Discrete Optimization

Rahul Mazumder
Columbia Statistics
Computational Statistics

March 27, 2014

- convex optimization methods are (roughly) always global, always fast
- non-convex optimization is typically much harder - one needs a compromise
- Use local optimization methods - fast but not global, no certificate of global optimality (few exceptions)
- Global Optimization methods - get global solutions and certify it. Often obtaining a global solution is fast. But certifying that it is a global solution takes time...

Branch and Bound

- A non heuristic method for finding global solutions for non-convex problems.
- Basic idea is "divide and conquer"
- The original problem is prohibitively large, so we divide it into smaller sub-problems, which are "solved" (conquered) - this is repeated till all sub-problems have been "conquered"
- Dividing:

Partition the feasible solutions into smaller and smaller subsets

- Conquering:
- provide a bound for the best solution in the subset
- discard the subset if you can prove that the subset cannot obtain an optimal solution
- Let us consider a general framework...

Unconstrained non-convex minimization

Task Find global minimum of a function $f: \Re^{m} \mapsto \Re$ over a m-dimensional rectangle $Q_{I N}$ to some prescribed accuracy.

- For any rectangle $Q \subset Q_{I N}$ we define $\Phi_{\min }(Q)=\inf _{x \in Q} f(x)$
- global optimum value is $f^{*}=\Phi_{\min }\left(Q_{I N}\right)$

Lower and Upper bound functions

- We will use lower and upper bound functions $\Phi_{L B}$ and $\Phi_{U B}$ that satisfy for any rectangle, $Q \subset Q_{I N}$

$$
\Phi_{L B}(Q) \leq \Phi_{\min }(Q) \leq \Phi_{U B}(Q)
$$

- bounds must become tight as rectangles shrink, i,e.,

$$
\forall \epsilon>0 \exists \delta>0 \forall Q \subset Q_{I N}, \operatorname{size}(Q) \leq \delta \Longrightarrow \Phi_{U B}(Q)-\Phi_{L B}(Q) \leq \epsilon
$$

where, $\operatorname{size}(Q)$ is the diameter (length of the longest edge of Q)

- to be practical, $\Phi_{U B}(Q), \Phi_{L B}(Q)$ should be easy to compute.

Branch and bound algorithm

1. compute lower and upper bounds on f^{*}

- set $L_{1}=\Phi_{I b}\left(Q_{I N}\right)$ and $U_{1}=\Phi_{U B}\left(Q_{I N}\right)$
- terminate if $U_{1}-L_{1} \leq \epsilon$

2. partition (split) $Q_{I N}$ into two rectangles $Q_{I N}=Q_{1} \cup Q_{2}$
3. compute $\Phi_{U B}\left(Q_{i}\right)$ and $\Phi_{L B}\left(Q_{i}\right)$
4. update lower and upper bounds on f^{*}

- update lower bound as $L_{2}=\min \left\{\Phi_{L B}\left(Q_{1}\right), \Phi_{L B}\left(Q_{2}\right)\right\}$
- update upper bound as $U_{2}=\min \left\{\Phi_{U B}\left(Q_{1}\right), \Phi_{U B}\left(Q_{2}\right)\right\}$
- terminate if $U_{2}-L_{2} \leq \epsilon$

5. refine partition by splitting Q_{1} or Q_{2} and repeat steps 3,4 Note: At stage k we have:
$L_{k}=\min _{i=1}^{k} \Phi_{L B}\left(Q_{i}\right) \quad U_{k}=\min _{i=1}^{k} \Phi_{U B}\left(Q_{i}\right)$

Convergence analysis of branch and bound

- number of rectangles in partition L_{k} is k (without pruning)
- total volume of these rectangles is vol($Q_{I N}$) so:

$$
\min _{Q \in L_{k}} \operatorname{Vol}(Q) \leq \frac{\operatorname{Vol}\left(Q_{I N}\right)}{k}
$$

- so for k large, at least one rectangle has small volume
- need to show that small volume implies small size
- this will imply that one rectangle has $U-L$ small
- hence $U_{k}-L_{k}$ is small

Convergence analysis of branch and bound

- condition number of rectangle $Q=\left[I_{1}, u_{1}\right] \times \ldots \times\left[I_{n}, u_{n}\right]$ is:

$$
\operatorname{cond}(Q)=\frac{\max _{i}\left(u_{i}-l_{1}\right)}{\min _{i}\left(u_{i}-l_{i}\right)}
$$

- if we split rectangle along longest edge, we have

$$
\operatorname{cond}(Q) \leq \max \left\{\operatorname{cond}\left(Q_{I N}\right), 2\right\}
$$

- If Q is rectangle. then:

$$
\operatorname{Vol}(Q) \geq\left(\frac{2 \operatorname{size}(Q)}{\operatorname{cond}(Q)}\right)^{m}
$$

and so, size $(Q) \leq \frac{1}{2} \operatorname{Vol}(Q)^{\frac{1}{m}} \operatorname{cond}(Q)$ therefore if cond (Q) is bounded and $\operatorname{vol}(Q)$ is small then $\operatorname{size}(Q)$ is small.

Example of branch and bound

- Let us consider a simple example, illustrating a branch and bound algorithm in action.
- We will consider a Linear program where some of the variables are continuous and some are integers (MILP)
- We will see that MILPs have very nice structures...

Example

Consider the following problem:

$$
\begin{array}{rr}
\text { maximize } & 5 x_{1}+8 x_{2} \\
\text { subject to } & x_{1}+x_{2} \leq 6 \\
5 x_{1}+9 x_{2} \leq 45 \\
x_{1}, x_{2} \in \mathbb{Z}_{+}
\end{array}
$$

where, optimization variables are x_{1}, x_{2} and \mathbb{Z}_{+}denotes the set of non-negative integers.

Example

R. Mazumder

Discrete Optimization
$11 / 45$

Example

- If the LP relaxation has integral optimal solution x^{*}, then we are done
- In this case, $\left(x_{1}, x_{2}\right)=(2.25,3.75)$ is the opt. soln for the LP relaxation - not integral.
- The opt. value of the relaxation is 41.25
- The opt. value of the LP relaxation is an upper bound for the opt. value of the integer program. Thus 41.25 is an upper bound

Example

- We will now branch (partition the feasible space), in an attempt to refine the solution.
- Choose a variable that is fractional in the optimal solution to the LP-relaxation say, x_{2}. We must have either $x_{2} \leq 3$ or $x_{2} \geq 4$.
- Branch on x_{2} to create two new subproblems:

- Solve both the problems

Example

R. Mazumder

- The opt. for subproblem 1 is integral : $(3,3)$
- If further branching on a subproblem will yield no useful information we say it is fathomed (We fathom subproblem 1)
- The best integer soln found so far is "incumbent", its value denoted by Z^{*}.
[Here the incumbent is $(3,3)$ and $Z^{*}=39$]
- Z^{*} is a lower bound for the IP.

R. Mazumder \quad Discrete Optimization $\quad 16 / 45$

- If a subproblem is infeasible then it is fathomed. Here, subproblem 4 is fathomed.
- The upper bound for the problem is updated: $39 \leq$ OPT ≤ 40.55
- Next branch on subproblem 3 on x_{2}

- If the optimal value of a subproblem is smaller than Z^{*} then it is fathomed. [here subproblem 5 is fathomed]
- If a subproblem has integral opt. solution x^{*} and its value is $>Z^{*}$ then x^{*} replaces the current incumbent.
[Subproblem 5 has integral optimal solution, and its value $40>39=Z^{*}$. Thus, $(0,5)$ is the new incumbent, and new $\left.Z^{*}=40.\right]$
- If there are no unfathomed subproblems left then the current incumbent is an optimal solution for the IP. [In our case, $(0,5)$ is an optimal solution with optimal value 40.]

Branch and Bound and Beyond

- Note that the ordering of the branching is important and can influence algorithm run-time
- Worst case the algorithm can be NP, do complete (or near complete) enumeration
- MILP solvers/algorithms rely on combinations of branch and bound, branch and cuts, cutting plane methods, rounding and very clever mix of heuristics...for better performance in theory and practice.

Modern Integer Programming

- Pessimistic Viewpoint:
- Integer programming is NP hard.
- Dismiss problems as prohibitively expensive

Modern Integer Programming

- Pessimistic Viewpoint:
- Integer programming is NP hard.
- Dismiss problems as prohibitively expensive

This is not quite true

- Thanks to powerful computers, skillful software engineering, tremendous developments in algorithms - a large class of these problems can be solved to global (or near global) accuracy within a very reasonable time frame.
- Realistic Viewpoint:

A large class of integer programs (for example: Mixed Integer Linear Optimization) are tractable, i.e., they solve practical sized problems to provable optimality within a very reasonable time frame...

What is Mixed Integer Linear Optimization (MIO) ?

The generic MIO framework concerns the following optimization problem:

$$
\begin{array}{cc}
\operatorname{minimize} & \mathbf{c}^{\prime} \boldsymbol{\alpha}+\mathbf{d}^{\prime} \boldsymbol{\theta} \\
A \boldsymbol{\alpha}+B \boldsymbol{\theta} \geq \mathbf{b} \tag{1}\\
\boldsymbol{\alpha} \in \Re_{+}^{n} \\
\boldsymbol{\theta} \in\{0,1\}^{m}
\end{array}
$$

where, $\mathbf{c} \in \Re^{n}, \mathbf{d} \in \Re^{m}, A \in \Re^{k \times n}, B \in \Re^{k \times m}, \mathbf{b} \in \Re^{k}$ are the given parameters of the problem; we optimize over both continuous ($\boldsymbol{\alpha}$) and discrete $(\boldsymbol{\theta})$ variables.

Typical Evolution of MIO

Modern solvers for MIO use combinations of branch and bound, branch and cuts, cutting plane methods, rounding and very clever mix of heuristics...

Statistical Applications

Application 1: Clustered Regression

Bertsimas and Shioda 2007

Application 1

- Consider the problem of simultaneously fitting K linear regression functions to a set of N data points $\left(y_{i}, \mathbf{x}_{i}\right), i=1, \ldots, N$ with $\mathbf{x}_{i} \in \Re^{p}$.
- In Clustered Regression, we want the linear regression lines to be:

$$
y_{i}=\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}_{k_{i}}+\epsilon_{i}, i=1, \ldots, N
$$

and $k_{1}, k_{2}, \ldots, k_{N}$ take K different values, i.e., $\left|\left\{k_{1}, k_{2}, \ldots, k_{N}\right\}\right|=K$.

- Question: How does one do this?

Application 1

- Consider the problem of simultaneously fitting K linear regression functions to a set of N data points $\left(y_{i}, \mathbf{x}_{i}\right), i=1, \ldots, N$ with $\mathbf{x}_{i} \in \Re^{p}$.
- In Clustered Regression, we want the linear regression lines to be:

$$
y_{i}=\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}_{k_{i}}+\epsilon_{i}, i=1, \ldots, N
$$

and $k_{1}, k_{2}, \ldots, k_{N}$ take K different values, i.e., $\left|\left\{k_{1}, k_{2}, \ldots, k_{N}\right\}\right|=K$.

- Question: How does one do this?
- Task:

$$
\operatorname{minimize} \sum_{i=1}^{N}\left|y_{i}-\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}_{k_{i}}\right|
$$

subject to $\left|\left\{k_{1}, k_{2}, \ldots, k_{N}\right\}\right|=K$.

Application 1

The problem can be cast as a MIO.
Let the groups be $\bar{K}:=\{1,2, \ldots, K\}$.
Denote binary variables $a_{k, i}$ such that:

$$
a_{k, i}= \begin{cases}1 & \text { if } \mathbf{x}_{i} \text { is in group } k \tag{2}\\ 0 & \text { otherwise }\end{cases}
$$

The mixed integer linear optimization problem for Clustered Regression is:

$$
\begin{aligned}
\operatorname{minimize} & \sum_{i=1}^{N} \delta_{i} \\
\text { subject to } & \delta_{i} \geq\left(y_{i}-\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}_{k}\right)-M\left(1-a_{k, i}\right), k \in \bar{K} ; i \in 1, . ., N \\
& \delta_{i} \geq-\left(y_{i}-\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}_{k}\right)-M\left(1-a_{k, i}\right), k \in \bar{K} ; i \in 1, . ., N \\
& \sum_{k} a_{k, i}=1, i \in N \\
& a_{k, i} \in\{0,1\}, \delta_{i} \geq 0 .
\end{aligned}
$$

Application 2: Least Quantile of Squares

Bertsimas and Mazumder 2013

Review of Robust Statistics

Usual linear model

$$
\mathbf{y}_{n \times 1}=\mathbf{X}_{n \times p} \boldsymbol{\beta}_{p \times 1}+\epsilon_{n \times 1}
$$

Assume \mathbf{X} contains a column of ones.

- Least Squares (LS) estimator

$$
\widehat{\boldsymbol{\beta}}^{(\mathrm{LS})} \in \underset{\boldsymbol{\beta}}{\operatorname{argmin}} \sum_{i=1}^{n} r_{i}^{2}
$$

where $r_{i}=y_{i}-\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}$ for $i=1, \ldots, n$

- The LS estimator is adversely affected by a single outlier and has a limiting Breakdown point of 0 (Dohono \& Huber '83; Hampel '75). ($n \rightarrow \infty$, and p fixed)

Review of Robust Statistics

- The Least Absolute Deviation (LAD) estimator:

$$
\widehat{\boldsymbol{\beta}}^{(\mathrm{LAD})} \in \underset{\boldsymbol{\beta}}{\operatorname{argmin}} \sum_{i=1}^{n}\left|r_{i}\right|,
$$

is not good either.
LAD has 0 breakdown point.

- M-Estimators (Huber 1973), came to a partial rescue by minimizing

$$
\sum_{i=1}^{n} \rho\left(r_{i}\right)
$$

where, $\rho(r)$ is a symmetric function, with min. at zero; by slightly improving the breakdown point.

Least Median of Squares

- Rousseew, 1984 introduced the Least Median of Squares (LMS)

$$
\begin{equation*}
\widehat{\boldsymbol{\beta}}^{(\mathrm{LMS})} \in \underset{\boldsymbol{\beta}}{\operatorname{argmin}}\left(\underset{i=1, \ldots, n}{\operatorname{median}}\left|r_{i}\right|\right) . \tag{3}
\end{equation*}
$$

- LMS has a finite sample breakdown point of almost 50%.
- Historically, first equivariant estimator with highest possible breakdown point.
- Theoretical properties are well understood (?)
- Robust methods have important applications - computer vision, chemometrics, health-care, others...

Least Quantile of Squares

- More generally, Least Quantile of Squares (LQS) estimator:

$$
\begin{equation*}
\widehat{\boldsymbol{\beta}}^{(\mathrm{LQS})} \in \underset{\boldsymbol{\beta}}{\operatorname{argmin}}\left|r_{(q)}\right|, \tag{4}
\end{equation*}
$$

where, $r_{(q)}$ is the q th ordered absolute residual:

$$
\begin{equation*}
\left|r_{(1)}\right| \leq\left|r_{(2)}\right| \leq \ldots \leq\left|r_{(n)}\right| . \tag{5}
\end{equation*}
$$

LMS Computation: State of the art

- LMS problem is NP hard (Bernholt '05).
- Exact Algorithms
- Enumeration based, branch and bound, theory CS algorithms with $O\left(n^{p}\right)$.
- Clever Exact algorithms scale upto $n=50, p=5$.
- Approximate Algorithms
- Based on heuristic subsampling / local searches.
- Scale better, but no guarantees
- Almost all methods use special geometric properties of the LMS solution.
Do not generalize to account for shrinkage in $\boldsymbol{\beta}$ (say).

What we do

Solve the following problem:

$$
\underset{\beta}{\operatorname{minimize}}\left|r_{(q)}\right|,
$$

where, $r_{i}=y_{i}-\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}, q$ is a quantile.

More generally, framework can solve:

$$
\underset{\boldsymbol{\beta}}{\operatorname{minimize}}\left|r_{(q)}\right| \text {, subject to } \mathbf{A} \boldsymbol{\beta} \leq \mathbf{b} \text { (and/or }\|\boldsymbol{\beta}\|_{2}^{2} \leq \delta \text {) }
$$

Overview of our approach

- Write the LMS problem as a Mixed Integer Optimization (MIO) problem.
- Use techniques in MIO to do global optimization.

Formulation

Consider the ordered residuals, and assume n odd

$$
\left|r_{(1)}\right| \leq\left|r_{(2)}\right| \leq \ldots \leq\left|r_{(n)}\right| .
$$

- We need to write $r_{(q)}$, where $q=(n+1) / 2$ as a MIO.

Formulation

Step 1: Introduce binary variables $z_{i}, i=1, \ldots, n$ such that:

$$
z_{i}= \begin{cases}1, & \text { if }\left|r_{i}\right| \leq\left|r_{(q)}\right| \tag{6}\\ 0, & \text { otherwise }\end{cases}
$$

Step 2: Use auxiliary continuous variables $\mu_{i}, \bar{\mu}_{i} \geq 0$ such that:

$$
\begin{equation*}
\left|r_{i}\right|-\mu_{i} \leq\left|r_{(q)}\right| \leq\left|r_{i}\right|+\bar{\mu}_{i}, i=1, \ldots, n, \tag{7}
\end{equation*}
$$

with the conditions:

$$
\begin{align*}
& \text { If } \tag{8}\\
& \text { and } \quad \text { if }\left|r_{i}\right| \geq\left|r_{(q)}\right| \leq\left|r_{(q)}\right|, \quad \text { then } \bar{\mu}_{i}=0, \mu_{i} \geq 0, \\
& \mu_{i}=0, \bar{\mu}_{i} \geq 0 .
\end{align*}
$$

Formulation

The following MIO formulation:

$$
\begin{array}{cll}
\operatorname{minimize} & \gamma & \\
\text { subject to } & \left|r_{i}\right|+\bar{\mu}_{i} \geq \gamma, & i=1 \ldots, n \\
\gamma \geq\left|r_{i}\right|-\mu_{i}, & i=1 \ldots, n \\
M_{u} z_{i} \geq \bar{\mu}_{i}, & i=1, \ldots, n \\
M_{\ell}\left(1-z_{i}\right) \geq \mu_{i}, & i=1, \ldots, n \tag{9}\\
\sum_{i=1}^{n} z_{i}=q & \\
\mu_{i} \geq 0, & i=1, \ldots, n \\
\bar{\mu}_{i} \geq 0, & i=1, \ldots, n \\
z_{i} \in\{0,1\}, & i=1, \ldots, n,
\end{array}
$$

where, $\gamma, z_{i}, \mu_{i}, \bar{\mu}_{i}, i=1, \ldots, n$ are the optimization variables, characterizes the LMS solution.

Typical Evolution of MIO

A good MIO formulation needs work

- The formulation, just described is one of many MIO formulations for the LMS problem.
- We can improve upon (9) using more sophisticated modeling tools in Integer Optimization, for example, Specially Ordered Sets.

Boosting the performance of MIO

- MIO formulations can tackle problems of small to moderate size quite efficiently. Significantly better than existing methods.
- In general, they are found to benefit significantly from advanced warm-starts.
- Algorithms based on continuous optimization methods (Non-Linear programming), can be used for this purpose.

Continuous Optimization - Algorithm I

- Based on Sequential Linear optimization. Relies on:
- the decomposition:

$$
\begin{equation*}
\left|y_{(q)}-\mathbf{x}_{(q)}^{\prime} \boldsymbol{\beta}\right|=\underbrace{\sum_{i=1}^{q+1}\left|y_{(i)}-\mathbf{x}_{(i)}^{\prime} \boldsymbol{\beta}\right|}_{H_{q+1}(\boldsymbol{\beta})}-\underbrace{\sum_{i=1}^{q}\left|y_{(i)}-\mathbf{x}_{(i)}^{\prime} \boldsymbol{\beta}\right|}_{H_{q}(\boldsymbol{\beta})} \tag{10}
\end{equation*}
$$

where $r_{(q)}=y_{(q)}-\mathbf{x}_{(q)}^{\prime} \boldsymbol{\beta}$.

- and observe that the function:

$$
\boldsymbol{\beta} \mapsto H_{q}(\boldsymbol{\beta})
$$

is convex in $\boldsymbol{\beta}$

Continuous Optimization - Algorithm II

- Uses a sub-differential based method on

$$
\left|y_{(q)}-\mathbf{x}_{(q)}^{\prime} \boldsymbol{\beta}\right|
$$

Impact of Warm-Starts

Evolution of MIO (cold-start) [top] vs (warm-start) [bottom]

$n=501, p=5$, synthetic example

Acknowledgements

Notes based on:

- Stephen Boyd's EE 364B lecture notes (Stanford Univ.)
- Jim Burke's class notes (Washington Univ.)
- Bertsimas and Shioda "Classication and Regression via Integer Optimization", 2007
- Bertsimas and Mazumder "Least Quantile of Squares via Modern Optimization", 2013

