Stochastic Optimization

Lauren A. Hannah

April 4, 2014

1 Introduction

Stochastic optimization refers to a collection of methods for minimizing or maximizing an
objective function when randomness is present. Over the last few decades these methods have
become essential tools for science, engineering, business, computer science, and statistics.
Specific applications are varied, but include: running simulations to refine the placement of
acoustic sensors on a beam, deciding when to release water from a reservoir for hydroelectric
power generation, and optimizing the parameters of a statistical model for a given data
set. Randomness usually enters the problem in two ways: through the cost function or
the constraint set. Although stochastic optimization refers to any optimization method that
employs randomness within some communities, we only consider settings where the objective
function or constraints are random.

Like deterministic optimization, there is no single solution method that works well for
all problems. Structural assumptions, such as limits on the size of the decision and outcome
spaces, or convexity, are needed to make problems tractable. Since solution methods are
tied to problem structure, we divide this chapter according to problem type and describe
the associated solution methods.

The most prominent division is between solution methods for problems with a single time
period (single stage problems) and those with multiple time periods (multistage problems).
Single stage problems try to find a single, optimal decision, such as the best set of parameters
for a statistical model given data. Multistage problems try to find an optimal sequence of
decisions, such as scheduling water releases from hydroelectric plants over a two year period.
Single stage problems are usually solved with modified deterministic optimization methods.
However, the dependence of future decisions on random outcomes makes direct modifica-
tion of deterministic methods difficult in multistage problems. Multistage methods are more
reliant on statistical approximation and strong assumptions about problem structure, such
as finite decision and outcome spaces, or a compact Markovian representation of the deci-
sion process. Section 2 describes solution methods for single stage stochastic optimization
problems and Section 3 give methods for sequential problems. Conclusions and areas for
advancement are given in Section 4.



2 Single Stage Stochastic Optimization

Single stage stochastic optimization is the study of optimization problems with a random
objective function or constraints where a decision is implemented with no subsequent re-
course. One example would be parameter selection for a statistical model: observations are
drawn from an unknown distribution, giving a random loss for each observation. We wish
to select model parameters to minimize the expected loss using data.

To generalize the problem, we begin by introducing some formal concepts and notation.
Let X be the domain of all feasible decisions and x a specific decision. We would like to
search over X to find a decision that minimizes a cost function, F. Let £ denote random
information that is available only after the decision is made. Unless otherwise noted, we will
limit our discussion to random cost functions, denoted F'(z,&) (random constraint sets can
be written as random cost functions). Since we cannot directly optimize F'(z, &), we instead
minimize the expected value, E[F(x,£)]. The general single stage stochastic optimization
problem becomes

¢"=min {f(z) = E[F(z, ]} (1)

Define the set of optima as §* = {z € X : f(x) = (*}. For all single stage problems, we
assume that the decision space X is convex and the objective function F'(z,§) is convex in
x for any realization £. Problems that do not meet these assumptions are usually solved
through more specialized stochastic optimization methods like the stochastic ruler (Alrefaei
& Andradottir 2001), nested partitions (Shi & Olafsson 2000), branch and bound (Norkin
et al. 1998), or tabu search (Battiti & Tecchiolli 1996, Glover & Laguna 1999). In this
section, we begin by outlining a set of problem considerations and then review four broad
solution methods problem (1): sample average approximation, stochastic approximation,
response surfaces, and metamodels.

2.1 Problem Considerations

Stochastic optimization has been studied in a broad set of communities that each developed
methods to solve problems that were important to their own discipline. As such, there is
no consensus about how data are generated or processed. Each community has a set of
tacit assumptions, such as observational data with exogenous noise in statistical inference
problems, or generative data with endogenous noise in engineering design problems. The
types of assumptions are rarely stated, but we find it helpful to discuss them and how they
interact with solution methods.

Noise generation: exogenous vs. endogenous. The random outcome £ is exogenous
if the decision x does not affect the distribution of £. Likewise, noise is endogenous if the
choice of x may affect the distribution of £. An example of exogenous noise would be returns
for a portfolio of stocks: portfolio choice will not affect stock market returns. Endogenous
noise can arise in problems like acoustic sensor placement on a steel beam (Sadegh & Spall
1998): placement affects the recorded distortions.



Data generation: constructive vs. black box. An observation of F(z,§) is construc-
tive if, for a given &, F(z,£) can be evaluated for any x. This is common when F' is a
parametric model, like a log likelihood of parameters x given data realization . Conversely,
F(z,€) is generated by a black box if F'(z,£) can only be generated for a specific 2. Con-
structive data generation is only possible if the noise is exogenous.

Data treatment: batch vs. online. Solution methods have batch data evaluation if all
of the observations of (z;, F'(x;, &))", are used at once to generate a decision. An example
would be maximum likelihood estimation for a parametric statistical model. Solution meth-
ods have online data evaluation if the decision is updated in a sequential manner using one
observation at a time.

Data type: observational vs. generative. Data are observational if (x;, F'(x;,&))!, are
generated a priori and the decision maker cannot generate any more. An example would be
using n observations to fit a parametric statistical model. Data are generative if the decision
maker can obtain samples for a new decision value, (z;, F'(z;,&;)), as needed. This is common
in experimental settings where new observations can be generated by changing experimental
parameters and rerunning the experiment. A poorly studied but common middle ground is
partially observational data, where a decision maker can obtain new samples by controlling
a subset of the parameters. An example would be temperature data in a building that is
controlled by a thermostat set point: the set point can be changed by the decision maker, but
other variables that influence the optimal decision, like occupancy level, cannot be changed.

2.2 Sample Average Approximation

Sample average approximation (SAA) (Healy & Schruben 1991, Robinson 1996, Shapiro &
Wardi 1996, Shapiro et al. 2002) is a two-part method that uses sampling and deterministic
optimization to solve (1). The first step in SAA is sampling. While directly computing the
expected cost function, E[F(x, )], is not possible for most problems, it can be approximated
through Monte Carlo sampling in some situations. Let (&), be a set of independent,
identically distributed realizations of &, and let F(x,&;) be the cost function realization for
&. The expected cost function is approximated by the average of the realizations:
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The second step in SAA is search. The right hand side of equation (2) is deterministic, so
deterministic optimization methods can be used to solve the approximate problem:

¢, = min {fn(w) = %ZF(%&)} : (3)

The set of approximate optima is S} = {x € X : f.(x) = (}}.
Deterministic search is the main benefit of SAA. Many commercial software packages,
including Matlab and R, offer implementation of basic deterministic optimization methods,



while more specialized packages like CPLEX and Gurobi provide a wider array of determin-
istic methods. To guarantee convergence of the search method to a global optimum, it is
assumed that X is convex and that F'(z,§;) is convex in x for every realization of {. These
assumptions can be lifted in exchange for a guarantee of only local optimality.

One of the main limitations is that SAA is only available for problems with exogenous
noise and constructive data generation. It cannot accommodate any problems with black
box generation. The data are processed in a batch manner. These rather strong assumptions
allow the use of either observational or generative data.

Because of its inherent simplicity, SAA has been independently proposed in a variety
of fields under a variety of names. A form of SAA was derived in the early statistics com-
munity as maximum likelihood estimation (Fisher 1922), although it was not generalized
to other types of stochastic optimization problems. SAA-type methods were generalized
in the operations research community under a variety of names: sample path optimiza-
tion (Robinson 1996, Shapiro & Wardi 1996, Giirkan et al. 1999), stochastic counter meth-
ods (Rubinstein & Shapiro 1993), retrospective optimization (Healy & Schruben 1991), sce-
nario optimization (Birge & Louveaux 1997), and sample average approximation (Shapiro
et al. 2002, Kleywegt et al. 2002). Applications for SAA include: chance constrained opti-
mization (Pagnoncelli et al. 2009), discrete stochastic optimization (Kleywegt et al. 2002),
stochastic routing (Verweij et al. 2003), queuing models (Atlason et al. 2004), asset al-
location (Blomvall & Shapiro 2006), and solving (Partially Observable) Markov Decision
Processes ((PO)MDPs) (Ng & Jordan 2000, Perkins 2002).

2.2.1 Theoretical Properties of SAA Estimates

Like all stochastic optimization methods, SAA relies upon a collection of random variables
to produce a statistical estimate. Most theoretical results follow directly from the the Law
of Large Numbers and Central Limit Theorem due to the construction of SAA. Under mild
regularity conditions, for any fixed x the limiting distribution of the SAA estimate is Gaussian
with mean f(x) and variance o?(z) = Var(F(z,£))/n < co:

[NIES

d
n2 [fu(@) — f(2)] = N (0,0%(2)) .

The symbol <, denotes “convergence in distribution.” Under more stringent conditions,
including Lipschitz continuity of F(-,&), convexity of F'(z,£) and X, and f(x) having a
unique optimum S&* = {z*}, a similar result holds for the optimal values:

nt (¢ — % N (0,0%(x") . (4)

The limiting Gaussian distribution in (4) can be used to determine the number of samples
needed to generate an e-optimal solution with at least probability 1—«. An e-optimal solution
is defined any solution Z € X such that f(Z) < (*+ ¢ for a specified € > 0. However, there is
a tradeoff between the accuracy of f,, and the time needed to search f,. In the general case,
with efficient search algorithms the additional computational complexity is roughly on the
order of n (Shapiro 2013). See Shapiro (1991), Rubinstein & Melamed (1998) and Shapiro
et al. (2009) for a more complete discussion of SAA consistency and convergence rates.



2.3 Stochastic Approximation

Stochastic approximation is an iterative method that uses noisy observations to find the root
of a function, g, i.e. the set of x where g(x) = 0. (Robbins & Monro 1951). When that
function is the gradient of the expected cost function, g(x) = V,f(z), stochastic approx-
imation finds local optima of f for an unconstrained decision set using noisy subgradient
observations, g(x;,&;). In a generalization of stochastic gradient descent, a decision z; is
updated recursively by moving a distance a; in the direction opposite the gradient:

Tit1 = T — az‘g(ﬂfi, fz) (5)

A constraint set, X', can be included through a projection operator IIy that maps x; —
a;g(x;,&;) into the closest point of X'. The main considerations for (5) are selecting a step size
sequence (a;)?2; and obtaining a gradient g(z;, ;) through direct observation or estimation.

Stochastic approximation has a less restrictive set of assumptions than SAA: data genera-
tion may be either constructive or black box, and noise generation may be either endogenous
or exogenous. If the data have exogenous noise and constructive generation, then observa-
tional data may be used. If those conditions are not met, generative data are required.
Finally, stochastic approximation uses online data processing. This has made stochastic
approximation one of the most prominent methods for large scale statistical inference; see
Bottou (2010), Hoffman et al. (2010), and Agarwal et al. (2012) for examples. For n observa-
tions, SAA requires n evaluations of the derivative of a log-likelihood function per iteration
of the deterministic solver, which can become unreasonably expensive. In extremely large
scale inference, it may even be problematic to store n observations in RAM. Stochastic ap-
proximation requires only n evaluations of the derivative of the log-likelihood function and
allows data streaming from an external storage device.

2.3.1 Gradient Approximation

Gradients can be computed through either direct observation or statistical estimation. Direct
computations are usually possible when the loss function has a closed form, as in case of
parametric statistical inference. In contrast, the gradient must be estimated when the data
are generated by a black box. Finite difference (Kiefer & Wolfowitz 1952) and related
methods (Spall 1992) approximate the gradient by using the current decision, x;, as a starting
point and adding a perturbation, e;c;. Here e; denotes a vector of all 0’s with a 1 in the jth
location and (¢;)2, is a sequence of perturbation sizes that decreases to 0. The jth entry of
the gradient is approximated by:

F(z; + ciej, &in) — Fxy — ciej, i2)

[9(%i,&)]; = 2, . (6)

Estimates from (6) can be made more stable by using minibatches. Full finite difference
computations may become infeasible when F'(z;, ;) is computationally expensive or p is large.
Alternatives include one-sided differences, requiring p + 1 evaluations, and simultaneous
perturbation analysis (Spall 1992), which generates an estimate by adding and subtracting
a random perturbation vector to get an estimate with two observations.



2.3.2 Step Size Selection

The step size sequences (a;)2, and (¢;)2, affect whether the stochastic approximation esti-
mator converges to a locally optimal solution and the rate at which it converges. In general,
convergence for stochastic approximation with a directly computed gradient is guaranteed if

o0 o0

2%2007 Za?<oo, a; > 0. (7)
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Generally, (a;)2, is chosen such that a; = Ci™® for a € (3,1] and a positive constant

C. There is a tradeoff between the rate of convergence and robustness of the estimator:
a = 1 generally promises the best asymptotic rate in many circumstances, but is sensitive to
misspecification of C' or non-strong convexity of f. If second order information is available,
a; can be replaced by an approximation of the inverse of the Hessian of f (Bottou 2010).

When gradients are estimated, the perturbation sequence (¢;)$2; needs to be chosen in
conjunction with (a;)$2,. Traditional constraints require that in addition to (7), the sequences
satisfy (Kiefer & Wolfowitz 1952):

E — < 00, E a;c; < 00, c; > 0.
C?
i=1 & i=1

However, slightly looser constraints do exist (Broadie et al. 2011). Parameters are commonly
set as polynomial sequences with a; = Ci~! and ¢; = Di~'/* for positive constants C' and D.

2.3.3 Theoretical Properties of Stochastic Approximation

Convergence theory for stochastic approximation generalizes convergence theory for gradient
descent algorithms. Rates depend on the shape of f and whether the gradients are exact
or estimated. Common shape assumptions are smoothness—whether f is Lipschitz and has
Lipschitz first order derivatives—and strong convexity:

(Vf(@) = VW) (z —y) > mllz —ylf,

for all z,y € X, where m > 0 is a curvature constant. In all instances, we use n iterations
and assume a few mild regularity conditions. If the gradients are not estimated, f is smooth
and strongly convex, and a; = Ci~!, then the convergence rate is O(n™!):

E[f(za) = f(27)] < Kn™

for a constant K > 0 if mC > 2. However, if mC < 2, then an arbitrarily poor rate
O(n~"¢/?) is obtained (Nemirovski et al. 2009, Bach & Moulines 2011). If the gradient is
estimated, rates of O(n~'/?) can be obtained using a; = Ci~! and ¢; = Di~/* (Broadie et al.
2011). When f is non-strongly convex or non-smooth, the best general convergence rate is
O(n~1/?) (Bach & Moulines 2011).

Stochastic approximation can be made more robust to parameter misspecification through
a combination of step sizes larger than O(n™!) and iterate averaging (Polyak & Juditsky



1992, Ruppert 1988, Nemirovski et al. 2009). The most common averaging scheme is Polayk-
Ruppert averaging:
o 1¢

where x1, ..., x, are generated through the usual stochastic approximation recursion. For a
strongly convex, smooth objective function, a step size a; = Ci~* with a € [1/2, 1] will yield
rates of O(n™!) using iterate averaging (Bach & Moulines 2011). For convex, non-smooth
or non-strongly convex objective functions, iterate averaging will give a rate of O(n="/?) for
a = 1/2 (Nemirovski et al. 2009). In general, using o = 1/2 and iterate averaging is a good
choice because it is adaptive to strong convexity while being robust to non-smoothness and
non-strong convexity.

2.4 Response Surfaces

Response surface methodology (RSM) is a collection of methods to methods that fit a surface
to a set of decision—response pairs and then search the surface to find a new decision.
Traditionally, RSM refers to online methods for decision making: a collection of decision—
response pairs are sampled around a current decision, a “response surface” is fit locally to
the observations, and then decision is updated by searching the local surface. Some authors
have placed batch methods under the umbrella of RSM (Downing et al. 1985, Lim 2010), but
we categorize these as global metamodels. RSM originated as methodology for optimizing
conditions for chemical investigation in the 1950’s (Box & Wilson 1951), and has since been
widely applied in experimental design, process optimization, and simulation optimization.
Recent surveys and books include Barton & Meckesheimer (2006), del Castillo (2007), Myers
et al. (2009), and Barton (2013).

RSM proceeds in a manner similar to stochastic approximation. A starting point, xg, is
selected. Then configurations around this point are sampled and used to fit a first or second
order polynomial (Box & Draper 1987). Expected values in a local area around the current
decision x; are estimated by:

§(ai) = Bo + B, (linear)
y(x;) = Po + ﬂfp:v,- + ZB;‘FBZL‘, (quadratic)

Typically, a linear model is used in earlier iterations while a quadratic model is used in
later ones. Sampling design near x; is often based on experimental design literature for
parametric models (Montgomery 2012) and model fit is evaluated with standard parametric
statistical tools (Kleijnen & Sargent 2000). The decision is updated by moving from the
current decision in the direction of steepest descent. For a locally linear model, this is

Tiy1 = Ty — Clzﬂhp-

The step size a; is often set as the quasi-Newton step size with the local surface as the
objective function (Kleijnen 2008) or through a line search (Barton & Meckesheimer 2006).
Once the estimated slopes get close to zero, a second order model is used to check optimality
conditions through hypothesis testing.



Response surfaces have the same data generating requirements as stochastic approxima-
tion: data generation may be either constructive or black box, and noise generation may be
either endogenous or exogenous. If the data have exogenous noise and constructive genera-
tion, then observational data may be used; otherwise, generative data are required.

2.5 Global Metamodel Optimization

Metamodels relate a set of inputs to an expected output through regression. Response sur-
faces are one form of metamodel, as are the Monte Carlo objective function approximations
formed by SAA. In contrast to local response surfaces, global metamodels define a rela-
tionship that is valid across all feasible input values. A variety of regression methods have
been used to fit global metamodels, including radial basis functions (Shin et al. 2002), neu-
ral networks (Anjum et al. 1997), Gaussian processes/stochastic kriging (Ankenman et al.
2010), and shape constrained nonparametric regression (Lim 2010, Hannah et al. 2013).
Metamodels have been used for optimization for both batch and online problems.

In the batch setting, global metamodel optimization is done through a two-step process
much like SAA. Before any modeling is done, n decision-response pairs, (z;,y;)l, where
y; = F(x;,&), are collected. Then a metamodel, f, : X — R, is fit to (z;,y;)!, through
regression. Finally, the decision is generated by solving

. :
(= min fn(z).

Batch global metamodel optimization is primarily useful for inferring a decision from obser-
vational data generated by a black box with either endogenous or exogenous noise. Note
that most regression methods, like neural networks, basis function regression, and Gaussian
processes, are not shape-constrained: f,, is not guaranteed to be convex and must either be
optimized locally or through global optimization methods. Recently, there has been some
work on using shape-constrained regression to maintain metamodel convexity (Lim 2010,
Hannah et al. 2013).

Global metamodel optimization has recently gained popularity for online optimization
of functions that are costly to evaluate, such as hyperparameter tuning for Bayesian mod-
els (Scott et al. 2011, Snoek et al. 2012). The metamodels used are generative models, like
Gaussian processes, which give a distribution over possible expected value functions. Design
locations are then selected recursively to minimize an error metric, such as the expected
minimal value given the new design location. After each design location is selected, the
metamodel is updated. Selected design locations generally try to balance gaining knowledge
about a region with high uncertainty against tuning decisions in an area that is known to
perform well. Online global metamodels require generative data.

Along with potential search difficulties, global metamodel optimization is limited by the
amount of data for the regression step. Nonparametric metamodels require that n grows
exponentially with the dimension of X. This issue can be bypassed by using models with
strong assumptions, like parametric relationships.



3 Multistage Stochastic Optimization

Multistage stochastic optimization problems aim to find a sequence of decisions, (z;)I_,, that
minimize an expected cost function. The subscript ¢ denotes the time at which decision z; is
made. Usually decisions and random outcomes at time ¢ affect the value of future decisions.
An example would be making a move in a chess game. With a move, the player may capture
one of her opponent’s pieces, change her board position, and alter her possible future moves.
She needs to account for these issues to select the move that maximizes her probability of
winning. Mathematically, we can describe multistage stochastic optimization problems as
an iterated expectation:

* : : : T-1
¢ = fﬂI()rlGI/IVIO £ mle,’éﬁgo,gl) B (:El, 51) +E |: +E |:517T€XT(;7£1:£17§1:T) 7 FT($T7 €T):| :H . (8)
Here T is the number of time periods; xg.; is the collection of all decisions between 0 and t;
& is a random outcome observable at time t; X;(xo4—1,&1.¢) is a decision set that depends
on all decisions and random outcomes between times 0 and t; Fy(zy,&;) is a cost function for
time period t that depends on the decision and random outcome for period ¢; and v is the
discount rate. The time horizon 7" may be either finite or infinite.

Unlike the methods outlined in Section 2, there are no multistage solution methods that
work well for all problems within a broad class, like convex problems or Markov decision
processes. The decision sequence space is affected by the curse of dimensionality: the size of
the space grows exponentially with 7', the number of possible outcomes for &;, and the size
of the decision space each time period, &;. Most successful methods are tailored to problem
subclasses with exploitable structure, including bandit problems and Markov decision pro-
cesses (MDPs). In this section, we break describe solution methods according to problem
classes: bandit problems, MDPs, and convex multistage problems.

3.1 Bandit Problems

Bandit problems are sequential decision problems where each time period a decision maker
has a choice of playing one of K slot machines, or “one-armed bandits.” Each machine
has a payoff that can take values zero or one according to a Bernoulli distribution with an
unknown, arm-dependent probability of success pi. The goal of the decision maker is to
maximize her expected revenue or to minimize regret after T time periods. The decision
xi—1 € {1,..., K} is the selection of the arm to be played at time ¢, the random outcome &,
is a Bernoulli random variable with parameter p,, ,. The cost functions in equation (8) for
maximizing expected rewards and minimizing regret are as follows:

Fy(zi-1,&) = =& (expected reward)

Fi(x1,&) = E[&] — ax py. (regret)
Difficulty comes from the tradeoff between exploiting machines that have been observed to
have high payouts and exploring new machines that have an uncertain payout probability.
Solution methods can be divided by the size of K. When K is small each arm can be tried
many times. When K is large the decision maker needs to borrow information from similar



arms to estimate py, usually through regression. All bandit problems are online and assume
generative data from a black box with endogenous noise.

Small K methods rely on computing a summary statistic for each arm, such as a mean
value, upper confidence bounds (UCB) for py (Lai & Robbins 1985, Audibert et al. 2009),
knowledge gradient (Frazier et al. 2008), or Gittins index (Gittins 1979). Once these have
been computed, the arm with the highest value according to the statistic is played in the
next round. These policies often result in asymptotic optimality.

When K is large, the arm space is often treated as a continuous space, X'. An arm mean
function, g(x), is assumed to have structure, often linearity, Lipschitz continuity, or a locally
Lipschitz continuity. The ellipsoid method creates an ellipse that has high probability of
containing the optimal solution, which works well with linear mean functions (Dani et al.
2008). UCBs can be generated for problems with Lipschitz or locally Lipschitz mean func-
tions by using hierarchical models (Bubeck et al. 2011) or Gaussian processes (Srinivas et al.
2010).

Bandit problems can be extended to include “side information,” which is an observable
random variable that gives information about p,. For instance, if p, is an average click-
through rate for an online advertisement, side information may be the advertiser, the user
click history, zip code, etc. Bandit problems with side information are called “contextual
bandits.” Solution methods approximate the value of the arms as a function of the side
information using regression methods like linear combinations of basis functions (Li et al.
2010), discretization of the state space (Rigollet & Zeevi 2010, Perchet & Rigollet 2013),
random histograms (Yang & Zhu 2002), nearest neighbors (Yang & Zhu 2002) or adaptive
partitioning (Slivkins 2011). While all bandit problems are broadly applicable to many e-
commerce problems like advertising and page layout, contextual bandits are particularly
useful models for online advertising when there is information about the user and/or the
advertisement.

3.2 Markov Decision Processes

MDPs simplify (8) by assuming that the information required to make a decision at time
t can be contained within a state, s;. Naturally, this formulation includes all sequential
decision processes the state is defined as the entirety of the decision and outcome history.
However, MDPs are usually used to model problems where the state can take a small number
of values that recur over time periods. For example, a state may be the position of a robot
within a room where the goal is to navigate to a specific location while avoiding obstacles.
Previous decisions, xg.;, and random outcomes, &;.;, are also summarized by the state. Due
to the Markov nature of the problem, the cost function F; is modified by removing the
time index and including a dependence on the state to produce F(x,s). The probability
of transitioning from state s to state s’ with decision x is P,(s, s’). Traditionally, the time
horizon is infinite. This allows optimality conditions to be expressed in terms of a value
function V' (s), defined as the value of being in state s given that all subsequent decisions are
optimal. The conditions are given by the Bellman optimality equation (Bellman 1961):
z€X(s) T€X(s)

V(s) = min F(z,s)+ ’yz P.(s,s"V(s') = min F(z,s)+~vyE[V(s)]s,x]. (9)
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Since equation (9) is recursive, it is convenient to use value functions that are generated by
a policy 7, which maps each state to a decision:

V™(s) = F(x,s) +vE[V™(s') | s, 2], (10)

where z is chosen according to a policy 7.
Solution methods for MDPs usually involve two steps: estimating value functions for a
given policy 7, and using then the estimated value functions to find a better policy 7',

7' (s) = arg 1;1;{1) F(x,s) +yE[V™(s') | s,2]. (11)
Two of the most common solution methods are policy iteration and value iteration. Policy
iteration selects a policy through (11), and then updates value function estimates in (10)
using that policy. Value iteration combines the policy search and approximation steps by
repeatedly solving:

Viea(s) = ren);?) F(z,s) +~E [Vi(s') | s, z], (12)
where V; is the estimated function after i iterations. See Sutton & Barto (1998) for a sum-
mary of these methods. Other solution techniques include rollout methods, which generate
sample paths a few time periods into the future (Ng & Jordan 2000), Q-learning, which
fits a regression model to state-decision pairs (Watkins & Dayan 1992), and dynamic pro-
gramming, which is a computational method to solve finite horizon, discrete state, discrete
decision problems (Sutton & Barto 1998). MDPs usually assume generative, black box data
with endogenous noise. Most solution methods are online, although some methods like fitted-
Q iteration (Murphy 2003, Antos et al. 2007) accommodate observational data in a batch
setting.

MDP solution methods have many open research problems, including value function
approximation, value attribution, and search over the decision space. Value function ap-
proximation is a form of regression, and it suffers the same problems as regression with
regard to data sparsity in high dimensional state spaces. Proposed approximation methods
have included lookup tables for small state spaces, linear combinations of a set of basis func-
tions (Lagoudakis & Parr 2003), nonparametric functions (Engel et al. 2003), or other prob-
lem specific representations that include hierarchical structure or convexity (Powell 2011).
Additionally, attributing value to actions when MDP has a single payout after a long string
of decisions, such as winning a table tennis game, is notoriously difficult. Finally, all solution
methods require a search over the decision space, as in (11) and (12). This is trivial when
the decision space is finite and small, but can become difficult or impossible when the space
is continuous and multidimensional.

3.3 Convex Multistage Problems

As in single stage optimization, convexity of the cost function and decision space allows
decision makers to leverage deterministic convex optimization methods. Convexity occurs
in many operations research problems like resource allocation, inventory management, and
portfolio management. We define convex multistage problems with respect to equation (8):
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Fy(zy,&) is convex in x; for each & and Xy(zo.—1,&14) is convex for all xo,—; and & .. In
almost all situations the time horizon T is finite and relatively small. Solution methods
include stochastic programming and approximate dynamic programming (ADP).

Stochastic programming solves equation (8) by approximating it with a deterministic
mathematical program, similar to SAA. One important but often unstated assumption is
exogenous noise. It is described with a scenario tree. When n scenarios, {wq,...,wn},
are expressed as a tree, each scenario is a path from the current state to a leaf of the
tree, {&(wi),...,&r(w;)}. Scenario trees are often constructed through moment match-
ing (Hgyland & Wallace 2001) or Monte Carlo methods (Blomvall & Shapiro 2006), and
each scenario can have nonuniform probability weights, {p1(w;),...,pr(w;)}" ;. Decisions
are also indexed by scenario, © = {xg(w;), ..., zr(w;)}";. The objective function is a linear
combination of the costs for each of n scenarios:

flxor(@n), . zor(wn) = Y pulwi) Fulwu(wi), &(wi). (13)

=1 t=1

As with SAA, this is a batch method using observational data and constructive observed
costs. The tree structure is maintained through nonanticipativity constraints: if w; and
w; share a node at time ¢, then z;(w;) = x4(w;). Each decision also needs to satisfy the
original constraints for a given scenario, z;(w;) € Xy(zo.4—1(w;),&14(w;)). A solution is found
by minimizing (13) subject to the original and nonanticipativity constraints, often using dual
decomposition methods (Ruszczyniski 1997).

Stochastic programming methods have been successfully implemented for short and
medium term scheduling problems, including reservoir management (Tejada-Guibert et al.
1995), unit commitment for electricity generation (Takriti et al. 2000), and asset manage-
ment (Carino et al. 1994). Most computational difficulties come from large scenario trees,
which occur when there are long time horizons, finer time scales, or outcome spaces that are
not well described by a sparse tree.

ADP uses ideas from MDPs to solve (8), but it often has a finite time horizon and imposes
shape constraints to allow search over continuous decision spaces. As in the MDP setting,
the relevant historical decision and random outcome information is stored in a state variable,
(S;)L,, and the methods have the same data assumptions. ADP estimates a set of value
functions to satisfy:

Vi(S;) = arg  min ){Et(xuft) +YE [V (Si41) | Se, 2]} (14)

Tt EXt(St

As long as a convex approximation of V;(S;) with respect to x;_; is maintained, the convexity
assumption allows efficient search over the decision space (Powell 2011). The value functions
are often fit through methods similar to value iteration or policy iteration. While ADP
can scale to much larger problems than stochastic programming (Anderson et al. 2011),
approximating value functions is a nontrivial statistical challenge: state variables can be high
dimensional, simulation outputs can be limited, and shape constrained inference is difficult
in multiple dimensions (Hannah & Dunson 2013). Approximation methods have included
basis functions linear projections (Tsitsiklis & Van Roy 2001, de Farias & Van Roy 2003,
Keller et al. 2006), Benders cuts (Higle & Sen 1991, Zakeri et al. 2000), and nonparametric
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regression (George et al. 2008, Deisenroth et al. 2009, Taylor & Parr 2009). Consistency of
ADP has not been shown in a general setting, although it has been demonstrated for certain
cases (Nascimento & Powell 2009).

4 Future Challenges and Closing Remarks

Due to the swift progress of data storage and analysis capabilities, stochastic optimization
has been an area of extremely active research. Summaries of progress within specific fields are
given by Fu (2013), Hutchison & Spall (2013), and Powell (2014). However, many important
areas lacking solutions include the following.

Efficient methods for black box, observational data. Observational data are cur-
rently handled through a global regression over the decision space, and problems with par-
tially observational data receive little study. Methods that exploit convexity could drastically
reduce data requirements and provide more reliable search.

Efficient methods for large multistage problems. While much attention has been
given to value function approximation, discovering new problem subclasses with exploitable
structure may prove more useful. Possible areas include the interplay between large decisions,
such as three year operating goals for a hydroelectric plant, and small decisions, such as
hourly water releases.

Solution evaluation methods. Asymptotic theory provides estimates on the quality of
single stage solutions, but in the multistage case asymptotic bounds either do not exist or
they only provide pessimistic bounds. Some work in the operations research literature uses
information relaxations to provide dual bounds (Haugh & Kogan 2004, Brown et al. 2010),
but these are computationally infeasible for general problems. Fast, reliable bounds would
be useful for practitioners to assess decision quality before implementation.

Optimization in the presence of randomness is a fundamental problem in many fields. We
fully expect that current methods for stochastic optimization will be refined over the next
few decades while computational advances and new problems will lead to new opportunities
for stochastic optimization research.
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