Date | Topic | Reading | Notes |
---|---|---|---|
Jan 19 | Introduction | ||
Jan 26 | Gaussian processes and Bayesian optimization | Loper et al '20 for fast one-d GP inference. Mahsereci and Hennig (2016) on Bayesian linesearch, and Frazier '18 on Bayesian optimization. | See Rasmussen and Williams (2006) for more background on GP regression. Also notes by John Cunningham, Gardner et al '19, and some nice demos by Goertler et al '19 and Agnihotra and Batri '20. |
Feb 2 | Diffusion and transformer models | Sohl-Dickstein et al '15, Ho et al '20, Rombach et al '21, Vaswani et al '17 | Additional applications: Gong et al '22, Li et al '22 |
Feb 9, 16 | LASSO, nuclear norm, and Mone Carlo methods | Efron et al (2004), Friedman et al (2010), Bradley et al (2011), Tibshirani et al (2012), Andrieu et al (2003), Neal (2010) | More reading: Zou et al (2007), Mazumder et al (2010), Bach et al (2011), Boyd et al (2011) |
Feb 16 | Stochastic gradient descent | Bottou et al (2018) | More reading: Wilson et al (2018), Zhang et al (2015) |
Feb 23 | No class | ||
Mar 2 | Expectation maximization and variational inference | Dempster et al (1977), Neal and Hinton (1999), Blei et al (2016) | Generalizations: Knoblauch et al (2022) |
Mar 2 | Interpretable ReLU networks | Sudjianto et al (2020) | |
Mar 9 | 2-minute project idea presentations | ||
Mar 16 | Spring break | ||
Mar 23 | Graph neural networks | Sanchez-Lengeling et al (2021) | |
Mar 30 | Optimal transport | Peyre and Cuturi (2020), Arjovsky et al (2017) | |
Mar 30 | Dirichlet processes | Orbanz (2014) | |
Apr 6 | Graphical models; dynamic programming; message passing | Rabiner tutorial, Wainwright lecture notes | Background: Wainwright and Jordan (2008), MP and AMP notes by A. Maleki, Sarkka and Garcia-Fernandez (2019) on parallelizing HMM inference, Schniter et al (2016), Rush and Venkataramanan (2018) on VAMP and AMP |
Apr 6 | RNNs for chaotic dynamics | Mikhaeil et al '22 | |
Apr 13 | No class | ||
Apr 20 | Project presentations |