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Neural receptive fields are dynamic in that with experience, neurons
change their spiking responses to relevant stimuli. To understand how
neural systems adapt their representations of biological information, anal-
yses of receptive field plasticity from experimental measurements are
crucial. Adaptive signal processing, the well-established engineering dis-
cipline for characterizing the temporal evolution of system parameters,
suggests a framework for studying the plasticity of receptive fields. We
use the Bayes’ rule Chapman-Kolmogorov paradigm with a linear state
equation and point process observation models to derive adaptive fil-
ters appropriate for estimation from neural spike trains. We derive point
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process filter analogues of the Kalman filter, recursive least squares, and
steepest-descent algorithms and describe the properties of these new fil-
ters. We illustrate our algorithms in two simulated data examples. The
first is a study of slow and rapid evolution of spatial receptive fields in
hippocampal neurons. The second is an adaptive decoding study in which
a signal is decoded from ensemble neural spiking activity as the recep-
tive fields of the neurons in the ensemble evolve. Our results provide
a paradigm for adaptive estimation for point process observations and
suggest a practical approach for constructing filtering algorithms to track
neural receptive field dynamics on a millisecond timescale.

1 Introduction

Experience-dependent plasticity has been well documented in a number
of brain regions in both animals and humans (Kaas, Merzenich, & Kil-
lackey, 1983; Merzenich, Nelson, Stryker, Cyader, Schoppmann, & Zook,
1984; Donoghue, 1995; Weinberger, 1993; Pettet, 1992; Jog, Kubota, Connolly,
Hillegaart, & Graybiel, 1999). In rats, for example, place cells recorded in the
CA1 region of the hippocampus change their receptive field location, scale,
and temporal firing characteristics as the animal explores familiar environ-
ments (Mehta, Barnes, & McNaughton, 1997; Mehta, Quirk, & Wilson, 2000;
Frank, Eden, Solo, Wilson, & Brown, 2002). Similarly, the firing properties
of neurons in the primary motor cortex of primates change with the load
against which the animal must exert force (Gandolfo, Li, Benda, Schioppa,
& Bizzi, 2000; Li, Padoa-Schioppa, & Bizzi, 2001). Characterizing this re-
ceptive field plasticity is important for understanding how neural activity
represents biological information.

To study the plasticity of receptive fields, we turn to adaptive signal
processing, a well-established engineering discipline for characterizing the
temporal evolution of system parameters (Solo & Kong, 1995; Haykin, 1996).
Several well-known filtering algorithms that serve this purpose, such as the
Kalman filter, recursive least-squares, and steepest-descent algorithms, fall
into a class of filters that can be derived from Bayesi rule and the Chapman-
Kolmogorov equations. But because these algorithms require continuous-
valued measurements, they are of limited utility in the analysis of neu-
ral plasticity, where the spike train observations are point processes. We
previously introduced a steepest-descent point process adaptive filter that
used spike train measurements to analyze neural plasticity (Brown, Nguyen,
Frank, Wilson, & Solo, 2001). This adaptive filter was derived from an in-
stantaneous log-likelihood criterion function and was used in a detailed
study of receptive field plasticity in hippocampal CA1 and entorhinal cor-
tical neurons (Frank et al., 2002) to track the evolution of these receptive
fields on a millisecond timescale. Those analyses suggested a number of as-
pects of point process filtering for further development. In particular, those
filters used a static learning rate and did not allow calculation of confidence
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bounds for the parameter estimates. Furthermore, the relation of the point
process filters and well-established adaptive filters for continuous-valued
data was not discussed.

Here we extend our point process adaptive filtering framework by de-
riving a new set of filters using the Bayesi rule Chapman-Kolmogorov
paradigm with a linear state equation and point process observation mod-
els. This extends the derivation in Brown et al. (2001) and allows us to derive
point process analogues of the Kalman filter, recursive least squares, and
steepest-descent algorithms. We discuss the properties of the new filters
and illustrate their performance in two simulated data examples. The first
is a study of both linear and jump evolution of place receptive fields in
hippocampal neurons. The second is an adaptive decoding study in which
a signal is decoded from ensemble neural spiking activity as the receptive
field properties of the neurons in the ensemble evolve and this evolution is
simultaneously estimated.

2 Theory

2.1 The Conditional Intensity Function. Given an observation interval
(0, T], let N(¢) be the counting process giving the total number of spikes
fired by a given neuron in the interval (0, ¢], for t+ € (0, T]. A stochastic
point process representing neural spike data can be characterized by its
conditional intensity function, A(t | x(t), 8(¢), H(t)), where x(t) is a vector
representing the biological signal to which the neural system is tuned, 6(f)
is a vector representing the tuning function parameters for this neuron, and
H(t) denotes the history of the spiking process and the biological signal
up to time # (Snyder & Miller, 1991). This conditional intensity function
defines the neuron’s instantaneous firing rate in terms of the instantaneous
probability of spiking as

Mt x(®), (), H(t))

. Pr(N(t+ At) — N(@) = 1| x(b), 0(t), H(t))
= lim .

2.1
At—0 At 1)

Thus, the probability of the neuron’s firing a single spike in a small interval
[t,t + At) can be approximated as A(f | x(t), (¢), H(t)) At. This conditional
intensity function is a history-dependent generalization of the inhomoge-
neous Poisson rate function (Daley & Vere-Jones, 1988).

Here, we switch from a continuous time to a discrete time framework
and present our methods as recursive algorithms rather than as differential
equations in order to simplify ensuing calculations. The observation inter-
val can be partitioned into {i‘k},If:0 and individual time steps represented by
Aty =t — ty—1. The continuous-valued state, parameter, and firing history
functions defined above are the same in discrete time, but are now indexed
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by an integer k representing the associated time step in the partition. For ex-
ample, we use xi for x(#;), Ni for N(#), and so forth. ANy = Ny —N_1 is then
the new spiking information observed during the time interval (t;_1, #]. If
Aty is sufficiently small, then the probability of more than one spike occur-
ring in this interval is negligible. In that case, ANy takes on the value 0 if
there is no spike in (fx—1, t¢] or 1 if there is a spike. For this reason, we refer
to ANy as the spike indicator function for the neuron at time #.

We let ANy = [ANf1, ..., ANi] denote the ensemble spike observations
up to time t;. For a fine partition, this is the sequence of Os and 1s that is
typically used to represent a spike train in discrete time. To simplifynotation,
we aggregate all of the history that is pertinent to the firing probability at #;
into a common term Hk = [01:]{_1, X1:k» Nl:k—l]-

2.2 Derivation of the Point Process Adaptive Filter. We assume that 0
is a time-varying parameter vector to be estimated at each discretized point
in time. To develop an adaptive filter, a recursive expression for 8y is derived
in terms of its previous value and the state and spiking histories. Therefore,
estimates of 6, will be based on its posterior density, conditioned on the set
of past observations, p(6x | ANy, Hy). This posterior density evolves with
time and with each observation. Tracking this evolution allows for real-time
estimation of the parameters of the conditional intensity function based on
all of the spiking data observed up to the current time.

2.2.1 The System and Observation Equations. We define the system equa-
tion as a set of parameter vectors with linear evolution processes and gaus-
sian errors,

011 = FOy + 1y, (2.2)

where Fy is a system evolution matrix and n is a zero-mean white-noise
process with covariance matrix Q. If 8y and 7, have gaussian distributions,
then each future 8, will also have a gaussian distribution with its own mean
and variance.

The second essential component for the construction of a recursive es-
timation equation is the likelihood or observation model, p(ANj | 0y, Hy).
This model defines the probability of observing spikes in the interval (#;_1,
tr], based on the current state of the system and the past spiking informa-
tion. From the conditional intensity function in equation 2.1, we obtain an
expression for the probability of observing a spike in the interval (f;_1, #],
Pr(AN;y) = [A(t | Ok, HOAEIAN 1 — At | Ok, Hp) At ] 2N + 0(A). For
small values of Aty, this Bernoulli probability expression is well approxi-
mated as

Pr(ANy spikes in (fx—1, t¢] | Ok, Hy)
= exp(ANilog(r(ty | O, Hp) Aty) — A(te | Ok, Hp) Aty) (2.3)
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(Brown, Barbieri, Eden, & Frank, 2003). Bayes’ rule can be used to obtain
the posterior density for the parameter vector at time #; as a function of a
prediction density of the state at time #; given the observations only up to
time t;_1, and the probability of firing a spike in the interval (f;_1, t],

p(ANg | 0, H)p( | Hy)

0, | ANy, Hy) =
p@r | ANy, Hy) (AN; | Hp

2.4)

The first term in the numerator of equation 2.4 is the likelihood in equa-
tion 2.3, and the second term is the one-step prediction density defined by
the Chapman-Kolmogorov equation as

p@ | Hy) = /P(Gk | Or—1, HOp(B_1 | ANk_1, Hi_1) d0;_1. (2.5)

Equation 2.5 has two components, p(0y | 8x_1, Hy), given by the state evolu-
tion model in equation 2.2, and p(6x—1 | ANx—1, Hi_1), the posterior density
from the last iteration step. The denominator in equation 2.4 defines a nor-
malizing factor that ensures that the posterior distribution will integrate
to1l.

Substituting equation 2.5 into equation 2.4 yields the recursive expression
for the evolution of the posterior density of the time-varying parameter
vector,

p(Ox | ANk, Hp) = At | O, H AN exp(—a(tx | Ok, Hi) Aty)

5 S POk | 61, Hp(O_1 | ANk_1, Hy_1) dO_1

. (2.6)
p(AN; | Hy)

Equation 2.6 is the exact posterior density equation. It allows us to compute
the evolution of the density of the state vector, conditioned on all the spike
observations made up to that time. There are a number of ways to proceed
in evaluating equation 2.6, depending on the desired balance between accu-
racy and computational efficiency. In this letter, a gaussian approximation
is made to this posterior distribution at each point in time. This leads to a
simple algorithm that is computationally tractable as the dimension of the
parameter vector increases.

By assumption, the state evolution in equation 2.2 has a gaussian random
component, so that p(0 | 8x_1) is a gaussian function in the variable 6 —
0r—_1. If the posterior density at the last time step is approximated by a
gaussian, then equation 2.5 is the convolution of two gaussian curves, and
hence the one-step prediction distribution, p(6y—1 | Hy), must be gaussian
itself.

Let Ox—1 = E[0; | Hi] and Wy—1 = var[8; | Hi] be the mean and
variance for the one-step prediction density and Oy = E[6; | ANk, Hi]
and Wy = var[0; | AN, Hi] be the mean and variance for the posterior
density. The goal in this derivation is to obtain a recursive expression for the
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posterior mean, By, and the posterior variance, Wy, in terms of observed
and previously estimated quantities.

As detailed in the appendix, by writing a quadratic expansion of the log
of the posterior density in equation 2.6 about 8y,_1, the following recursive
algorithm for updating the posterior mean and variance can be obtained,

Orik—1 = FrOr-1k-1, (2.7)
Wik—1 = FWi_1k—1 F + Qx, (2.8)
_ _ dloghr’ dlog
ot (252 o (25
W) W1~ + 26, [AAk] 70,
9 logk]
— (AN — AAL) s (2.9)
30,00 B s
dlogr\’
Ok = Oxje—1 + Wik |:< ] ) (ANg — )LAtk)i| , (2.10)
96y Ok

where, for simplicity, A denotes A (#; | Xk, 8%, Hy) and A and its derivatives are
evaluated at Oy),_1. Equations 2.7 through 2.10 comprise a recursive point
process adaptive filter. Equations 2.7 and 2.8 are the one-step prediction
equations for the parameter vector mean and covariance, respectively, cor-
responding to the distribution on the left-hand side of equation 2.5, whereas
equations 2.10 and 2.9 are the posterior mean and variance equations corre-
sponding to the distribution in equation 2.4. Because this adaptive estima-
tion algorithm tracks the evolution of a stochastic state or parameter vector
using point process observations, we will refer to it as a stochastic state
point process filter (SSPPF).

2.3 Properties of the Algorithm

2.3.1 Innovations. The term (ANy — A(tx | Okp—1, Hp) Aty) in equation
2.10 is the point process version of the innovation vector from standard
adaptive filter theory (Daley & Vere-Jones, 1988; Haykin 1996; Brown, Frank,
Tang, Quirk, & Wilson, 1998). For short intervals, ANy is the spike indica-
tor function, and A(t | Okjx—1, Hy) Aty is approximately the probability of a
spike in the interval (f¢_1, tx]. Therefore, at each step of the recursive up-
date algorithm, the innovation can be thought of as the difference between
the probability of observing a spike given the current model estimate and
whether one is actually observed. At all observation times when a spike
does occur, the parameter estimates are adjusted to increase the instanta-
neous firing rate estimate, and at all nonspike observation times, they are
adjusted to decrease it. Thus, this adaptive estimation procedure uses infor-
mation from both spiking and nonspiking intervals to compute its receptive
field estimate.
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2.3.2 Learning Rate. Each algorithm uses the innovation vector as the
basic error signal between the instantaneous rate estimate of the receptive
field model and the current spiking activity. The term that modulates the
innovation vector controls the learning rate of the algorithm. This is anal-
ogous to the gain on a standard adaptive filter and is determined by the
choice of a criterion function or the method of derivation (Haykin, 1996).

In the case of the SSPPF, the learning rate is adaptive and is proportional
to the one-step prediction variance. In this manner, itis similar to the Kalman
gain for a standard Kalman filter. As with the Kalman gain, this learning
rate uses the statistical properties of the underlying process to character-
ize the uncertainty of its estimates. One important feature of the standard
Kalman filter is that the recursive update equation for the Kalman gain is
independent of the observations and can therefore be computed prior to
filtering. The posterior variance in equation 2.9, on the other hand, contains
a term relating to the current firing rate estimate and another term relating
to the innovation, neither of which is known in advance, and so it must be
computed during filtering.

2.3.3 Confidence Intervals. Since we estimate the covariance of the pa-
rameter vector at each point in time, we can construct confidence intervals
about the parameter estimates. If the observation and state models are cor-
rect, the 1 — o confidence interval provides bounds that contain the true
parameter value with probability 1 — «. For our gaussian posterior den-
sities, the 99% confidence interval for the ith component of the parameter
vector is given by Qlil K E2A75(Wp) 172, where Wy is the ith diagonal element
of the posterior covariance estimate.

2.4 Related Algorithms. As is true for the Kalman filter, we can derive
two additional filters as special cases of the SSPPF algorithm.

2.4.1 A Point Process Analogue of the RLS Filter. If the state evolution
noise 7y in equation 2.2 is zero, that is, if the state evolution is deterministic
rather than stochastic, then the SSPPF reduces to an analogue of the well-
known recursive least squares (RLS) filter (Haykin, 1996). The resulting
point process algorithm is

Okik—1 = FrOr_1k—1, (2.11)
- _ dlogr’ dlogx
Wit = EWi_1pj1 )7t —5 AAt( )
W) FWi—1j—1Fp) +[< 20, ) [AAt] 20,
leogk]
— (ANg — AAl) . 12
k k 30](80;{ Oir

dlog
00}

) (AN — )»Ai’k)i| . (2.13)

Okjk—1

Oxk = Orjk—1 + Wi [(
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This filter is applicable in situations in which the receptive field parameters
undergo deterministic linear evolution.

2.4.2 A Steepest Descent Point Process Filter (SDPPF). If we replace the
adaptive learning rate term in the posterior state equation by a constant
matrix ¢ and set Fx = I, we can derive a point process analogue of the
method of steepest descent (Haykin, 1996; Brown etal., 2001). This algorithm
eliminates the variance update equations 2.8 and 2.9 and thus becomes

dlogr\’
Ok = Or_13-1 + [8 ( aag ) (ANy — AAfk)} . (2.14)
k Oc—1jk-1
We have kept the
dlog
80k Ok—1jk-1

term in the update equation. This term serves to scale the innovation so that
updates in 6 cause appropriately sized changes in the predicted firing rate.

In order to apply a steepest-descent filter, it is first necessary to choose
an appropriate learning rate matrix. A diagonal matrix is often chosen with
individual elements representing the learning rates of the individual param-
eters. In some cases, a good conjecture for these values can be suggested
by the nature of the coding problem. When a training data set is available
and the values of the parameters are already well estimated, an appropriate
matrix can be estimated either by minimizing some error function over this
data set or running the full SSPPF on the training data set and then aver-
aging the resulting adaptive gain matrix, W = K~} Z,Ile Wy, and using
either this full matrix or just its diagonal terms.

This algorithm is computationally simpler than the SSPPF because it
requires no matrix inversions. What is lost in this simplification is the flex-
ibility associated with an adaptive learning rate, as well as the measure of
uncertainty that the posterior variance estimate provides.

2.5 Goodness-of-Fit Measures. Pointprocess observation modelsbased
on the conditional intensity function offer a framework for measuring the
goodness-of-fit between the model and the observed spike trains. The Kol-
mogorov-Smirnov (KS) statistic is one such measure. As described in Brown,
Barbieri, Ventura, Kass, and Frank (2002), if A(#; | Xk, Ok, Hy) correctly de-
scribes the rate of the process generating the spike train, then the set of
rescaled interspike intervals (ISIs) z; = 1 — exp( fll,l A(u | 6y, Hy)du), where
l; is the time of the ith spike, should be independently distributed according
to a uniform density. The KS statistic is then the maximum absolute devi-
ation between the order statistics of these rescaled ISIs and the cumulative
density of a uniform. It ranges from 0 to 1, with lower values representing
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better fit to the data. To provide meaning to this number, we generally com-
pute the 95% confidence intervals to the KS statistic by 1.36 - N~1/2, where
N is the number of observed ISIs. If the estimated model is sufficiently close
to the one that produced the spike train, then the KS statistic should be less
than this confidence bound with probability 0.95. In addition, in our simu-
lation studies, we compute the mean squared error (MSE) between the true
and estimated parameter trajectories.

3 Applications

3.1 Dynamic Analysis of Spatial Receptive Fields in the CA1 Hip-
pocampal Pyramidal Neurons. In this example, we examine the simulated
response of pyramidal cells in the CA1 region of the rat hippocampus to the
movement of the animal on a linear track. These neurons have place recep-
tive fields in that a neuron fires only when the animal is in certain regions of
space (O’Keefe & Dostrovsky, 1971), and these place fields evolve during the
course of an experiment, even when the animal is in a familiar environment
(Mehta et al., 1997, 2000; Frank, Brown, & Wilson, 2000). In previous work
(Brown et al., 2001), we demonstrated the feasibility of tracking place field
evolution using an SDPPE. In the current analysis of two simulated place
field evolution scenarios, we compare the performance of the SSPPF, the
SDPPF, a pass-by-pass method, and an extended Kalman filter algorithm
using an empirical firing rate estimate.

The receptive field model is identical to the one of our previous analyses
(Brown et al., 2001),

2

At | Or) = exp {ak — M} , (3.1)

20

where x; is the position of the animal on the linear track at time #;, uy is
the center of the place field, o is the scale, exp(«y) is the maximum firing
rate, and 0, = [ ur ox]T. In each of the two evolution scenarios we
studied, the parameter vector evolved from an initial valueof [ n oo =
[log(10) 250 12!/2]to a final value [« u o]so0 = [log(30) 150 20'/?]
over 800 seconds. The values of the initial and final parameter vectors are
based on observed changes in actual hippocampal place field properties
(Mehta et al., 1997, 2001; Frank et al., 2002). In the first evolution scenario,
each parameter evolved linearly, as in Brown et al. (2001). The resulting
receptive field was a slowly evolving gaussian curve that steadily grew
in maximum firing rate and increased in scale, as its center migrated at
a constant velocity. This scenario is consistent with the types of changes
observed when a rat executes a behavioral task in a familiar linear envi-
ronment (Mehta et al., 1997, 2001). In the second scenario, the parameters
remained constant at their initial values for 400 seconds, after which they
jumped instantaneously to their final values, yielding a sudden change in
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the location, scale, and height of the gaussian place field. This evolution sce-
nario is motivated by recent studies of learning in the rat while recording
from the hippocampus that have suggested that place fields can appear or
transform very rapidly (Frank, Stanley, & Brown, 2003).

We simulated the movement of a rat running back and forth along a 300
cm linear track at a speed of 125 cm per second. These position values, along
with the parameter vectors, ), determined the firing rate at each time point
using equation 3.1 under an inhomogeneous Poisson process model. The
spike trains for the linear and jump evolution place fields were generated
using the time-rescaling algorithm in Brown et al. (2002). Figure 1 shows
the simulated spike trains for each of the place field evolution scenarios.

Our goal was to estimate the temporal evolution of the place fields from
the observed spike trains. In order to apply the SSPPF to this problem, we
first define a state model for the evolution of parameter vector. For simplicity,
we used a random walk for the state evolution model of the parameter
vector in equation 2.2 by setting F; = I, letting Q; be the diagonal matrix,
Qi = Diag(lO_S, 1073, 107%),and using a Afy of 20 msec. The covariance
parameters were selected based on the maximum rate of change observed
in actual hippocampal place receptive fields (Mehta et al., 1997; Brown et
al., 2001).

We applied the SSPPF in equations 2.7 through 2.10 with the first and
second derivative terms evaluated as

dlog A _ _
aag =[1 Uk|k2_1(x(tk) = Uk—1) Uk”f’_l(x(tk) — -1, (32)
Ok
32log A
9000’ |,
[o 0 0 ]
=10 _Uk_lkz—l —201513_1(9((&) — Uik-1) | . (3.3)

[0 20,3 () — i)~y (x(t) — puige-1)?

Next, we applied the SDPPF in equation 2.14, letting ¢ be a time-invariant
diagonal 3 x 3 matrix with diagonal elements ¢, = 0.02,¢, = 10,and ¢, =1,
representing the learning rates for the «, 1, and o parameters, respectively.
These parameters were selected by minimizing the mean-squared error be-
tween the true and estimated receptive field parameters over a simulated
training data set.

We also used a pass-by-pass approach, in which a histogram of the spik-
ing activity of the neuron over one back-and-forth pass through the en-
vironment was used to compute a static estimate of the receptive field. To
implement the pass-by-pass method, on each pass we collected the spikes in
1 cm bins and let xp and Ny, give the location and the number of spikes fired
in the bth bin, respectively. The maximum firing rate was computed as ¢ =
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Figure 1: Simulated spiking activity of a rat hippocampal place cell with (A)
linear and (B) jump evolution in place field parameters. The simulated animal
ran back and forth on a 300 cm linear track. The place cells are directional in that
they fire as the animal passes through its place field in one direction but not in
the other (see the insets). Due to the stochastic nature of the spiking activity, the
number of spikes fired can change appreciably from one pass to the next, even
if there is little or no change in the place field.

Tass 13", Ni, the place field center was estimated as u =, Np) 13, %Ny,

and the place field scale factor as 6% = =, Nyt Yoy — [)?N,, where
Tpass is the time required to complete one full back and forth pass. For this
algorithm, there was no continuous time representation of the place field
and therefore no continual updates of the place field estimates. Instead, the
place field parameters were estimated only once, after the rat completed a
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back-and-forth run along the track. Previous analyses of place field plastic-
ity have been conducted with a pass-by-pass method (Mehta et al., 1997,
2000).

To construct the extended Kalman filter, we computed a continuous firing
rate estimate by convolving the observed spike train with a normalized
half-gaussian curve with a fixed width of 0.25 seconds. This convolution
kernel was chosen to preserve the causality of the relation between incoming
spiking activity and the firing rate estimate. The extended Kalman filter was
defined as

Wit = Wi + Qo™

dlogr\’ dlog x
+ |:< ) (AAty) < )] s (3.4)
00 00 O rir
dlogr’
Ok = Or—1jk—1 + Wik [( 50 ) (r(t) — A)Atk] , (3.5)
Ok—1jk-1

where r(t;) was the firing rate estimate (Haykin, 1996). Recent analyses of
neural decoding in motor cortex have used similar rate-based extended
Kalman filters (Wu et al., 2002).

We compared the ability of these four algorithms to track the evolving
receptive fields as estimated from the simulated spike trains for both the lin-
ear and rapid jump evolution scenarios, using three different measures: the
mean-squared error between the true parameters and their estimated val-
ues, the percentage of the time that the true parameter values were covered
by the estimated 99% confidence intervals, and the Kolmogorov-Smirnov
(KS) statistics.

Figure 2 shows examples of the parameter estimates predicted by each
filter for each place field evolution scenario. In the linear evolution scenario,

Figure 2: Facing page. Example of tracking place field parameter evolution with
each of the adaptive estimation and other statistical analysis methods for the
(A) linear or (B) jump parameter evolution scenarios in Figure 1. The estimated
parameter trajectories from each procedure are plotted along with the true pa-
rameter trajectories in the indicated column: pass-by-pass, column 1; extended
Kalman filter (EKF), column 2; steepest descent point process filter (SDPPF),
column 3; and stochastic state point process filter (SSPPF), column 4. The pass-
by-pass method provides only one estimate per pass, while the other three
algorithms provide an estimate at each 20 msec time step. Additionally, the EKF
and SSPPF are plotted with their instantaneous 95% confidence interval (gray
lines above and below the trajectory estimates). The pass-by-pass method tracks
least well the evolution of the place field parameters. Both the EKF and SDPPF
track the parameter trajectories well in the linear evolution scenario but under-
estimate the change in « and p and overestimate the change in o in the jump
evolution scenario. The SSPPF tracks all three parameters well in both scenarios.
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each algorithm tracked each parameter with the correct direction of move-
ment and approximately the correct magnitude of change (see Figure 2A).
In addition, the EKF and SSPPF provided instantaneous variance estimates,
which we used to compute the confidence intervals shown in gray.

The pass-by-pass method gave the most variable parameter trajectory
estimates. This was because on several passes, the actual number of spikes
observed was small, and thus there was little information on which to base
the estimate. Several passes had no spikes, and hence no place field es-
timate could be computed. For the pass-by-pass method, there was also
a lag in tracking the true parameter evolution because it estimated the
parameters only after completing each full pass along the track. For the
EKE SDPPF, and SSPPF, we obtained comparable tracking for each of the
three parameters, with the exception of the EKF tracking of the place field
center, 1, which showed a bias toward overestimation. The confidence in-
tervals were comparable between the EKF and SSPPF algorithms for each
parameter.

In the jump evolution scenario, the pass-by-pass method again per-
formed poorly (see Figure 2B). Its estimates were noisy in both the baseline
condition and after the jump. The EKF showed the same bias as in the lin-
ear evolution scenario, as can be seen in the initial segment of tracking .
Both the EKF and the SDPPF had problems tracking the place field after the
jump. Both algorithms overestimated the change in the place field scale and
underestimated both the changes in the place field center and in its peak
firing rate. Immediately after the jump in the place field parameters, the
first indication that the place field estimate was no longer reasonable came
when the observed firing activity increased drastically in an area where
the place field estimate predicted a near-zero firing rate. There are multi-
ple ways to update the parameters based on these observations. The rate
parameter, «, could increase, causing an increase in the firing everywhere,
the place field width, o, could increase to include the current area of firing,
or the center of the place field, u, could shift. In this example, all three are
occurring simultaneously, but the most prominent effect is due to the field
center shifting. The EKF and SDPPF were unable to determine rapidly the
relative effects of each of these and tended to overweight the learning rate
for ¢ and underweight the rates for & and p.

The SSPPF tracked the place field dynamics in the rapid evolution sce-
nario well. This was because it was the only algorithm that adapted its
learning rate in the proper way to scale the information obtained about each
parameter from the spiking activity. The SSPPF scaled up each of its rela-
tively low learning rates right after the jump, and then scaled them down
rapidly so as to continue to track correctly the again constant parameter
trajectories.

As shown in Table 1, the mean-squared error (MSE) between the true and
estimated place field parameter trajectories was highest in both evolution
scenarios for the pass-by-pass method. Because this algorithm estimated
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Table 1: Summary Analysis of the Adaptive Parameter Estimation of the Place
Receptive Field Dynamics for the Linear and Jump Parameter Evolution Sce-
narios.

Linear Evolution Pass-by-Pass EKF SDPPF SSPPF
MSE a 0.5 0.1 0.03 0.01
m 2200 200 12 60
o 35 2.5 1.1 0.5
Coverage a NA 68 NA 98
of 99% m NA 7 NA 74
confidence o NA 99 NA 99
interval
KS statistic 0.18 0.09 0.057 0.058

Jump Evolution

MSE a 0.4 0.15 0.1 0.04
“w 3000 400 200 50
o 25 10 40 2
Coverage a NA 55 NA 99
of 99% “w NA 15 NA 99
confidence o NA 64 NA 92
interval
KS statistic 0.09 0.22 0.11 0.06

Notes: Each entry is derived from an average of the indicated method be-
ing applied to 10 simulated spike trains. MSE (mean squared error); KS
(Kolmogorov-Smirnov) statistic. The coverage probability is the fraction of
time the 99% confidence intervals for the parameters contained the true
parameter value. If the intervals are correct, they should cover the true
parameter value 99% of the time. The 95% confidence interval on the KS
statistic is 0.044 for the linear evolution scenario and 0.040 for the jump
evolution scenario.

only one place field over a full pass, it required multiple passes before a
reasonable statement about the place field could be made. Hence, it was
difficult to track the place field evolution accurately.

For the linear evolution, the SSPPF gave the lowest MSE for the place
field scale parameter and maximum firing rate parameter trajectories, and
the SDPPF gave the lowest MSE for the place field center trajectory. For
each of these, the lowest MSE was approximately one order of magnitude
smaller than the EKF MSE and two orders of magnitude smaller than that
of the pass-by-pass algorithm. For the jump evolution scenario, the SSPPF
gave the smallest MSE of all the algorithms for each parameter.

Neither the pass-by-pass algorithm nor the SDPPF provided an instan-
taneous variance estimate. Therefore, no measure of confidence could be
ascribed to their trajectory estimates. For the SSPPF and EKEF, the degree to
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which their parameter trajectory estimates remained within the 99% confi-
dence intervals measured how well these algorithms characterized their un-
certainty. In both scenarios, the SSPPF parameter trajectories stayed within
its confidence intervals more than the EKFE. This was especially true for the
place field center, which was in the 99% confidence interval 74% and 99%
of the time for the SSPPFE, but only 7% and 15% of the time for the EKF for
the linear and jump evolution scenarios, respectively.

To assess goodness-of-fit, the observed ISIs were rescaled using the time-
rescaling theorem (Brown et al., 2002) in order to compute the KS statistic for
each algorithm. Figure 3 shows examples of KS plots comparing the cumu-
lative distribution of the transformed ISIs with the cumulative distribution
function of a uniform on the interval [0, 1) for each trajectory scenario for
each of the four estimation strategies. The 95% confidence intervals for the
KS statistic are plotted as gray bounds in each panel in Figure 3. The KS
plots show that both the pass-by-pass and rate-based estimators tended to
predict fewer short ISIs than were observed. The expected ISI for an animal
running through its place field at a constant speed decreased as the o pa-
rameter increased. Therefore, if the estimation algorithm were slow to track
these changes, it would underestimate the probability of shorter ISIs.

For the linear evolution scenario, the SDPPF and SSPPF were equiva-
lent in terms of their KS statistics and significantly better than the pass-by-
pass and EKF algorithms. In the rapid jump scenario, the SSPPF performed
much better than the SDPPF. In this case, the pass-by-pass estimates actu-
ally described the data better than the SDPPEF. This is because even though
the pass-by-pass estimates were very imprecise, they contained no his-
tory dependence and were adjusted to approximate the new place field
in a single pass after the jump. Although this estimate was inaccurate, it

Figure 3: Facing page. Examples of Kolmogorov-Smirnov (KS) plots assessing
goodness-of-fit by comparing the fits of the pass-by-pass, EKF, SDPPF and the
SSPPF to the spike trains from the (A) linear and (B) jump evolution scenarios.
Under the time-rescaling transformation, the cumulative distribution functionis
that of the uniform on the interval [0,1). In each panel, the center 45 degree gray
line represents perfect agreement between the indicated model fit and the spike
train data. The parallel 45 degree blacklines on either side are the 95% confidence
limits. The wiggly black line is the model estimate of the Kolmogorov-Smirnov
plot. For the linear evolution scenario, the KS plots for the pass-by-pass method
and the EKF lie outside the 95% confidence intervals, while the SDPPF and SSPPF
plots lie within the bounds, suggesting that the latter two point process filters
give reasonably good estimates of the observed spiking data for the linear place
field evolution scenario. For the jump evolution scenario, none of the KS plots
was consistently between the 95% confidence intervals. However, the KS statistic
for the SSPPF was much smaller than those from the other three algorithms. This
suggests thatalthoughnomodel describes the observed spiking data completely,
the SSPPF offers a more accurate description than the other three algorithms.
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did not lead to the in-between waiting times predicted by the more slowly
adapting SDPPF and EKF. Nevertheless, the pass-by-pass method had a
larger KS statistic than the SSPPF, which used a more appropriate learning
rate.

In order to reevaluate the choice for the constant learning rate matrix
in the steepest-descent point process algorithm, the average adaptive gain
matrix from the SSPPF over the entire trial, Wk|k = K! Z,Ile Wik, was
computed, and its diagonal terms were compared to the steepest-descent
learning rate. The resulting averaged learning rate parameters were con-
sistently of the same order of magnitude as those obtained by minimizing
the mean squared error of the estimates over a simulated training data set.
Thus, the SSPPF was able to track the parameter trajectories in the jump
evolution scenario better than the SDPPF even though the average magni-
tudes of their learning rates were the same. We conclude that the SSPPF
algorithm’s ability to adapt its learning rate estimate was essential to its
tracking success. Overall, the SSPPF provided the most accurate tracking of
both the linear and jump evolution scenarios.

3.2 A Simulation Study of Simultaneous Adaptive Estimation of Re-
ceptive Fields and Neural Spike Train Decoding. Inthisexample, we show
how to combine an adaptive encoding algorithm with a neural spike train
decoding algorithm in order to reconstruct a signal in the presence of recep-
tive fields that are evolving.

A standard decoding paradigm involves a two-step process (Brown et
al., 1998). First, an encoding step, performed on a subset of the spike data,
is used to characterize the receptive field properties of each neuron in the
ensemble. Then in a separate step, a decoding algorithm uses the receptive
field estimates from the encoding step along with the remaining spiking
activity to reconstruct the signal. This process assumes that the receptive
fields are static during both the encoding and decoding periods.

If the receptive field evolves during the decoding interval, no such sep-
aration between encoding and decoding periods can be made. Instead, the
decoding algorithm must simultaneously update each neuron’s receptive
field estimate and use the updated estimates to reconstruct the signal. This
creates an interdependence between encoding and decoding in that the ac-
curacy of the receptive field estimate depends on the accuracy of the signal
estimate and vice versa.

To study this problem, we examined an ensemble of four simulated neu-
rons responding to a one-dimensional stimulus. We used a notation similar
to that used above to describe the receptive field dynamics of hippocampal
place cells. We added superscripts to denote each neuron in the ensemble.
For illustrative purposes, we regard these simulated cells as motor neurons
and the simulated stimulus as a one-dimensional hand velocity. Our recep-
tive field model consists of a background firing rate modulated by the hand
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velocity, M () = exp(u + ﬁ]{vk), where exp(u) represents the background

firing rate for each neuron in the absence of any movement and ﬁljc repre-
sents for neuron j the modulation in the firing rate due to the arm velocity
vk, where j = 1, ..., 4. This model is conceptually similar to the velocity
and direction tuned motor cortical neural model developed by Moran and
Schwartz (1999), though simplified for a one-dimensional movement.

We allowed both the hand velocity and the modulation parameters to be
time varying. The hand movement velocity was simulated as arandom walk
with a noise variance of 2.5 x 107> at each 1 ms time step. The background
rate for each cell was fixed at exp(u) = 1. The time-dependent tuning func-
tions for the cells in this simulated ensemble are shown as the straight
gray lines in Figure 4. Neurons 1 and 2 had fixed modulation parameters
throughout the 800 second simulation, /3]1 = 3 and /3,3 = —3, respectively.
Neurons 3 and 4 had time-varying modulation parameters given by

0 0 <t <200
ﬁ,f’ = 10.0125(t, — 200) 200 < t; <400 , (3.6)
2.5 400 < t < 800
0 0<t <400
/3;(* = 1 —0.0125(t; — 400) 400 < # < 600 . (3.7)
2.5 600 <t < 800

Thus, initially, only two of the four neurons responded to the hand velocity;
however, by the end of the simulation, all four neurons responded (see
Figure 4C). The goal of this analysis was to decode the hand velocity while
simultaneously tracking the evolution of the receptive field modulation
parameters.

To conduct this analysis, we augmented the state-space of the SSPPF to
accommodate all the receptive field parameter estimates as well as the hand
velocity signal (Ljung & Soderstrom, 1987; Haykin, 1996). That is, the five-
dimensional augmented state vector is defined as 6 = [v /3,} /3,3 /3,3’
/8;{1]’ . The state equation for this system is given by equation 2.2 with F; =
Diag(0.99,1,1,1,1) and Q; = 10> . Diag(2.5,1,1, 1, 1). The derivation of
the SSPPF in the appendix is sufficiently general to allow the analysis of this
ensemble adaptive decoding problem.

From equations A.7 and A.8, the derivatives of the intensity function
with respect to 8 required to define the SSPPF are

Uklk—1 0 0 0
0 Oklk—1 0 0 | » (38)

|
Ok L 0 0 Dkt 0 J
0 0 0 Vklk—1

3
/311|k—1 /313|k—1 Pk ﬁ;cﬁk—l
dlog A
00
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Figure 4: Adaptive-decoding analysis of simulated ensemble neural spike train
activity using the SSPPF algorithm. The true modulation parameter trajectory
is gray in A, C, and E, and the SSPPF estimate is in black. In B, D, and F the
true hand velocity signal is gray and the SSPPF decoding estimate of the hand
velocity signal is black. (A) Adaptive estimation of the modulation parameters
in the two-neuron ensemble consisting of neurons 1 and 2 with true modulation
parameter values of 8! = 3 and g2 = —3. (B) True hand velocity trajectory and
decoded hand velocity trajectory estimated from the spiking activity of the two
neurons in A. (C) Adaptive estimation of the modulation parameters in a four-
neuron ensemble consisting of neurons 3 and 4 with true modulation parameter
values of g} and g}, defined in equations 3.6 and 3.7, respectively, included with
neurons 1 and 2 from A. (D) True hand velocity trajectory and the decoded
hand velocity trajectory estimated from the spiking activity of the four neurons
in C. (E) Adaptive estimation of the modulation parameters of a four-neuron
ensemble consisting of neurons 5 and 6 with modulation parameters ﬂ}f =25
and ﬂf = —2.5, respectively, included with neurons 1and 2 from A. (F) True hand
velocity trajectory and the decoded hand velocity trajectory estimated from the
spiking activity of the four neurons in E.
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log / . . . 3% log )/ .
where 2282 |, s the jth column of equation 3.8, and =28% |, s the

5 x 5 matrix with a 1 in the first row and (j + 1)th column, a 1 in the first
column and (i + 1)th row, and zeros elsewhere.

Figure 4 shows the SSPPF tracking simultaneously the evolution of the
modulation parameter of each of the four neurons (see Figure 4C) while
reconstructing the hand velocity (see Figure 4D). Initially, there were two
neurons with static nonzero modulation parameters, but after 200 seconds,
an additional two neurons began spiking, and their output was used as well
inthe hand velocity reconstruction. The algorithm tracks well the trajectories
of the neurons with static modulation parameters as well as the trajectories
of the modulation parameters of the two new neurons.

To analyze the performance of the simultaneous adaptive estimation (see
Figure 4C) and the decoding (see Figure 4D) with the SSPPF algorithm, we
compared these findings to its performance in adaptive decoding in the
case where there are two neurons with static modulation parameters (see
Figure 4A) and four neurons with static modulations (see Figure 4E). The
two neurons in Figure 4A are neurons 1 and 2 in Figure 4C, whereas the
four neurons in Figure 4E are neuron 1 and neuron 2 in addition to neurons
5 and 6, whose modulation parameters are ﬁ]f =2.5and /8]? = —2.5, respec-
tively. The hand velocity reconstruction is better for the ensemble with four
neurons with static nonzero modulation parameters (see Figure 4F) than for
the two neurons (see Figure 4B). The MSE between the true and estimated
velocity trajectories is 0.01 for the four neurons and 0.038 for the two neu-
rons. By comparison, for the first 200 seconds, the quality of the decoding
and the MSE of 0.041 for the ensemble of adapting neurons in Figure 4C is
comparable to decoding with the two neurons with static modulation pa-
rameters. However, after 200 seconds as the second two neurons begin to
spike and the SSPPF estimates their modulation parameters (see Figure 4E)
and uses their output in the decoding, the quality of the decoding improves
(see Figure 4F) and the MSE decreases. The MSE for reconstruction for the
time between 600 and 800 seconds for the dynamic ensemble is 0.01, similar
to the reconstruction error from four neurons with static modulation pa-
rameters. This example illustrates the feasibility of reconstructing a neural
signal from an ensemble whose receptive fields are evolving.

4 Discussion

We have presented a paradigm for constructing adaptive filters to track
the temporal evolution of neural receptive fields from spike train obser-
vations. Our formulation involves first specifying a probabilistic model of
neural spiking and then combining it with a state evolution model using
the Chapman-Kolmogorov equation in a Bayesian framework to obtain a re-
cursive expression for the posterior distribution of a parameter vector to be
tracked. We constructed a set of adaptive filtering algorithms using a gaus-
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sian approximation to this posterior distribution. These filters extended the
SDPPF that we have already applied in actual neural data analyses (Brown
et al., 2001; Frank et al., 2002; Wirth et al., 2003).

We developed a stochastic state point process filter by taking a quadratic
approximation to the logarithm of the posterior density in equation 2.6.
We did this by expanding the log posterior at t; in a Taylor series about
an arbitrary point, 8 and retaining only terms of order 2 or smaller. By
choosing 6™ to be the one-step prediction estimate, 6y_1, we obtained our
SSPPFE, which is a point process analogue of the Kalman filter. Alternatively,
if we had chosen 8* = 0y, we would have obtained a nonlinear point
process adaptive filter that gives the maximum a posteriori estimate as
used in Brown et al. (1998). Our filter construction provided two additional
adaptive estimation algorithms as special cases: point process analogues
of the RLS and steepest-descent algorithms. Additional algorithms could
be similarly constructed based on alternative probability distributions. One
option is the smoothing distribution, p(6y | x1.x, N1:x), which can be used to
estimate the parameter 6 at time k if all the data from time steps 1 to K > k
have been observed.

Both our SSPPF and EKF use gaussian approximations to the posterior
density at each time point. The EKF computes its gaussian approximationby
linearizing the state evolution and observation equations to yield a gaussian
estimate of the state and observation noise models (Haykin, 1996). In the
SSPPF, we used point process observation models to construct an exact
posterior density update equation, whose solution is then approximated by
a gaussian. The SSPPF maintains the point process description of the neural
spiking and obviates using a gaussian approximation to a spike train model,
an approximation that may be highly inaccurate in neural systems with low
spiking rates.

In order to apply the SSPPF, it is first necessary to specify an observa-
tion model that describes the spiking probability distribution in terms of a
biological signal, a set of receptive field model parameters, and the nature
of the history dependence. The history dependence allows us to construct
non-Poisson neural spike train models. In Frank et al. (2002), we showed
how a history-dependent process could be used to obtain improved pre-
dictions of theta and burst-dependent firing in rodent hippocampus. In
Barbieri, Quirk, Frank, Wilson, and Brown (2001), history dependence was
incorporated into the model by using a change of variables to construct in-
homogeneous gamma and inverse gaussian temporal firing models. These
models can be incorporated into our current framework, as well.

Another essential component for these adaptive filters is the state model
for the evolution of the place field parameters. In our examples, the exact
state model used to simulate the data was not used in the estimation algo-
rithm. In fact, knowledge of the exact state model for neural receptive fields
is not possible at present. It is important, however, to select a model that
encompasses the anticipated quality and degree of change to be tracked. In
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our hippocampal example, we used a random walk model, which is useful
in situations where the expected direction of change of each of the param-
eters is unknown, but the magnitude of change can be estimated. In some
cases, previous research can suggest a more informative system model. For
the example of the rat hippocampus, we could have applied our knowl-
edge that the place field’s center tends to move backward while its height
tends to increase, in order to construct a set of F; matrices that capture
these trends. Additionally, if the form of the model can be specified but the
model parameters are unknown, then the parameters can be estimated us-
ing an expectation-maximization algorithm (Smith & Brown, 2003; Roweis
& Ghahramani, 2000).

The advantages of using point process filters on neural data are high-
lighted in the first example, in which we compared several traditional and
point process adaptive estimation algorithms tracking the evolution of sim-
ulated hippocampal place fields. The pass-by-pass method of estimating the
receptive field by histogramming the spike train over a full pass computes
only a single place field estimate for each pass through the environment.
In contrast, our filters, based on a stochastic parameter evolution model,
allow us to update our receptive field estimates instantaneously, whether
or not a spike was observed. The model-based algorithms impose an im-
plicit continuity constraint on the model place field dynamics, preventing
the large fluctuations in the parameter estimates observed with the pass-
by-pass method from one pass to the next.

The SSPPF maintains adaptive estimates of both the parameter mean and
variance, permitting the construction of confidence intervals about the re-
ceptive field estimates. The one-step variance estimate provides an implicit
learning rate, which allows the filter to track trajectories that vary over mul-
tiple time courses. Finally, as mentioned above, our filters are based on point
process observation models of the spike train, so that data enter the algo-
rithm as a point process. This eliminates the need to construct a separate rate
estimation algorithm, which could lead to biased estimates and erroneous
learning rates, as in the case of the EKF algorithm. The SSPPF was the only
one of these estimation algorithms that had all of these advantages and was
the only one to track place field parameters accurately in both the linear and
jump evolution scenarios.

The second example illustrates a novel application of our adaptive al-
gorithm: the reconstruction of a biological signal from ensemble spiking
activity while the receptive fields of the neurons in the ensemble are evolv-
ing. To do this, we couple adaptive estimation and decoding. Such adaptive
decoding may be necessary for reconstructing signals in neural systems
where the receptive fields are dynamic. For example, during a center-out
reaching task, the preferred direction for MI neurons can change depending
on the load against which the animal is reaching (Li et al., 2001). If the objec-
tive were to reconstruct hand trajectory under these conditions, we would
need to be able simultaneously to track the receptive field evolution and
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to use these estimates to track the intended movement. Another situation
where this application becomes important is when the firing properties of
a population of neurons are changing. This may occur with long-term elec-
trode implants, where some cells stop responding or are lost to the recording
device while the activity of other neurons becomes observable. Both of these
problems are likely to arise with the eventual development of neural pros-
theses (Donoghue, 2002).

In this example, the key to adaptive decoding is the augmented state
space model, which allows us to incorporate into one equation the tem-
poral evolution of the hand trajectory and of each neuron’s receptive field
properties. If the number of neurons in the ensemble is large, it may be com-
putationally more tractable to implement separate adaptive filters in lock
step—one estimating the current state variable from previously estimated
receptive field model parameters and the other updating the model param-
eters using the current state estimate. This approach treats the encoding and
decoding components as separate problems, in much the same way as do
two-step static decoders (Brown et al., 1998).

While our goodness-of-fit tests suggest that the SSPPF algorithm is per-
forming well, a detailed study of the accuracy of the gaussian approxi-
mation we use should be undertaken. This can be studied by computing
the posterior density (see equation 2.6) and the one-step prediction den-
sity (see equation 2.7) using numerical integration or sequential Monte
Carlo methods (Kitagawa & Gersh, 1996; Doucet, de Freitas, & Gordon,
2001). The SSPPF can be used to construct the proposal densities in the
implementation of the sequential Monte Carlo algorithms. The difference
between the Monte Carlo—derived posterior density and the gaussian es-
timate would provide a straightforward measure of the error in the
approximation.

In summary, the point process filtering paradigm we have developed
should be useful to track the dynamics of neural receptive fields across a
wide variety of conditions.

Appendix: Derivation of the Stochastic State Point Process Filter

For the purpose of this derivation, we examine the general situation of an en-
semble of neurons firing simultaneously. For the most part, in the encoding
problems we described, information from individual neurons was studied
independently. However, in the second example and in most decoding or
reconstruction problems, it will be necessary to combine information from
an ensemble of spiking neurons.

We use superscript notation to distinguish the properties of individual
cells. For example, for an ensemble containing C cells, 0}; represents the
parameter vector, Al(f; | X, 0, N14_1) represents the conditional inten-
sity function, and AN}; is the number of spikes fired for the ith cell in the
ensemble.
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The definitions for the means and variances of the one-step prediction
and posterior densities, along with the evolution model, are sufficient to
compute the gaussian one-step prediction probability density, whose mo-
ments are given by,

0;;|k 1= Fia;'{ 1lk=1> (A1)
W;qk , =FW,_ 1k Fl+ Q. (A2)

We call these two equations the one-step prediction equation and one-step
variance equation, respectively. We write the posterior probability density
of the neural activity of the ensemble in the interval (t;_1, f¢], by multiplying
over all neurons the independent probabilities in equation 2.6 and we make
a gaussian approximation:

C ) ) )
p(Ox | AN, Hy) H(Aj(tk | 6] Hp) AN exp(—2/(t | 0], Hy) Aty
=1

1 B : :
= 56 = ) Wiy )™ (0} = O _)

c 1 ' ' ' '
104 1_[ exp <—§(0;< — o;dk)’(w;dk)—l(o;{ — O;dk)) . (A3)
i=1

The firstline in equation A.3 represents the posterior density as a function
of the variable 0}, and the last line is a gaussian approximation to this
function with the parameters 0k|k and wklk still to be determined. We could
expand the first line of equation A.3 in a Taylor series about some point,
drop all terms of third order or higher, and complete a square to obtain an
expression of the form of the second line of equation A.3. Here instead we
present an alternate derivation.

Taking the log of both sides gives

= Z(ak 0L (Wi (0L — 0L = Z AN/ log(3J) — 1At
i=1 j=1
- 5«% bet) Wiy )™ 6 = 0 + R. (A4)

Here, R is a catch-all constant that contains terms relating to the state evolu-
tion statistics and the normalizing constants. We can now differentiate this
expression with respect to 6}, in order to get an equation with only linear
terms,

(Wk|k)_1(0§< - 0;;|k) (wk|k DO - %k—l)

C
-y (M) (AN =2 Aty). (A.5)
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If the gaussian approximation is valid, then this relation should be approx-
imately true for all values of @}. We can therefore choose any specific point
to evaluate this expression. Evaluating at 8} = 0k|k 1 gives

) ) ) C gloeni\ . )
—(W;dk)_l(‘g;qk—l — O = Z [(Tofi—) (AN} — )»]Atk):| . (A6)
k

]:1 9;(\1( 1

Solving for Gilk then gives the posterior state equation,

810 M ~ ;

i
ek\k 1

Differentiating equation A.6 again and evaluating at 8} = Oil w1 gives the
posterior variance equation,

-1 1 3 log A/ ; dlog A
(wklk) ka 1) + Z |:< 30k [A]Atk] T@;;_

21og AJ
3 log . (AS8)

klk—1

— (AN] — Mty

In the case where we observe the firing of only one cell at a time, the sums
in equations A.7 and A.8 simplify to a single term, and the superscripts are
no longer needed.
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