(yi|zi, θ)

=
N∑

i=1

log αz(i) +
N∑

i=1

logNµz(i),Cz(i)
(~Vi)

=
N∑

i=1

[
log αz(i) −

1

2

(
log |Cz(i)| + (~Vi − ~µz(i))

tC−1
z(i)(

~Vi − ~µz(i))
)]

+ const., (4)
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Figure 3: Illustration of the mixture model: we observe the data shown in scatterplot form
here (two-dimensional simulated data were used, for simplicity), and the EM algorithm run
with three mixture components recovers the means and covariances shown here (ellipses rep-
resent one standard deviation). Thanks to Sean Escola for the code.

where z(i) is the identity of the mixture component from which the i-th sample voltage trace
was drawn. Ignoring constants, the expected complete log-likelihood is

Ep(z|y,θ′) log p(y, z|θ) = Ep(z|y,θ′)

(
N∑

i=1

log p(zi|θ) +
N∑

i=1

log p(yi|zi, θ)

)

=

J∑

j=0

N∑

i=1

p(z(i) = j|θ′)

[
log αz(i) −

1

2

(
log |Cz(i)| + (~Vi − ~µz(i))

tC−1
z(i)(

~Vi − ~µz(i))
)]

=
J∑

j=0

N∑

i=1

p(z(i) = j|θ′) log αz(i) −
1

2

J∑

j=0

N∑

i=1

p(z(i) = j|θ′)
[(

log |Cz(i)| + (~Vi − ~µz(i))
tC−1

z(i)(
~Vi − ~µz(i))

)]
, (5)

with

p(z(i) = j|θ′) =
1

Z
α′

jNµ′

z(j)
,C′

z(j)
(~Vi)

=
exp

[
log α′

j −
1
2

(
log |C ′

j | + (~Vi − ~µ′
j)

tC ′−1
j (~Vi − ~µ′

j)
)]

∑J
j′=0 exp

[
log α′

j′ −
1
2

(
log |C ′

j′ | + (~Vi − ~µ′
j′)

tC ′−1
j′ (~Vi − ~µ′

j′)
)]

denoting the conditional probability that the mixture component z(i) = j, under the param-
eters θ′.

Thus the E-step in this case corresponds to a probabilistic assignment of cluster identity
to each sample i, given the parameters θ′ from the previous iteration. In the M-step we have
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to optimize Ep(z|y,θ′) log p(y, z|θ) as a function of θ: since the objective function (5) is a sum
of simpler, separable functions, we may optimize each summand independently. When we
optimize

J∑

j=0

N∑

i=1

p(z(i) = j|θ′) log αz(i)

as a function of α, under the constraint that
∑

z αz = 1 and αz ≥ 0, we obtain the intuitive
solution

αnew
j =

1

N

N∑

i=1

p(z(i) = j|θ′);

i.e., our updated mixture probability is just the average fraction of samples assigned to index
j under the parameter setting θ′. Similarly, when we optimize

−
1

2

N∑

i=1

p(z(i) = j|θ′)
(
log |Cz(i)| + (~Vi − ~µz(i))

tC−1
z(i)(

~Vi − ~µz(i))
)

= −
1

2

N∑

i=1

wij

(
log |Cz(i)| + (~Vi − ~µz(i))

tC−1
z(i)(

~Vi − ~µz(i))
)

with respect to ~µj and Cj (where we have made the abbreviation wij = p(z(i) = j|θ′) to
simplify the notation in the formulas below), we obtain

~µnew
j =

∑N
i=1 wij

~Vi∑N
i=1 wij

and

Cnew
j =

∑N
i=1 wij(~Vi − ~µj)(~Vi − ~µj)

T

∑N
i=1 wij

.

This is a generalization of the standard maximum likelihood estimate for the mean and
covariance of a multivariate Gaussian, where we have replaced the usual normalized sum
over observed samples i with a normalized weighted sum, with the weights given by the
probabilistic mixture assignments wij = p(z(i) = j|θ′). As we will see below, this is a
recurring feature of the EM algorithm: in the M-step, the usual loglikelihood (a sum over N
terms) is replaced by a weighted sum over N terms, where the weights are derived from the
conditional probabilities p(z|y, θ′) computed in the E-step.

Note that it is straightforward to generalize to other mixture models. For example,
(Shoham et al., 2003) argue that spike voltage waveforms are better modeled as a mixture of
multivariate-t distributions, which have much fatter tails than the multivariate Gaussian and
are therefore more robust to noise. Fitting the parameters of the multivariate-t (the M-step)
proceeds much as in the multivariate Gaussian case, although unfortunately the nice analytic
solutions for the mean and covariance parameters do not extend to the multivariate-t case
(Peel and McLachlan, 2000; Shoham et al., 2003).

The spike sorting literature continues to expand, and a number of important problems re-
main open. A couple specific directions are worth noting. First, many extracellular recordings
display a strong degree of nonstationarity, due for example to slow changes in the electrode
position relative to the observed neurons (which in turn lead to changes in the size and, to
a lesser degree, the shape of the observed spike waveforms). (Bar-Hillel et al., 2006) present
an adaptive algorithm for tracking the cluster means and covariances as they evolve over the
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course of the experiment; their method is based on a state-space framework that we will de-
scribe in more depth over the next few chapters (see also (Calabrese and Paninski, 2009)). A
second important problem involves model selection: how do we choose the number of clusters
J? Typically, J is selected “by eye” or by cross-validation approaches; more recently, (Wood
and Black, 2008) presented Dirichlet process techniques that sidestep this issue somewhat,
by effectively placing a prior over all possible values of J and then computing the posterior
over the model parameters (including J) via MCMC methods.

A third key problem involves synchronous or near-synchronous firing, when spikes from
different neurons occur within 1 ms of one another, “colliding” and invalidating our simple
mixture model in which spikes occur without interacting with one another. This is a key
problem in the setting of large-scale multi-electrode recordings, where a given neuron might
contribute its voltage signal to many neighboring electrodes (Litke et al., 2004; Segev et al.,
2004; Petrusca et al., 2007), leading to many potential collision sites. One effective method is
to extend the mixture model to incorporate linear superpositions of spike waveforms (Lewicki,
1998; Sahani, 1999; Segev et al., 2004); electrical signals from different neurons combine
linearly on the electrode to a very good approximation. We write the voltage signal as

Vt =
∑

j,a

V j
a (t − tja) + ǫt,

where V j
a (.) is the shape of the a-th voltage waveform snippet from neuron j, and tja is the

time of this event; ǫt denotes stochastic noise. In this setting the E step consists largely of
determining the spike times tja, while as usual the M-step involves an update of the properties
of the distributions from which the waveforms V j

a (.) are drawn. It is much more difficult
to evaluate the E-step exactly here without resorting to computationally expensive MCMC-
based approaches, and therefore cheaper greedy computational methods are often employed
instead: the simplest effective method is to add spikes one by one, choosing the neuron
identity j and spike time tja which will increase the log-posterior the most on each iteration,
and stopping when any additional spikes will decrease the log-posterior. (The prior here
encodes the number of spikes we expect each neuron to contribute; the likelihood, as usual, is
derived from the assumed properties of the noise ǫt.) If the noise ǫt is taken to be Gaussian,
these log-posterior computations reduce to linear filtering and template-matching operations
under a quadratic loss function, and may be performed quite efficiently using fast Fourier
techniques. See (Lewicki, 1998) for further discussion.

6 Example: Spike sorting given stimulus observations

It is natural to ask if we can increase the accuracy of the mixture model spike sorting method
described above by including relevant “side” information (Ventura, 2008). For example, if we
know that the neurons whose spikes we are attempting to classify are driven by some sensory
stimulus, we can try to incorporate a model of the stimulus tuning in the mixture model.
For simplicity, imagine that each neuron may be modeled as a Poisson process with rate
λz(t) = f(~kT

z ~x(t)); we will also assume that all the observed waveforms i in fact correspond
to true spikes — and furthermore that all the spikes have been detected — and therefore we
may neglect the the noise unit z = 0. (This assumption is for notational simplicity only, and
may be relaxed easily.) Instead of fixing the mixture weights αz, here the “mixture weights”
are effectively functions of time (depending on the value of the stimulus ~x at time t), where
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we may define

αz(t) =
f(~kT

z ~x(t))
∑J

j=1 f(~kT
j ~x(t))

.

Thus our parameter θ here is given by θ = {(~µz, Cz,~kz)}, and we modify our complete
loglikelihood

log p(y, z|X, θ)

=
N∑

i=1

[
log f(~kT

z ~x(ti)) −
1

2

(
log det(Cz(i)) + (~Vi − ~µz(i))

tC−1
z(i)(

~Vi − ~µz(i))
)]

−
J∑

j=1

∫ T

0
f(~kT

j ~x(t))dt + const.,

where ti denotes the i-th spike time.
The E-step proceeds as before, except now we have to incorporate the model’s predicted

firing rates into the definition of the “mixture assignments”

p(z(i) = j|X, θ′) =
exp

[
log f

(
~x(ti)

T~k′
j

)
− 1

2

(
log det(C ′

j) + (~Vi − ~µ′
j)

T C ′−1
j (~Vi − ~µ′

j)
)]

∑J
j′=1 exp

[
log f

(
~x(ti)T~k′

j′

)
− 1

2

(
log det(C ′

j′) + (~Vi − ~µ′
j′)

T C ′−1
j′ (~Vi − ~µ′

j′)
)] .

Now the M-step for updating the means and covariances ~µz and Cz proceeds exactly as
before, using the p(z(i) = j|X, θ′) computed above. We replace the M-step for the mixture
weights αz with an analogous M-step for ~kz: for each 1 ≤ j ≤ J we maximize

N∑

i=1

p(z(i) = j|θ′) log f(~kT
j ~x(ti)) −

∫ T

0
f(~kT

j ~x(t))dt.

Note that each of these optimizations may be computed independently (unlike in the M-step
for ~α, where the constraint

∑
αz = 1 served to couple the optimizations together); moreover,

note that each optimization is concave, effectively a weighted generalization of our usual point
process likelihood optimization problem.

Of course, we may generalize this model significantly. One important extension is to
incorporate the fact that sequential spike waveforms Vi are not in fact independent (for
example, partial inactivation of sodium channels following a spike may reduce the peak voltage
of a second spike observed shortly after the first). See, e.g., (Pouzat et al., 2004) for details
of a more sophisticated (but much more computationally expensive) MCMC-based approach
that incorporates some of these effects.

7 Example: Generalized linear point-process models with spike-
timing jitter

Let’s turn our attention to single-neuron data, where we are confident that we have isolated
and classified each spike correctly. Again, we assume the true (unobserved) spike trains {ti}
are generated via an LNP model with conditional intensity function λ(t) = f(Xt · θ). Now,
however, let us imagine that each spike time is subject to some random jitter (e.g., due to
timing variability in the detection of the spike waveform due to noisy threshold crossing in
low-SNR extracellular recordings, or variability in the speed of axonal propagation of the
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Figure 4: Illustration of the LNP-jitter model (Fig. 1 of (Aldworth et al., 2005)). A: responses
of a simulated neuron to three identical stimulus presentations; each stimulus elicits a response
which is slightly jittered in time; responses are tabulated in PSTH form in panel b. C:
Computing the spike-triggered average stimulus (solid trace) results in a much smoother,
smaller waveform than the true stimulus (gray traces), since we have effectively convolved the
true stimulus with the Gaussian spiking distribution shown in panel b. D: Illustration of the
“dejittered STA” applied to this simulated data: see (Aldworth et al., 2005) for details.

action potential due to stochastic ion channel fluctuations (Faisal and Laughlin, 2007)): more
concretely, imagine that the observed spike train {ui} is produced by jittering each true spike
time ti independently by Gaussian noise with mean zero and variance σ2,

ui = ti + ǫi, ǫi ∼ N (0, σ2).
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Related models have been considered by (Aldworth et al., 2005; Chang et al., 2005; Dimitrov
and Gedeon, 2006; Gollisch, 2006); see also (Dimitrov et al., 2009) for a generalization to
spatial jitters applied to visual receptive fields, and (Amarasingham et al., 2005) for a different
approach to analyzing jitter in spike trains. We want to fit the parameters (θ, σ2) by EM.

The complete log-likelihood for this model may be derived along the same lines as discussed
in the last two sections: we obtain

log p({ti}, {ui}|θ) ≈
∑

i

log f(Xti · θ) −

∫ T

0
f(Xs · θ)ds −

N

2
log σ2 −

1

2σ2

∑

i

(ti − ui)
2,

where N denotes the total number of spikes. Here we have made the approximation that the
observed spikes ui are far enough apart (measured in units of σ) that we may neglect the
probability that the observed spike ui is actually due to the true spike tj , with i 6= j.

The expected complete log-likelihood under (θ̂j , σ̂
2
j ), the estimated parameters after j EM

iterations, may be computed as

Q =

∫
p({ti}|{ui}, θ̂j , σ̂

2
j ) log p({ti}, {ui}|θ, σ

2)d{ti}

≈
∑

i

∫ T

0
ri(t) log f(Xt · θ)dt −

∫ T

0
f(Xs · θ)ds −

N

2
log σ2 −

1

2σ2

∑

i

∫ T

0
ri(t)(t − ui)

2dt,

where

p(ti|ui, X, θ̂j , σ̂
2
j ) ≈

e(t−ui)
2/2σ̂2

j f(Xt · θ̂j)∫ T
0 e(t−ui)2/2σ̂2

j f(Xt · θ̂j)dt
≡ ri(t)

denotes the conditional density that the true i-th spike time is given by t, given the observed
time ui, stimulus X, and current parameters θ̂j , σ̂

2
j . Computing the functions ri(t) constitutes

the E step; the M step may be performed easily, by noting that, as in the last example, since
ri(t) ≥ 0,

∑

i

∫ T

0
ri(t) log f(Xt · θ)dt −

∫ T

0
f(Xs · θ)ds

is a concave function of θ under the usual convexity and log-concavity conditions on f(.); i.e.,
once again, in the M-step we optimize a weighted average version of the usual point-process
likelihood. Thus we set

θ̂j+1 = arg max
θ

∑

i

∫ T

0
ri(t) log f(Xt · θ)dt −

∫ T

0
f(Xs · θ)ds

and

σ̂2
j+1 =

1

N

∑

i

∫ T

0
ri(t)(t − ui)

2dt.

Once the parameter estimates (θ̂j , σ̂
2
j ) have converged, we may use the corresponding

ri(t) = p(ti|ui, X, θ̂j , σ̂
2
j ) to perform denoising, that is, to estimate and subtract out the jitter

ǫi (Aldworth et al., 2005). We may, for example, estimate the true spike time ti as

t̂i = E(ti|ui, X, θ̂j , σ̂
2
j ) ≈

∫
ri(t)tdt.

See (Aldworth et al., 2005) for applications and further discussion.
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Figure 5: Illustration of the E-step in the LNP-jitter model (Fig. 2 of (Gollisch, 2006)). Given
the stimulus s(t), we form the rate r(t) predicted under the LNP model and then multiply this
by a Gaussian centered at the observed spike time tk and normalize to obtain the posterior
p(uk|tk, θ, {s(t)}) (note that Gollisch’s notation is different from ours).

8 Example: Fitting hierarchical generalized linear models for
spike trains

Let’s assume we have recorded from a number of neurons in a given brain area. We might
expect many of these neurons to have similar tuning characteristics. Indeed, we would like
to exploit any such similarities (for example, the more we know about a brain area a priori,
the easier it should be to estimate the receptive fields of any new neurons we enounter in this
area) and to quantify the heterogeneity of tuning properties in a given brain area, cortical
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layer, etc. This quantification of “functional anatomy” — how the functional properties of
neurons vary as a function of anatomy — is, of course, one of the major goals of systems
neuroscience; see, e.g., (Ringach et al., 2002; Ringach, 2002) for examples of these analyses
in primate primary visual cortex.

One simple way of exploiting these similarities in tuning properties is as follows. Imagine
for simplicity that each neuron in the brain region of interest may be modeled with our
standard GLM, λi(t) = f(XT

t θi). Now further assume that the model parameters θi are
themselves sampled in an i.i.d. manner from some distribution p(θ), whose properties we
would like to quantify: e.g., how variable is θ? What do “typical” parameter values θ look
like (i.e., what is E(θ))? In order to summarize these quantities more efficiently, we might
parameterize p(θ) = p(θ|Γ), where Γ denotes the “hyperparameters” which specify the shape
of p(θ): for example, if we take p(θ) to be Gaussian, then Γ would summarize the mean and
covariance of θ (Behseta et al., 2005).

This kind of multi-stage model — where the observed data depend on some unknown
parameters whose distribution in turn depends on some unknown hyperparameters — is
known as a “hierarchical” model in the statistics literature. Given the hyperparameters Γ,
fitting the individual parameters θi is fairly straightforward: we simply compute the posterior

log p(θi|D, Γ) = log p(Di|θi) + log p(θi|Γ) + const.,

where Di denotes the data recorded from the i-th neuron in the dataset (we assume that these
{Di} are conditionally independent given {θi}). For example, we could compute θ̂i,MAP =
arg maxθi

log p(θi|D, Γ), for each θi. The nice thing about this model is that the more we
learn about Γ (e.g., by observing more neurons), the better our estimates of θi will be; thus
we can in effect “share” information between (conditionally) independent experiments Di.

To fit Γ, on the other hand, we may derive an EM algorithm, treating θi as latent variables.
We want to maximize the marginal loglikelihood

p(D|Γ) =

∫
p(D, ~θ|Γ)d~θ =

∫ ∏

i

p(Di|θi)p(θi|Γ)d~θ.

Computing this integral directly is often infeasible if the number of neurons i is large (although
if our usual Gaussian approximation

p(Di, θi|Γ) = p(Di|θi)p(θi|Γ) ≈ wiGµi,Ci
(θi)

is accurate, then we can in fact compute this integral analytically given (wi, µi, Ci) (Sahani
and Linden, 2003; Ahrens et al., 2008)). To derive the EM algorithm here, we write down
the expected complete log-likelihood as usual:

E
p(~θ|D,Γ(j))

log p(~θ, D|Γ) = E
p(~θ|D,Γ(j))

∑

i

(
log p(Di|θi) + log p(θi|Γ)

)

=
∑

i

Ep(θi|Di,Γ(j))

(
log p(Di|θi) + log p(θi|Γ)

)
.

At this point, we need to introduce a concrete model for p(θ|Γ); for simplicity, we take θ
to be Gaussian with mean µ and covariance C (i.e., Γ = (µ, C)), although as usual we
emphasize that other model choices are feasible here. Thus, plugging in the Gaussian density
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Figure 6: Normalized histograms displaying observed firing rates for 30 neurons recorded
from the primary motor cortex of a primate performing a sequential pointing task (Behseta
et al., 2005). Solid traces indicate estimated firing-rate curves obtained from a hierarchical
Bayesian model fit. Horizontal axes run from 200 ms before the monkey touched the target to
100 ms after; vertical axes from 0 to 100 spikes per second. In this case, the spike count per
bin was modeled as inhomogeneous Poisson; the prior on the time-varying rate function was
specified in terms of a mixture of Gaussian processes formed by adding together a collection
of spline functions with random (Gaussian) coefficients, with an additional hierarchical prior
on the spline knots. The firing rates here were estimated by a hierarchical MCMC method
which integrated over the unobserved Gaussian spline latent functions; see (Behseta et al.,
2005) for further details.
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for log p(θi|Γ) (and dropping the log p(Di|θi) term, which does not depend on Γ), we see that
to optimize the expected log-likelihood with respect to µ and C we need to optimize

∑

i

Ep(θi|Di,Γ(j))

(
−

1

2

(
log det(C) + (θi − µ)T C−1(θi − µ)

))
;

we obtain

µ(j+1) =
1

N

N∑

i=1

E(~θi|Di, µ
(j), C(j))

and

C(j+1) =
1

N

N∑

i=1

(
Cov(~θi|Di, µ

(j), C(j)) + (µi − µ)(µi − µ)T
)

,

where µi abbreviates E(~θi|Di, µ
(j), C(j)) and N denotes the number of neurons in the data

set. As usual, these are fairly intuitive gneralizations of what we would expect to see in the
fully-observed setting: the one possibly unfamiliar piece is the update for C, in which we have
to combine both the variability in the observed µi vectors and also the residual uncertainties
Cov(~θi|Di, µ

(j), C(j)).
The only remaining ingredient is the E-step, in which we obtain the means µi and covari-

ances Cov(~θi|Di, µ
(j), C(j)). We have

p(θi|Di, µ
(j), C(j)) =

1

Z
p(Di|θ)p(θi|µ

(j), C(j))

=
1

Z

(∏

t

e−f(θT
i Xt)dtf(θT

i Xt)
ni(t)

)
e−

1
2
(θi−µ(j))T (C(j))−1(θi−µ(j));

the first and second moments of these posterior distributions may be approximated via any
of our standard tools (Laplace approximation, expectation propagation, Monte Carlo, etc.).
See (Behseta et al., 2005) (and Fig. 6) for details of a Monte Carlo implementation of a
closely related model (though note that (Behseta et al., 2005) employed a “fully Bayesian”
approach — i.e., the parameters were integrated out, instead of maximized, as in the EM
method described here).

9 Example: Latent-variable models of overdispersion and common-
input correlations in spike counts

We have spent a great deal of time discussing generalized linear models for spike trains. For
concreteness, let’s consider our usual model, in which the spike count ni is Poisson distributed,
with rate f(Xiθ)dt. The only source of variability in this model, given the covariate X and
the parameter θ, is in the Poisson response. Of course, in reality there are many factors
influencing neuronal variability, and it seems overly crude to lump all of these effects together
in this single Poisson output distribution (Brockwell et al., 2007). In addition, the Poisson
assumption ties together the mean and variance of the response (since the mean and variance
of ni are equal given Xiθ), which greatly reduces the flexibility of this model (Shoham et al.,
2005). Finally, it has been argued (Nykamp, 2005; Nykamp, 2007; Kulkarni and Paninski,
2007; Vidne et al., 2009; Yu et al., 2009b; Santhanam et al., 2009) that the GLM framework
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inappropriately models correlations in neural populations: recall that in the multineuronal
GLM setting, any observed correlations are modeled with spike-coupling terms that reflect
direct connections between the subset of neurons that happened to be observed during a given
experiment. Instead, “common input” (from the majority of neurons that we do not observe
during any typical experiment) will typically play a much more important role in determining
correlation structure.

Thus, it seems reasonable to include an additional source of variability in our basic GLM.
As a first step, let’s consider a model of the form

ni ∼ Poiss[exp(Xiθi + ǫi)dt], (6)

where we have introduced the latent variable ǫ and chosen f(.) = exp(.), for concreteness.
(This is a special case of what is known as a “random effects” model in the statistics literature.)
For simplicity, let the latent variable be Gaussian, ǫ ∼ Nµ,C . After a rescaling, this model
can be expressed in the simpler form

ni ∼ Poiss[exp(Xiθi + ǫi)];

we have simply shifted the mean of ǫ by log dt here.
To derive an EM algorithm for µ and C, we proceed exactly as in the previous section; the

latent-Gaussian and observed-Poisson structure of these models are mathematically equiva-
lent. (The EM approach turns out to be relatively inefficient for the estimation of θi; we will
address this issue in more depth below.)

Let’s turn now to the question of initialization of our estimates µ̂ and Ĉ in this model. One
simple approach is to use the method of moments: we observe the empirical values of moments

such as Ê(ni), ̂Cov(~n), and ̂E(Xini), and set the paramters (θ, µ, C) so that the expectations

of these functions of the data given (θ, µ, C) match the observed values: i.e., choose ̂(θ, µ, C)

as the solution to the equations E(ni|θ, µ, C) = Ê(ni), Cov(ni|θ, µ, C) = ̂Cov(ni), and so on.
We start by initializing θ. It turns out that a good deal of our standard theory for

estimating θ still applies here. Let’s examine the marginal firing rate

λ(z) = Eǫf(z + ǫ) =

∫
p(ǫ)f(z + ǫ)dǫ,

where z abbreviates Xθ. Now it is easy to show, using standard properties of convex and log-
concave functions (Paninski, 2005), that if f(z) is a convex, log-concave, increasing function
of z, then so is Eǫf(z + ǫ). This in turn implies that if the distribution of the covariate Xi is
elliptically symmetric, then we may consistently estimate θi via either the standard covariance-
adjusted spike-triggered average (Paninski, 2003) (as discussed in an earlier chapter) or by
the maximum likelihood estimator for the GLM parameter, using the (incorrect) nonlinearity
f(.) to compute the likelihood (Paninski, 2004), even when the correct values of µ and C are
unknown (again, recall the discussion in the GLM chapter). In either case, consistency holds
up to a scalar constant; i.e., given enough data, either of our standard STA or GLM methods
produces an estimate θ̂i which converges to a scalar multiple of θi.

So, given this initial estimate for the vector parameters {θi}, we need to estimate µ, C,
and a set of scalar gain factors {ai} corresponding to each vector parameter {θi}. We start
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with {ai}. First, we write down the moments

E(ni) = Ez,ǫ exp(aizi + ǫi)

= Ezi
exp(aizi)Eǫi

exp(ǫi)

= Mi(ai)ri.

and

E(zini) = Ez,ǫ [exp(aizi + ǫi)zi]

= Ezi
[exp(aizi)zi]Eǫi

exp(ǫi)

=
d

dai
Mi(ai)ri,

where we have used the independence of zi and ǫi and made the abbreviations Mi(ai) for the
moment-generating function

Mi(ai) = E[exp(aizi)]

and ri for the Gaussian expectation

ri = E[exp(ǫi)] = exp

(
µi +

1

2
Cii

)
.

Note that Mi(ai) may be computed directly from the known distribution of z; for example, in
the case that z is Gaussian, zi ∼ Nµz ,σ2

z
, we may compute directly Mi(a) = exp(aµz+a2σ2

z/2).
Now we see that we may simply divide these two equations to find that

E(zini)

E(ni)
=

dMi(ai)/dai

Mi(ai)
=

d

dai
log Mi(ai).

This equation has a unique solution in ai, due to the strict convexity of the cumulant-
generating function log Mi(ai) (Schervish, 1995); given ai, we see that we have a unique
solution for ri as well.

To obtain C (and therefore µ, given ri), we use the standard formula for the variance of
a mixture:

Cov(~n) = Ez,ǫCov(~n|z, ǫ) + Covz,ǫE(~n|z, ǫ) (7)

We evaluate each term in turn:

Ez,ǫCov(~n|z, ǫ) = Ez,ǫdiag[exp(aizi + ǫi)] = diag[E(ni)], (8)

and

[Covz,ǫE(~n|z, ǫ)]ij = Ez,ǫ [E(ni|zi, ǫi)E(nj |zj , ǫj)] − Ez,ǫ [E(ni|zi, ǫi)] Ez,ǫ [E(nj |zj , ǫj)]

= Ez,ǫ [exp(aizi + ǫi) exp(ajzj + ǫj)] − Ez,ǫ [exp(aizi + ǫi)] Ez,ǫ [exp(ajzj + ǫj)]

= Ez [exp(aizi + ajzj)] Eǫ [exp(ǫi + ǫj)] − E(ni)E(nj)

= Mij(ai, aj) exp(µi + µj +
1

2
(Cii + Cjj + 2Cij)) − Mi(ai)riMj(aj)rj

= Mij(ai, aj)rirj exp(Cij) − Mi(ai)Mj(aj)rirj

= rirj [Mij(ai, aj) exp(Cij) − Mi(ai)Mj(aj)] , (9)
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where we have introduced an additional abbreviation for the pairwise moment-generating
function

Mij(ai, aj) = Ez[exp(aizi + ajzj)].

Now, given ai and ri, equation (9) gives us a unique solution for Cij , and therefore µi

as well. Note that in practice there is no guarantee that the resulting estimate Ĉ is positive
semidefinite. (Macke et al., 2009) discuss some approaches to project C onto the set of
positive semidefinite matrices; one crude but straightforward approach is simply to set any
negative eigenvalues of Ĉ to zero, or alternately to add −λminI to Ĉ, where λmin is the
bottom eigenvalue of Ĉ.

Thus, to summarize, we can compute the first and second moments in model (6) explicitly
as a function of the model parameters ({ai}, µ, C), and by inverting this function we obtain a
good initialization for these parameters. Similar computations (involving correlated Gaussian
random vectors mapped through a nonlinear function) have been exploited in a number of
recent papers (Dorn and Ringach, 2003; de la Rocha et al., 2007; Krumin and Shoham, 2008;
Macke et al., 2009); see also (Niebur, 2007) for a different approach to sampling spike counts
with a predefined correlation structure.

It is also worth noting that equations (7) and (8) together imply that

V (ni) = [Cov(~n)]ii ≥ E(ni),

i.e., the spike count variance is always at least as large as the mean in this model, consistent
with the overdispersion observed in spike counts in visual cortex (Tolhurst and Dean, 1983;
Softky and Koch, 1993; Shadlen and Newsome, 1998).

Another interesting application is described in (Santhanam et al., 2009; Yu et al., 2009a).
The basic idea is that, if the covariance matrix of the latent variable ~ǫ is of low rank, then
equation (6) can be interpreted as a generalized factor analysis model (Tipping and Bishop,
1999): our observations may be thought of as noise-contaminated samples from a distribution
which is supported on a low-dimensional subspace spanned by Xiθi plus the eigenvectors
of the hidden covariance matrix C. (Santhanam et al., 2009; Yu et al., 2009a) discuss how
related models can be used to reduce the effective dimensionality of the observed count vector
~n, using approximate EM methods to fit the parameters of the hidden random vector ~ǫ.

So far, we have ignored the question of how best to model temporal correlations in the
spike counts ni; we will address this important issue, and discuss efficient maximum-likelihood
methods for estimating θ in the presence of temporally-correlated noise, in the chapter on
state-space techniques.

10 Example: Iterative proportional fitting

Kass will fill in something here...

11 The E-step may be used to compute the gradients of the
marginal likelihood

It turns out that the problem of computing the gradients of the likelihood in the latent-
variable setting is intimately related to the E-step, as can be seen by simply expanding these
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gradients via Bayes’ rule (Salakhutdinov et al., 2003):

∇θ log p(y|θ)

∣∣∣∣
θ=θ′

= ∇θ

(
log

∫
p(y, z|θ)dz

) ∣∣∣∣
θ=θ′

=
1

p(y|θ′)
∇θ

(∫
p(y, z|θ)dz

) ∣∣∣∣
θ=θ′

=

∫
p(y, z|θ′)

p(y|θ′)
∇θ log p(y, z|θ)

∣∣∣∣
θ=θ′

dz

=

∫
p(z|y, θ′)∇θ log p(y, z|θ)

∣∣∣∣
θ=θ′

dz

= ∇θQ(θ, θ′)

∣∣∣∣
θ=θ′

,

assuming that the necessary interchanges of derivative and integral may be justified. Since∫
p(z|y, θ′)∇θ log p(y, z|θ)dz is typically easy to compute once the E-step is complete, we may

therefore compute the gradient fairly easily. We may observe this effect graphically in Fig. 2:
since the auxiliary function Q meets the objective function L at θ, and since the auxiliary
function is a lower bound on the marginal likelihood, if both functions are continuously
differentiable then it is geometrically clear that the gradients of these functions must match
at θ. (But note that the second derivatives typically do not match, as discussed below.) This
relationship between the EM and gradient-based updates may be exploited to develop more
efficient hybrid optimization algorithms (Salakhutdinov et al., 2003). We will see a variety of
examples in the next few chapters.

12 The convergence rate of the EM algorithm depends on the
“ratio of missing information”

As we mentioned above, EM generally takes more steps to converge than does direct Newton-
Raphson maximization of the marginal loglikelihood (Meng and Rubin, 1991; Salakhutdinov
et al., 2003). (Of course, the point of the EM trick is that in many cases it may be much
easier to compute an EM step than a direct Newton step on the marginal loglikelihood.) The
EM convergence rate turns out to depend critically on a natural measure of the information
contained in the missing data, as we explain now.

To begin, let’s take a closer look at Newton’s method here; we iterate

θ(i+1) = θ(i) − H−1
θ(i)∇θ(i) ,

where Hθ and ∇θ denote the Hessian and gradient, resepctively, of the marginal loglikelihood
evaluated at θ. (Of course, it may be difficult to compute Hθ in practice, but in this section
we will ignore these highly problem-dependent computational issues, to instead focus on the
convergence rate as a function of iteration count, not wall clock time.) Let’s subtract the
optimal value θ0 from both sides to get a sense of how the error θ(i)−θ0 behaves as a function
of the iteration i:

θ(i+1) − θ0 = θ(i) − θ0 − H−1
θ(i) (∇θ(i) −∇θ0) .
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(We have also used the fact that ∇θ0 = 0.) Now we massage this a bit:

θ(i+1) − θ0 = θ(i) − θ0 − H−1
θ(i) (∇θ(i) −∇θ0)

= θ(i) − θ0 − H−1
θ(i)

(
Hθ0(θ

(i) − θ0) + O(||θ(i) − θ0||
2
2)
)

= θ(i) − θ0 −
(
Hθ0 + O(||θ(i) − θ0||2)

)−1 (
Hθ0(θ

(i) − θ0) + O(||θ(i) − θ0||
2
2)
)

= θ(i) − θ0 −
(
θ(i) − θ0

)
+ O(||θ(i) − θ0||

2
2)

= O(||θ(i) − θ0||
2
2).

We have used a Taylor expansion of ∇θ in the second line, and of Hθ in the third line (i.e., we
have assumed that the marginal loglikelihood is sufficiently smooth to justify this expansion),
and assumed that Hθ0 is negative definite. We conclude that Newton’s method converges
quadratically under these assumptions: once we are sufficiently close to the true optimum θ0

that our Taylor approximations are accurate, each Newton iteration effectively squares the
precision of our estimate (i.e., if ||θ(i) − θ0||2 = 10−x, where x is the number of significant
figures, then ||θ(i+1) − θ0||2 ≈ 10−2x, doubling our significant digits).

Now each EM step, at least locally, can be written in very similar form. If we are suffi-
ciently close to the optimizer θ0, then each M-step can be approximated with just a single
Newton-step to optimize the auxiliary function Q(θ, θ′):

θ(i+1) = θ(i) − H−1
i ∇θ(i) .

Here ∇θ(i) is exactly as in the Newton step (recall our discussion of the gradients in the preced-
ing section), but the Hessian term is different: Hi = ∇∇θQ(θ, θ(i))|θ=θ(i) . Now, as discussed
above, since Q is a lower bound on the marginal loglikelihood, we know that Hi ≤ Hθ(i) (in
the sense that Hθ(i) − Hi is positive semidefinite); thus, qualitatively, each M-step entails a
smaller step-size than does a Newton step on the full marginal loglikelihood. Quantitatively,
if we repeat the steps of our derivation of the Newton convergence rate above, we arrive at

θ(i+1) − θ0 = θ(i) − θ0 − H−1
i

(
Hθ0(θ

(i) − θ0) + O(||θ(i) − θ0||
2
2)
)

=
(
I − H−1

i Hθ0

)
(θ(i) − θ0) + O(||θ(i) − θ0||

2
2)

in the EM case. Thus, if Hθ(i) − Hi is positive definite, then

θ(i+1) − θ0 ≈
(
I − H−1

i Hθ0

)
(θ(i) − θ0)

to the highest order, entailing a qualitatively slower, linear rate of convergence: we only add a
fixed number of digits of precision with each EM iteration, instead of doubling our significant
digits with each full Newton iteration.

Now, qualitatively speaking, the smaller the matrix (I − H−1
i Hθ0), the faster EM con-

verges. Since Hi converges to H∞ ≡ (∇∇θQ(θ, θ0)|θ=θ0)
−1 Hθ0 , we may summarize the local

convergence rate with a single matrix, (I − H−1
∞ Hθ0). If we rearrange this slightly,

I − H−1
∞ Hθ0 = H−1

∞ (H∞ − Hθ0),

we can see that this matrix has a natural interpretation as a ratio of missing information:
−(H∞ − Hθ0) is the Fisher information we have lost by not directly observing the missing
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data z. (Remember, Hθ0 is the Hessian of the full marginal loglikelihood at θ0, and H∞ is the
Hessian of our lower bound on the marginal loglikelihood at the same point.) In the limit of
small missing information, (H∞−Hθ0) → 0, we recover the quadratic convergence rate of the
full Newton algorithm, whereas in the limit of large missing information, EM converges very
slowly and Newton-type methods (including conjugate-gradient methods, with the gradient
computed as discussed in the preceding section) become much more attractive (Salakhutdinov
et al., 2003).

We have emphasized that the curvature of the auxiliary function Q(.) is sharper than the
curvature of the marginal loglikelihood function, which leads to a smaller effective step-size in
the EM algorithm than in the full Newton algorithm. Another important consequence is that
the limiting inverse curvature −H−1

∞ of Q(θ, θ0) generally underestimates our uncertainty
about θ̂; remember, the standard Laplace approximation says that Cov(θ̂) ≈ −H−1

θ0
, and

−H−1
θ0

≥ −H−1
∞ . The simplest way to think about this is that Cov(θ̂) includes two sources

of uncertainty: 1) our posterior uncertainty about θ given the complete data (y, z), and 2)
our posterior uncertainty about z. The auxiliary function Q(.) is based on a conditional
expectation over z, and therefore effectively captures this first component of our uncertainty
but ignores the important second component, which corresponds exactly to the “missing”
information (Meng and Rubin, 1991).
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