
Discrete Optimization

Rahul Mazumder
Columbia Statistics

Computational Statistics

March 27, 2014

R. Mazumder Discrete Optimization 1/ 45



I convex optimization methods are (roughly) always global,
always fast

I non-convex optimization is typically much harder — one
needs a compromise

I Use local optimization methods — fast but not global, no
certificate of global optimality
(few exceptions)

I Global Optimization methods — get global solutions and
certify it. Often obtaining a global solution is fast. But
certifying that it is a global solution takes time...
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Branch and Bound

I A non heuristic method for finding global solutions for
non-convex problems.

I Basic idea is “divide and conquer”

I The original problem is prohibitively large, so we divide it into
smaller sub-problems, which are “solved” (conquered) — this
is repeated till all sub-problems have been “conquered”

I Dividing:
Partition the feasible solutions into smaller and smaller subsets

I Conquering:
— provide a bound for the best solution in the subset
— discard the subset if you can prove that the subset cannot
obtain an optimal solution

I Let us consider a general framework...

R. Mazumder Discrete Optimization 3/ 45



Unconstrained non-convex minimization

Task Find global minimum of a function f : <m 7→ < over a
m-dimensional rectangle QIN to some prescribed accuracy.

I For any rectangle Q ⊂ QIN we define Φmin(Q) = infx∈Q f (x)

I global optimum value is f ∗ = Φmin(QIN)
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Lower and Upper bound functions

I We will use lower and upper bound functions ΦLB and ΦUB

that satisfy for any rectangle, Q ⊂ QIN

ΦLB(Q) ≤ Φmin(Q) ≤ ΦUB(Q)

I bounds must become tight as rectangles shrink, i,e.,

∀ε > 0∃δ > 0∀Q ⊂ QIN , size(Q) ≤ δ =⇒ ΦUB(Q)−ΦLB(Q) ≤ ε

where, size(Q) is the diameter (length of the longest edge of
Q)

I to be practical, ΦUB(Q),ΦLB(Q) should be easy to compute.
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Branch and bound algorithm

1. compute lower and upper bounds on f ∗

— set L1 = Φlb(QIN) and U1 = ΦUB(QIN)
— terminate if U1 − L1 ≤ ε

2. partition (split) QIN into two rectangles QIN = Q1 ∪ Q2

3. compute ΦUB(Qi ) and ΦLB(Qi )

4. update lower and upper bounds on f ∗

— update lower bound as L2 = min{ΦLB(Q1),ΦLB(Q2)}
— update upper bound as U2 = min{ΦUB(Q1),ΦUB(Q2)}
— terminate if U2 − L2 ≤ ε

5. refine partition by splitting Q1 or Q2 and repeat steps 3,4
Note: At stage k we have:
Lk = mink

i=1 ΦLB(Qi ) Uk = mink
i=1 ΦUB(Qi )
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Convergence analysis of branch and bound

I number of rectangles in partition Lk is k (without pruning)

I total volume of these rectangles is vol(QIN) so:

min
Q∈Lk

Vol(Q) ≤ Vol(QIN)

k

I so for k large, at least one rectangle has small volume

I need to show that small volume implies small size

I this will imply that one rectangle has U − L small

I hence Uk − Lk is small
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Convergence analysis of branch and bound

I condition number of rectangle Q = [l1, u1]× . . .× [ln, un] is:

cond(Q) =
maxi (ui − l1)

mini (ui − li )

I if we split rectangle along longest edge, we have

cond(Q) ≤ max{cond(QIN), 2}

I If Q is rectangle. then:

Vol(Q) ≥
(

2size(Q)

cond(Q)

)m

and so, size (Q) ≤ 1
2Vol(Q)

1
m cond(Q)

therefore if cond(Q) is bounded and vol(Q) is small then
size(Q) is small.

R. Mazumder Discrete Optimization 8/ 45



Example of branch and bound

I Let us consider a simple example, illustrating a branch and
bound algorithm in action.

I We will consider a Linear program where some of the variables
are continuous and some are integers (MILP)

I We will see that MILPs have very nice structures...
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Example

Consider the following problem:

maximize 5x1 + 8x2

subject to x1 + x2 ≤ 6

5x1 + 9x2 ≤ 45

x1, x2 ∈ Z+

where, optimization variables are x1, x2 and Z+ denotes the set of
non-negative integers.
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Example
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Example

I If the LP relaxation has integral optimal solution x∗, then we
are done

I In this case, (x1, x2) = (2.25, 3.75) is the opt. soln for the LP
relaxation — not integral.

I The opt. value of the relaxation is 41.25

I The opt. value of the LP relaxation is an upper bound for the
opt. value of the integer program. Thus 41.25 is an upper
bound
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Example

I We will now branch (partition the feasible space), in an attempt to
refine the solution.

I Choose a variable that is fractional in the optimal solution to the
LP-relaxation say, x2 . We must have either x2 ≤ 3 or x2 ≥ 4 .

I Branch on x2 to create two new subproblems:


maximize 5x1 + 8x2

subject to x1 + x2 ≤ 6

5x1 + 9x2 ≤ 45

x1, x2 ≥ 0

x2 ≤ 3


︸ ︷︷ ︸

Subprob 1


maximize 5x1 + 8x2

subject to x1 + x2 ≤ 6

5x1 + 9x2 ≤ 45

x1, x2 ≥ 0

x2 ≥ 4


︸ ︷︷ ︸

Subprob 2

I Solve both the problems
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Example
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I The opt. for subproblem 1 is integral : (3, 3)

I If further branching on a subproblem will yield no useful information
we say it is fathomed ( We fathom subproblem 1)

I The best integer soln found so far is “incumbent”, its value denoted
by Z∗.

[ Here the incumbent is (3,3) and Z∗ = 39]

I Z∗ is a lower bound for the IP.
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I If a subproblem is infeasible then it is fathomed. Here, subproblem 4
is fathomed.

I The upper bound for the problem is updated:
39 ≤ OPT ≤ 40.55

I Next branch on subproblem 3 on x2
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I If the optimal value of a subproblem is smaller than Z∗ then it is
fathomed. [ here subproblem 5 is fathomed ]

I If a subproblem has integral opt. solution x∗ and its value is > Z∗

then x∗ replaces the current incumbent.

[Subproblem 5 has integral optimal solution, and its value
40 > 39 = Z∗. Thus, (0,5) is the new incumbent, and new
Z∗ = 40.]

I If there are no unfathomed subproblems left then the current
incumbent is an optimal solution for the IP.

[In our case, (0, 5) is an optimal solution with optimal value 40.]
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Branch and Bound and Beyond

I Note that the ordering of the branching is important and can
influence algorithm run-time

I Worst case the algorithm can be NP, do complete ( or near
complete) enumeration

I MILP solvers/algorithms rely on combinations of branch and bound,
branch and cuts, cutting plane methods, rounding and very clever
mix of heuristics...for better performance in theory and practice.
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Modern Integer Programming

I Pessimistic Viewpoint:
— Integer programming is NP hard.

— Dismiss problems as prohibitively expensive

This is not quite true

I Thanks to powerful computers, skillful software engineering,
tremendous developments in algorithms — a large class of these
problems can be solved to global (or near global) accuracy within
a very reasonable time frame.

I Realistic Viewpoint:
A large class of integer programs (for example: Mixed Integer Linear
Optimization) are tractable, i.e., they solve practical sized problems
to provable optimality within a very reasonable time frame...
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What is Mixed Integer Linear Optimization (MIO) ?

The generic MIO framework concerns the following optimization problem:

minimize c′α + d′θ

Aα + Bθ ≥ b

α ∈ <n
+

θ ∈ {0, 1}m,

(1)

where, c ∈ <n,d ∈ <m,A ∈ <k×n,B ∈ <k×m,b ∈ <k are the given
parameters of the problem; we optimize over both continuous (α) and
discrete (θ) variables.
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Typical Evolution of MIO
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Modern solvers for MIO use combinations of branch and bound , branch
and cuts, cutting plane methods, rounding and very clever mix of
heuristics...
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Statistical Applications
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Application 1: Clustered
Regression

Bertsimas and Shioda 2007
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Application 1

I Consider the problem of simultaneously fitting K linear regression
functions to a set of N data points (yi , xi ), i = 1, . . . ,N with
xi ∈ <p.

I In Clustered Regression, we want the linear regression lines to be:

yi = x′iβki + εi , i = 1, . . . ,N

and k1, k2, . . . , kN take K different values, i.e.,
|{k1, k2, . . . , kN}| = K .

I Question: How does one do this ?

I Task:

minimize
N∑
i=1

|yi − x′iβki |

subject to |{k1, k2, . . . , kN}| = K .
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Application 1

The problem can be cast as a MIO.
Let the groups be K := {1, 2, . . . ,K}.
Denote binary variables ak,i such that:

ak,i =

{
1 if xi is in group k

0 otherwise
(2)

The mixed integer linear optimization problem for Clustered Regression is:

minimize
N∑
i=1

δi

subject to δi ≥ (yi − x′iβk)−M(1− ak,i ), k ∈ K ; i ∈ 1, ..,N

δi ≥ −(yi − x′iβk)−M(1− ak,i ), k ∈ K ; i ∈ 1, ..,N∑
k

ak,i = 1, i ∈ N

ak,i ∈ {0, 1}, δi ≥ 0.
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Application 2: Least Quantile
of Squares

Bertsimas and Mazumder 2013
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Review of Robust Statistics

Usual linear model
yn×1 = Xn×pβp×1 + εn×1

Assume X contains a column of ones.

I Least Squares (LS) estimator

β̂
(LS)
∈ argmin

β

n∑
i=1

r2i

where ri = yi − x′iβ for i = 1, . . . , n

I The LS estimator is adversely affected by a single outlier and has a
limiting Breakdown point of 0 (Dohono & Huber ’83; Hampel ’75).
(n→∞, and p fixed)
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Review of Robust Statistics

I The Least Absolute Deviation (LAD) estimator:

β̂
(LAD)

∈ argmin
β

n∑
i=1

|ri |,

is not good either.

LAD has 0 breakdown point.

I M-Estimators (Huber 1973), came to a partial rescue by minimizing

n∑
i=1

ρ(ri ),

where, ρ(r) is a symmetric function, with min. at zero; by slightly
improving the breakdown point.
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Least Median of Squares

I Rousseew, 1984 introduced the Least Median of Squares (LMS)

β̂
(LMS)

∈ argmin
β

(
median
i=1,...,n

|ri |
)
. (3)

I LMS has a finite sample breakdown point of almost 50 %.

I Historically, first equivariant estimator with highest possible
breakdown point.

I Theoretical properties are well understood (?)

I Robust methods have important applications — computer
vision, chemometrics, health-care, others...
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Least Quantile of Squares

I More generally, Least Quantile of Squares (LQS) estimator:

β̂
(LQS)

∈ argmin
β

|r(q)|, (4)

where, r(q) is the qth ordered absolute residual:

|r(1)| ≤ |r(2)| ≤ . . . ≤ |r(n)|. (5)
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LMS Computation : State of the art

I LMS problem is NP hard (Bernholt ’05).

I Exact Algorithms

I Enumeration based, branch and bound, theory CS algorithms
with O(np).

I Clever Exact algorithms scale upto n = 50, p = 5.

I Approximate Algorithms

I Based on heuristic subsampling / local searches.
I Scale better, but no guarantees

I Almost all methods use special geometric properties of the LMS
solution.
Do not generalize to account for shrinkage in β (say).
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What we do

Solve the following problem:

minimize
β

|r(q)|,

where, ri = yi − x′iβ, q is a quantile.

More generally, framework can solve:

minimize
β

|r(q)|, subject to Aβ ≤ b (and/or ‖β‖22 ≤ δ)
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Overview of our approach

I Write the LMS problem as a Mixed Integer Optimization (MIO)
problem.

I Use techniques in MIO to do global optimization.

R. Mazumder Discrete Optimization 35/ 45



Formulation

Consider the ordered residuals, and assume n odd

|r(1)| ≤ |r(2)| ≤ . . . ≤ |r(n)|.

I We need to write r(q), where q = (n + 1)/2 as a MIO.
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Formulation

Step 1: Introduce binary variables zi , i = 1, . . . , n such that:

zi =

{
1, if |ri | ≤ |r(q)|,
0, otherwise.

(6)

Step 2: Use auxiliary continuous variables µi , µi ≥ 0 such that:

|ri | − µi ≤ |r(q)| ≤ |ri |+ µi , i = 1, . . . , n, (7)

with the conditions:

If |ri | ≥ |r(q)|, then µi = 0, µi ≥ 0,

and if |ri | ≤ |r(q)|, then µi = 0, µi ≥ 0.
(8)
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Formulation

The following MIO formulation:

minimize γ

subject to |ri |+ µi ≥ γ, i = 1 . . . , n

γ ≥ |ri | − µi , i = 1 . . . , n

Muzi ≥ µi , i = 1, . . . , n

M`(1− zi ) ≥ µi , i = 1, . . . , n
n∑

i=1

zi = q

µi ≥ 0, i = 1, . . . , n

µi ≥ 0, i = 1, . . . , n

zi ∈ {0, 1}, i = 1, . . . , n,

(9)

where, γ, zi , µi , µi , i = 1, . . . , n are the optimization variables,
characterizes the LMS solution.
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Typical Evolution of MIO
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A good MIO formulation needs work

I The formulation, just described is one of many MIO formulations for
the LMS problem.

I We can improve upon (9) using more sophisticated modeling tools
in Integer Optimization, for example, Specially Ordered Sets.
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Boosting the performance of MIO

I MIO formulations can tackle problems of small to moderate size
quite efficiently. Significantly better than existing methods.

I In general, they are found to benefit significantly from advanced
warm-starts.

I Algorithms based on continuous optimization methods (Non-Linear
programming), can be used for this purpose.
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Continuous Optimization – Algorithm I

I Based on Sequential Linear optimization. Relies on:

I the decomposition:

|y(q) − x′(q)β| =

q+1∑
i=1

|y(i) − x′(i)β|︸ ︷︷ ︸
Hq+1(β)

−
q∑

i=1

|y(i) − x′(i)β|︸ ︷︷ ︸
Hq(β)

, (10)

where r(q) = y(q) − x′(q)β.

I and observe that the function:

β 7→ Hq(β)

is convex in β
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Continuous Optimization – Algorithm II

I Uses a sub-differential based method on

|y(q) − x′(q)β|
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Impact of Warm-Starts

Evolution of MIO (cold-start) [top] vs (warm-start) [bottom]
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n = 501, p = 5, synthetic example
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