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Abstract

Generalized linear models (GLMs) have been developed for modeling and decod-

ing population neuronal spiking activity in the motor cortex. These models provide rea-

sonable characterizations between neural activity and motor behavior. However, they

lack a description of movement-related terms which are not observed directly in these

experiments, such as muscular activation, the subject’s level of attention, and other in-

ternal or external states. Here we propose to include a multi-dimensional hidden state

to address these states in a GLM framework where the spike count at each time is de-

scribed as a function of the hand state (position, velocity, and acceleration), truncated

spike history, and the hidden state. The model can be identified by an Expectation-

Maximization algorithm. We tested this new method in two datasets where spikes were

simultaneously recorded using a multi-electrode array in the primary motor cortex of

two monkeys. It was found that this method significantly improves the model-fitting

over the classical GLM, for hidden dimensions varying from 1 to 4. This method also

provides more accurate decoding of hand state (lowering the Mean Square Error by

up to 29% in some cases), while retaining real-time computational efficiency. These

improvements on representation and decoding over the classical GLM model suggest

that this new approach could contribute as a useful tool to motor cortical decoding and

prosthetic applications.

Keywords: Neural decoding, motor cortex, generalized linear model, hidden states,

state-space model.
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1. Introduction

Recent developments in biotechnology have given us the ability to measure and

record population neuronal activity with more precision and accuracy than ever before,

allowing researchers to study and perform detailed analyses which may have been im-

possible just a few years ago. In particular, with this advancement in technology, it is

now possible to construct a brain-machine interface (BMI) to bridge the gap between

neuronal spiking activity and external devices that help control real-world applications

(Donoghue, 2002; Lebedev and Nicolelis, 2006; Schwartz et al., 2006). The primary

goal of this BMI research is to be able to restore motor function to physically disabled

patients (Hochberg et al., 2006): spike recordings would be “decoded” to provide an

external prosthetic device with a neurally-controlled signal in the hope that the move-

ment can be restored in its original form. However, there are still various issues that

need to be addressed, such as long-term stability of the micro electrode array implants,

efficacy and safety, low power consumption, and mechanical reliability (Donoghue,

2002; Chestek et al., 2007).

Many mathematical models have been proposed to perform this decoding of spik-

ing activity from the motor cortex. Commonly-used linear models include population

vectors (Georgopoulos et al., 1982), multiple linear regression (Paninski et al., 2004),

and Kalman filters (Wu et al., 2006; Pistohl et al., 2008; Wu et al., 2009). These so-

lutions have been shown to be effective and accurate, and have been used in various

closed loop experiments (Taylor et al., 2002; Carmena et al., 2003; Wu et al., 2004).

However, one caveat is that these models all make the strong assumption that the model

for the firing rate has a continuous distribution (such as a Gaussian distribution) which

apparently is not compatible with the discrete nature of spiking activity.

In addition, various discrete models have been developed to characterize spike

trains. These formulations allow us to model the spiking rate using a discrete distribu-

tion, often a Poisson function with a “log” canonical link function, for the conditional

density function at each time. In particular, recent research has focused on Generalized

Linear Models (GLMs) which allow us to model non-linear relationships in a rela-

tively efficient way (Brillinger, 1988, 1992; Paninski, 2004; Truccolo et al., 2005; Yu
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et al., 2006; Nykamp, 2007; Kulkarni and Paninski, 2007a; Pillow et al., 2008; Steven-

son et al., 2009). The online decoding methods in a GLM framework include particle

filters (Shoham, 2001; Brockwell et al., 2004, 2007) and point process filters (Eden

et al., 2004; Truccolo et al., 2005; Srinivasan and Brown, 2007; Kulkarni and Paninski,

2007b).

Some very recent methods have also been proposed to perform population neuronal

decoding. (Yu et al., 2007) focused on appropriate representation on the movement tra-

jectory. They proposed to combine simple trajectory paths (each path to one target) in

a probabilistic mixture of trajectory models. (Srinivasan et al., 2006; Srinivasan and

Brown, 2007; Srinivasan et al., 2007; Kulkarni and Paninski, 2007b) recently devel-

oped methods that incorporate goal information in a point process filter framework, and

showed corresponding improvements in the decoding performance. This idea of incor-

porating goal information was further examined by Cunningham et al. (Cunningham

et al., 2008), who investigated the optimal placement for targets to achieve maximum

decoding accuracy.

While all of these non-linear models have attractive theoretical and computational

properties, they do not take into account other internal or external variables that may

affect spiking activity, such as muscular activation, the subject’s level of attention, or

other factors in the subject’s environment. Collectively, we call these unobserved (or

unobservable) variables hidden states, or common inputs, using the terminology from

(Kulkarni and Paninski, 2007a); see also (Yu et al., 2006; Nykamp, 2007; Brockwell

et al., 2007; Yu et al., 2009) for related discussion. Similarly, recent studies in the

nonstationary relationship between neural activity and motor behaviors indicate that

such nonstationarity may be accounted for by the fact that the spike trains also encode

other states such as muscle fatigue, satiation, and decreased motivation (Carmena et al.,

2005; Chestek et al., 2007). Moreover, a nonparametric model for point process spike

trains has been developed using stochastic gradient boosting regression (Truccolo and

Donoghue, 2007); it was found that the model fit with minor deviations and that these

deviations may also result from other (unobservable) variables related to the spiking

activity. Thus we would like to include these “hidden variables” as an important ad-

justment for modeling neural spiking processes in the context of neural decoding and
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prosthetic design. The effects of these variables for neural decoding of hand position

has been examined in our recent investigation under a linear state-space model frame-

work (Wu et al., 2009); significant improvement in both data representation and neural

decoding were obtained.

In this paper, we apply a GLM-based state-space model that includes a multidimen-

sional hidden dynamical state, to analyze and decode population recordings in motor

cortex taken during performance of a random target pursuit task. This new model is a

natural extension of our recent investigation in the linear case (Wu et al., 2009). The

parameters in the model can be identified based on a recent version of the Expectation-

Maximization (EM) algorithm for state-space models (Smith and Brown, 2003; Yu

et al., 2006; Kulkarni and Paninski, 2007a). Finally, decoding in this model can be

performed using standard efficient point process filter methods (Brown et al., 1998;

Truccolo et al., 2005), and can therefore be applied in real-time online experiments.

We find that including this hidden state in our analysis leads to significant improve-

ments in the decoding accuracy, as discussed in more detail below.

2. Methods

2.1. Experimental Methods

Electrophysiological recording. The neural data used here were previously recorded

and have been described elsewhere (Wu and Hatsopoulos, 2006). Briefly, silicon mi-

croelectrode arrays containing 100 platinized-tip electrodes (1.0 mm electrode length;

400 microns inter-electrode separation; Cyberkinetics Inc., Salt Lake City, UT) were

implanted in the arm area of primary motor cortex (MI) in two juvenile male macaque

monkeys (Macaca mulatta). Signals were filtered, amplified (gain, 5000) and recorded

digitally (14-bit) at 30 kHz per channel using a Cerebus acquisition system (Cyberki-

netics Neurotechnology Systems, Inc.). Single units were manually extracted by the

Contours and Templates methods, and units with very low spiking rate (< 1 spike/sec)

were filtered to avoid non-robustness in the computation. One data set was collected

and analyzed for each monkey; the number of distinct units was 100 for the first mon-

key, and 75 for the second. The firing rates of single cells were computed by counting
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the number of spikes within the previous 10 ms time window. We found approximately

99.9% of these counts are either 0 or 1, which essentially enforces a binary sequence

of spike counts for most time bins in the study.

Task. The monkeys were operantly trained to perform a random target pursuit task

by moving a cursor to targets via contralateral arm movements. The cursor and a se-

quence of seven targets (target size: 1cm× 1cm) appeared one at a time on a horizontal

projection surface (the workspace is about 30cm × 15cm). At any one time, a single

target appeared at a random location in the workspace, and the monkey was required

to reach it within 2 seconds. As soon as the cursor reached the target, the target dis-

appeared and a new target appeared in a new, pseudo-random location. After reaching

the seventh target, the monkey was rewarded with a drop of water or juice. One ex-

ample trial is shown in Figure 1. A new set of seven random targets was presented

on each trial. The hand positions were recorded at a sampling rate of 500 Hz. 100

successful movement trials were collected in each data set. To match time scales, the

hand position were down-sampled every 10 ms and from this we computed velocity

and acceleration using simple differencing. Taking into account latency between firing

activity in MI and hand movement, we compared the neural activity with the instan-

taneous kinematics (position, velocity, and acceleration) of the arm measured 100 ms

later (i.e. a 10 time bin delay) (Moran and Schwartz, 1999; Paninski et al., 2004; Wu

et al., 2006).

[Figure 1 about here]

2.2. Statistical Methods

2.2.1. Independent State Model

In motor cortical decoding models, the system state typically includes the hand

kinematics. We use the hand position, velocity, and acceleration to fully describe the

movement. The state over time is assumed as a simple autoregressive (AR) model with

order 1 which essentially imposes the continuity of the hand movement. Mathemati-

cally, the state is described using the following equation:

xk+1 = mx + Axxk + ξk (1)
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where xk ∈ <p is the hand kinematics (i.e. the position, velocity, and acceleration for

x- and y-coordinates, grouped together to form a vector), mx ∈ <p is the intercept

term, Ax ∈ <p×p is the transition matrix, and ξk ∈ <p is the noise term. We assume

ξk ∼ N(0,Cx), with Cx ∈ <p×p.

In this study, we add a multi-dimensional hidden state to the system. For simplicity,

the hidden state, qk ∈ <d, is also assumed as an AR(1) model (Smith and Brown, 2003;

Kulkarni and Paninski, 2007a), and the transition is described as:

qk+1 = Aqqk + εk (2)

where Aq ∈ <d×d is the transition matrix, and εk ∈ <d is the noise term. We assume

εk ∼ N(0,Cq), with Cq ∈ <d×d. Here, εk and ξk are also assumed independent of each

other.

In addition to the two system equations (Eqns. 1 and 2), a measurement equation

is used to characterize the discretized firing activity (spike count) of the recorded C

neurons. Here, we use a Poisson distribution to describe the spike count for each

neuron at each time conditioned on the hand state, spike history, and hidden state. That

is,

yc
k |xk,Hc

k,qk ∼ P(λc
k∆t) (3)

where yc
k is the spike count of the cth neuron at the kth time bin for c = 1, · · · ,C, and

Hc
k denotes the spike history. ∆t denotes the bin size. Based on the GLM framework,

the conditional intensity function (CIF), λc
k, has the form:

λc
k = exp(µc + βT

c xk + γT
c yc

k,N + lTc qk) (4)

where yc
k,N = (yc

k−1, · · · , yc
k−N)T is the most recent N history steps from the kth bin of

the cth neuron, µc ∈ < is the intercept for this model, and βc ∈ <p, γc ∈ <N , and

lc ∈ <d are coefficients for the hand state, spike history, and hidden state, respectively.

Note that the history term in the density function implies the dependence for the

spike train over time. The spike train is, therefore, a Non-Poisson Process (NPP) albeit

the distribution at each time is Poisson. However, if this term is excluded from Equation

4; that is,

λc
k = exp(µc + βT

c xk + lTc qk), (5)
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then the spike train is a commonly-used Inhomogeneous Poisson Process (IPP) (Brown

et al., 1998; Gao et al., 2002; Brockwell et al., 2004), given the system states xk and

qk; on the other hand, if we integrate over the unobserved hidden state qk, then the

spike train may be considered a log-Gaussian Cox process, a doubly stochastic Poisson

process where the logarithm of the conditional intensity function is a Gaussian process

(Snyder and Miller, 1991; Moeller et al., 1998; Kulkarni and Paninski, 2007a).

We also note that we have an intercept term in Equation 1 as the kinematic data

may not be centered at 0. However, we do not use an intercept term for the hidden state

(Eqn. 2). This is to assure the identifiability of the GLMHS-IS model. It is easy to

verify that the intercept is equivalent to a centralization shift in the hidden state and the

shift can be absorbed in the intercept term, µc, in the CIF in Equation 4 or 5.

2.2.2. Dependent State Model

Equations 1 and 2 independently describe the hand state and hidden state, respec-

tively. This independent description provides an easy-to-access framework to investi-

gate their dynamics. However, in general the hidden states may actually have a direct,

dynamic impact on the hand state and vice versa (Wu et al., 2009). Taking into account

this dependency, the system model can be written as:


xk+1

qk+1

 = A


xk

qk

 + vk (6)

where A ∈ <(p+d)×(p+d) is the transition matrix, and vk ∈ <(p+d) is the noise term.

We assume vk ∼ N(0,V), with V ∈ <(p+d)×(p+d). There is no intercept term here as

the center of the hidden state can be absorbed in the measurement equation and the

hand kinematics can be easily centralized before being used in the model. Note that

if A = diag(Ax,Aq), and V = diag(Cx,Cq), then Equation 6 can be simplified to two

independent equations (as Eqns. 1 and 2 except the intercept term mx). Here diag(·)
denotes a block-diagonal matrix by putting all components in the main diagonal.

Coupling the dependent state model (Eqn. 6) and the measurement model (Eqn. 3),

we also form a state-space model to represent the neural activity and hand kinematics.

We denote this GLM with hidden states using a dependent state model as GLMHS-DS,
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and the one using an independent state model (Eqns. 1, 2, and 3) as GLMHS-IS. As

in the GLMHS-IS, the CIF, λc
k, in the GLMHS-DS can have either an NPP (Eqn. 4) or

IPP (Eqn. 5) form.

2.3. Model Identification of GLMHS-IS

Based on Equations 1, 2, and 4, the parameters in the GLMHS-IS are (mx, Ax, Cx,

Aq, Cq, {µc}, {βc},{γc}, {lc}) where bracket {·} denotes the set of parameters with all val-

ues of the subindex; for example, {µc} = (µ1, · · · , µC). At first, we need to identify the

new model using a training set where firing rates of all neurons, {yk}, and hand states,

{xk}, are observed. As the hand kinematics is independently formulated in Equation

1, the parameters (mx,Ax,Cx) can be identified using the standard Least Squares esti-

mates (Wu et al., 2006). Let θ = (Aq, Cq, {µc}, {βc}, {γc}, {lc}). The identification of

θ needs more computations as it involves the unknown hidden state. Here we propose

to identify θ based on an approximate EM algorithm for this state-space model (Smith

and Brown, 2003; Shumway and Stoffer, 2006; Kulkarni and Paninski, 2007a).

2.3.1. EM Algorithm for GLMHS-IS: E-Step

The EM algorithm is an iterative method. Let the parameter be θi at the ith iteration.

In the E-step, we need to calculate the expectation of the complete (i.e. firing rates,

hand state, and hidden state) log-likelihood, denoted by ECLL, with the parameter θ,

given as:

ECLL = EP({qk}|{xk ,yk},θi)
log P({yk, xk,qk}; θ) (7)

where the expectation is on the posterior distribution of the hidden state conditioned on

the entire observation with the current parameter θi.

Using the Markov properties and the independence assumptions formulated in Eqns.
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2 and 3, we have:

ECLL = EP({qk}|{xk ,yk};θi)
[

M−1∑

k=1

log P(qk+1|qk; θ)

+

M∑

k=1

EP(qk |{xk ,yk};θi)
log P(yk |xk,Hk,qk; θ)] + const.

=

M−1∑

k=1

EP(qk+1,qk |{xk ,yk};θi)
log P(qk+1|qk; θ)

+

M∑

k=1

EP(qk |{xk ,yk};θi)
log P(yk |xk,Hk,qk; θ) + const. (8)

where M denotes the total number of time bins in the data, and Hk = {Hc
k} denotes

the spike history of all neurons. The constant term includes the hand state transition

probability and the initial condition, P(q1), on the hidden state. The computations of

these terms are independent of the parameter θ. The initial state q1 can be simply set to

zero; we have found that the initial value has a negligible impact on the data analysis

(Wu et al., 2009).

To estimate the expected log-likelihood in Equation 8, we need to to know the dis-

tributions of P(qk+1,qk |{xk, yk}; θi) and P(qk |{xk, yk}; θi). Assuming normality on these

quantities, we only need to compute their first and second order statistics E
[
qk |{xk, yk}; θi

]
,

Cov
[
qk |{xk, yk}; θi

]
, and Cov

[
qk+1,qk |{xk, yk}; θi

]
(labeled as qk|M , Wk|M , and Wk+1,k|M ,

respectively). These terms can be computed via a standard approximate forward-

backward recursive algorithm (Brown et al., 1998; Smith and Brown, 2003; Kulkarni

and Paninski, 2007a). See Appendix A for details.

Likelihood Computation. With all conditional probabilities of the hidden state

estimated in the E-step, we can compute the joint likelihood of the observed firing

rates and hand state in the training data with current parameters θi. Letting x1:M denote

the set (x1, · · · , xM) and y1:M denote the set (y1, · · · , yM), we can compute

P(x1:M , y1:M; θi) = c
M∏

k=2

P(xk, yk |x1:k−1, y1:k−1) (9)

where the initial condition (i.e. P(x1, y1)) is assumed as a constant, c, over the iter-

ations. For convenience, we remove θi and use 1:n to denote sub-indices (1, · · · , n).

This notation simplification will be used in all future conditional probabilities in this
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paper. For each k,

P(xk, yk |x1:k−1, y1:k−1)

=

∫

qk

P(xk |xk−1)P(yk |xk,Hk,qk)P(qk |x1:k−1, y1:k−1)dqk

The integrand is a product of two Gaussian distributions (first and third terms) and one

Poisson distribution (second term). There is no closed-form expression for this inte-

gration. Here we use a Monte-Carlo method to estimate its value as qk |x1:k−1, y1:k−1 ∼
N(qk|k−1,Wk|k−1) (see Appendix A). Let q(1)

k , · · · ,q(I)
k be I independent samples from

this distribution. Then

P(xk, yk |x1:k−1, y1:k−1) ≈ 1
I

I∑

i=1

[P(xk |xk−1)
C∏

c=1

P(yc
k |xk,Hc

k,q
(i)
k )]

Note that as the likelihood in Eqn. 9 is calculated over all time steps, the randomness

of samples at each time is offset. In practice, we found a very stable likelihood value

even with a small sample size (I = 10 in this study) at each time.

2.3.2. EM Algorithm for GLMHS-IS: M-Step

In the M-step, we update θi by maximizing ECLL with respect to θ. To simplify

notation, we use P(·| · · · ) to denote P(·|{xk, yk}; θi) and remove the subindex i for all

parameters. The log-likelihood in Equation 7 can be partitioned in the following form:

ECLL = E1 + E2 + const.,

where

E1 =

M−1∑

k=1

EP(qk+1,qk |··· ) log P(qk+1|qk; Aq,Cq) (10)

E2 =

M∑

k=1

EP(qk |··· ) log P(yk |xk,Hk,qk; µc,βc,γc, lc) (11)

Here E1 and E2 contain different parameters. We can maximize E1 to identify Aq and

Cq, and maximize E2 to identify {µc}, {βc}, {γc}, and {lc}. The solution for Aq has a
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closed-form expression given by:

A(i+1)
q =


M−1∑

k=1

E(qk+1qT
k | · · · )




M−1∑

k=1

E(qkqT
k | · · · )


−1

=


M−1∑

k=1

Wk+1,k|M + qk+1|MqT
k|M




M−1∑

k=1

Wk|M + qk|MqT
k|M


−1

. (12)

Similarly, using the measurement model in Equation 3, we have

E2 =

M∑

k=1

C∑

c=1

∫

qk

P(qk | · · · )[−λc
k∆t + yc

k log(λc
k)]dqk + const.,

where λc
k is described in Equation 4 or 5. There is no closed-form expression for the

maximization of the parameters {µc,βc,γc, lc}. We here use a Newton-Raphson algo-

rithm to update these parameters. It can be shown that the Hessian matrix of E2 is

negative-definite (Kulkarni and Paninski, 2007a), indicating that E2 is a strictly con-

cave function with respect to all parameters. Therefore, the Newton-Raphson method

rapidly converges to the unique root of the equation (i.e., the global maximum of E2)

within a few iterations (typically around 5 in the given data). The detailed procedure is

described in Appendix B.

2.4. Model Identification of GLMHS-DS

Based on Equations 4 and 6, the parameters in the GLMHS-DS are θ = (A, V, {µc},
{βc}, {γc}, {lc}). Similarly to the identification of the GLMHS-IS, we also use an EM

algorithm to identify the GLMHS-DS.

11



2.4.1. EM Algorithm for GLMHS-DS: E-Step

In the ith iteration, we estimate the expected complete log-likelihood

ECLL = EP({qk}|{xk ,yk};θi)
log P({xk, yk,qk}; θ)

= EP({qk}|{xk ,yk};θi)
[

M−1∑

k=1

log P(xk+1,qk+1|xk,qk; θ)

+

M∑

k=1

EP(qk |{xk ,yk};θi)
log P(yk |xk,Hk,qk; θ)] + const.

=

M−1∑

k=1

EP(qk+1,qk |··· ) log P(xk+1,qk+1|xk,qk; θ)

+

M∑

k=1

EP(qk |··· ) log P(yk |xk,Hk,qk; θ) + const. (13)

This decomposition is the same as that in Equation 8 except that the hand state and

hidden state are in one probability transition as they are dependent on each other. To

utilize the observed hand state in training data, we let

A =


A11 A12

A21 A22

 , and vk = (ξT
k , ε

T
k )T ,V = diag(Cx,Cq),

where A11 ∈ Rp×p, A12 ∈ Rp×d, A21 ∈ Rd×p, and A22 ∈ Rd×d are four sub-matrices, and

ξk, εk, Cx, and Cq follow the same definition in the GLMHS-IS model. Then Equation

6 can be reorganized in the following form:

xk+1 − A11xk = A12qk + ξk (14)

qk+1 = A22qk + A21xk + εk (15)

Here the hidden state transition (Eqn. 15) has a linear Gaussian form with A21xk as a

control input. The hand kinematics (Eqn. 14) can be thought of as a measurement in ad-

dition to neural firing rate of each observed neuron in Equation 3. With this extra mea-

surement, the estimation of posteriors of the hidden state conditioned on the full ob-

servation, P(qk+1,qk |{xk, yk}; θi) and P(qk |{xk, yk}; θi), involves more computations than

that in the GLMHS-IS model (Appendix A). Assuming the normality on the posteriors,

we also compute the means and covariances, E
[
qk |{xk, yk}; θi

]
, Cov

[
qk |{xk, yk}; θi

]
, and

Cov
[
qk+1,qk |{xk, yk}; θi

]
(labeled as qk|M , Wk|M , and Wk+1,k|M , respectively).
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Likelihood Computation. We compute the joint likelihood of the observed firing

rates and hand state in the training data with parameters θi. The likelihood can then be

written as

P(x1:M , y1:M; θi) = cP(yM |x1:M , y1:M−1)
M−1∏

k=1

P(xk+1, yk |x1:k, y1:k−1) (16)

Here the initial probability, P(x1), is assumed as a constant c. For each k,

P(xk+1, yk |x1:k, y1:k−1)

=

∫

qk

P(xk+1|xk,qk)P(yk |xk,Hk,qk)P(qk |x1:k, y1:k−1)dqk

≈ 1
I

I∑

i=1

[P(xk+1|xk,q(i)
k )

C∏

c=1

P(yc
k |xk,Hc

k,q
(i)
k )]

where we use a Monte-Carlo method in the last step in that qk |x1:k, y1:k−1 ∼ N(qk|k−1,Wk|k−1)

(see Appendix C).

The first term in Equation 16 can be computed in the same way except that there is

no transition in the hand state; that is,

P(yM |x1:M , y1:M−1) =

∫

qk

P(yM |xM ,Hc
M ,qM)P(qM |x1:M , y1:M−1)dqk.

The same Monte-Carlo procedure can be applied here.

2.4.2. EM Algorithm for GLMHS-DS: M-Step

Similarly, the expected complete log-likelihood in Equation 13 can be written as

ECLL = E3 + E4 + const.

where

E3 =

M−1∑

k=1

EP(qk+1qk |··· ) log P(xk+1,qk+1|xk,qk; A,V) (17)

E4 =

M∑

k=1

C∑

c=1

EP(qk |··· ) log P(yc
k |xk,Hc

k,qk; µc,βc,γc, lc) (18)

Here E3 and E4 contain different parameters. We can maximize E3 to identify A and V,

and maximize E4 to identify {µc}, {βc}, {γc}, and {lc}. Note that Equation 18 is identical
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to Equation 11. Therefore the update of the parameters {µc}, {βc}, {γc}, and {lc} is the

same as that in the M-step for the GLMHS-IS model.

The Maximization of E3 with respect to A has a closed-form solution:

A(i+1) =


M−1∑

k=1

EP(qk+1qk |··· )


xk+1

qk+1




xk

qk



T 


M−1∑

k=1

EP(qk |··· )


xk

qk




xk

qk



T 

−1

=


M−1∑

k=1


xk+1xT

k xk+1qT
k|M

qk+1|MxT
k Wk+1,k|M + qk+1|MqT

k|M






M−1∑

k=1


xkxT

k xkqT
k|M

qk|MxT
k Wk|M + qk|MqT

k|M





−1

The covariance V = diag(Cx,Cq) is a block-diagonal matrix where Cq denotes the co-

variance of the hidden state. To make the system identifiable, we fix Cq as the identity

matrix. Based on the updated A(i+1), the solution to Cx also has a closed form:

C(i+1)
x =

1
M − 1

M−1∑

k=1

EP(qk+1qk |··· )
[
(xk+1 − A(i+1)

11 xk − A(i+1)
12 qk)(xk+1 − A(i+1)

11 xk − A(i+1)
12 qk)T

]

=
1

M − 1

M−1∑

k=1

[(xk+1 − A(i+1)
11 xk)(xk+1 − A(i+1)

11 xk)T − A(i+1)
12 qk|M(xk+1 − A(i+1)

11 xk)T

− (xk+1 − A(i+1)
11 xk)qT

k|MA(i+1)
12

T
+ A(i+1)

22 (Wk|M + qk|MqT
k|M)A(i+1)

22
T

]

Note that each of the optimizations involved in the M-step for this model have

unique solutions, although the marginal likelihood log P({yk}|θ) may not be concave

with respect to all of the elements of the parameter vector θ (Paninski, 2005). Thus

initialization of the parameter search can play an important role, especially in the

GLMHS-DS model, which has a few more parameters to describe the interaction of

the kinematic state xk with the hidden state qk. We found that initializing the GLMHS-

IS parameters to the GLM solution, and then initializing the GLMHS-DS parameters

to the GLMHS-IS solution, led to reliable and accurate results.

2.5. Decoding

After all parameters in the model (GLMHS-IS or GLMHS-DS) are identified, we

can use the model to decode neural activity and reconstruct the hand state. To make

the decoding useful in practical applications, we focus on on-line “filtering” estimates,

defined as the posterior distribution of the hand state conditioned on the previous and
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current spiking rate. Note that the exact estimation of the posterior distribution is in-

tractable as the measurement equation is based on a non-linear Poisson model (Eqn.

3). To simplify the process, we approximate the posterior with a normal distribution

whose mean and covariance we update with each time step. This allows us to use an

efficient point process filter which is a nonlinear generation of the classical Kalman fil-

ter (Fahrmeir and Tutz, 1994; Brown et al., 1998; Truccolo and Donoghue, 2007). To

use the point process filter in this situation, we combine the kinematic states xk and the

hidden states qk to form a new state vector sk. The procedure (omitted here) is similar

to that described in Appendix A.

2.6. Goodness-of-Fit Analysis

A common way to perform goodness-of-fit analysis when spike trains are modeled

in continuous time is to use the idea of Time Rescaling (Brown et al., 2002). Briefly,

one would use the fitted point process rate function, and “rescale” the time axis. Under

the assumption that the fitted model is “correct”, the rescaled spike train should be a

homogeneous Poisson Process.

However, for point processes modeled in discrete time, a different approach is

needed. Recently, Brockwell (Brockwell, 2007) introduced a new method for con-

ducting goodness-of-fit analysis for models in discrete time. In general, for continu-

ous distributions, one can use Rosenblatt’s Transformation (Rosenblatt, 1952) to map

a continuous k-variate random vector X to one with a uniform distribution on a k-

dimensional hypercube. Brockwell generalized this transformation for any vector X

(either discrete, continuous or mixed) and showed that this new transformation of the

vector X can still be mapped to a uniform distribution on [0, 1], allowing us to do

goodness-of-fit even for discrete spike trains. In the context of neural spiking pro-

cesses, this “generalized residual” is constructed as follows (Brockwell et al., 2007):

For k = 1, . . . ,M, calculate

r̄(c)
k = P

(
y(c)

k ≤ N(c)
k |y(c)

1:k−1 = N(c)
1:k−1

)

=

∫
P

(
y(c)

k ≤ N(c)
k |xk,qk

)
dP

(
xk,qk |y(c)

1:k−1 = N(c)
1:k−1

)
(19)
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and the left limits

r(c)
k = P

(
y(c)

k < N(c)
k |y(c)

1:k−1 = N(c)
1:k−1

)
(20)

where N(c)
t is the spike count of the cth neuron at time t, and N(c)

1:t−1 is the collection of

spike counts up to t − 1. Using samples drawn from P
(
xk,qk |y(c)

1:k−1 = N(c)
1:k−1

)
(essen-

tially the prediction distribution up to the previous time step), we evaluate P
(
y(c)

k ≤ N(c)
k |xk,qk

)

and evaluate the Monte Carlo approximation to r̄(c)
k and r(c)

k . With estimates of r̄(c)
k and

r(c)
k , draw independently R(c)

k ∼ Uni f
(
r(c)
k , r̄(c)

k

)
at each time k. Under the assumption

of model correctness, the set of residuals R(c)
k , k = 1, . . . ,M should be uniformly dis-

tributed on [0, 1]. This procedure is done for all C neurons in the study.

It should be noted, however, that this method is stochastic in nature (meaning, we

should expect slightly different results every time we execute this method). This is

because there are two sources of randomness in this method: One is in the Monte

Carlo samples used to evaluate the upper and lower limits (although this is not much

of a problem since we expect some degree of convergence for larger sample sizes), and

the other is in generating the residuals. It should also be noted that, while a goodness-

of-fit procedure can provide us important information about a model’s lack of fit, in

many cases multiple models may ”pass” a given goodness-of-fit test (indeed, this is

the case here, as discussed further below). Therefore, to determine which model is

most appropriate, further analyses, such as likelihood calculations or model selection

procedures, need to be conducted. A detailed likelihood analysis is performed later in

the paper.

3. Results

3.1. Identification

To both identify and verify our model, we divide our data into two distinct parts: a

training set (to fit all necessary model parameters) and a testing set (to verify that the

model fit is appropriate). In each dataset, we use the first 50 trials as our training set,

with the next 50 trials as a testing set. Each trial was about 4-5 seconds long; with a

bin size of 10ms, this results in about 400 to 500 observations for each trial, or a total

size of 20000 to 30000 observations for the training set. This is a sufficient number
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for identification and modeling purposes. The typical number of iterations in each EM

procedure is about 10 to 20.

3.1.1. GLMHS-IS Model

In the GLMHS-IS model, the hand kinematics are modeled independently of the

common inputs (see Eqn. 1). This model is straightforward mathematically, as it

enables us to fit parameters separately using the standard least squares method.

IPP case. Our first analysis involves measuring the goodness-of-fit in the GLMHS-

IS IPP model (see Section 2.6). Based on the assumption of “model correctness”, the

residuals constructed should be from a uniform distribution on [0, 1]. Here we calculate

these residuals for each of our 50 training trials. We found that the residuals for most

of the cells (around 90% in both datasets) are uniformly distributed (P-value > 0.05,

Kolmogorov-Smirnov test).

We then analyze the CIF, λc
k, of the GLMHS-IS versus that of the classical GLM

for IPP spike trains. In the GLMHS-IS, we take log λc
k = µc + βT

c xk + lTc qk|k, and in the

GLM, log λc
k = µc + βT

c xk. Note that µc, βT
c and lTc in the GLMHS models are fitted

using the EM approach, while µc and βT
c in the classical GLM are fit through standard

GLM methods. In both cases, we assume that these parameters are fixed quantities,

and that xk is known. We use the filtering estimates to obtain the approximate posterior

distribution of qk given the data up to time bin k, namely qk ∼ N(qk|k,Wk|k); using

this distribution assumption, we can calculate 95% confidence intervals for log λc
k in

the usual multiple regression manner, and then exponentiate to obtain the (asymmetric)

confidence limits for λc
k.

The CIFs of both models in one example trial are shown in Figure 2. We see from

the figure that the confidence intervals are generally fairly “tight” around the estimated

CIF. Also, we see that the GLMHS framework can better capture the significant vari-

ation of the spiking activity whereas the classical GLM appears to over-smooth the

activity. For example, the CIF under our new model increases sharply when there is in-

creased spiking activity (in the beginning of the trial, for example), while the classical

GLM CIF remains relatively constant. It should be noted that, under this formulation,

the CIF for the GLMHS model is a function of the spike values at each time k (through
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the calculation of qk|k), while the CIF for the classical GLM is not (though the parame-

ters in the model are still estimated from the spike values). This partially accounts for

the apparently improved performance of the CIF in the GLMHS model.

[Figure 2 about here]

We also calculate the Normalized Log-Likelihood-Ratios (NLLRs) in testing part

of each data set. This is for the purpose of cross-validation. The NLLR is calculated

as:
1

N∆t
log2

Ld

L0
=

1
N∆t

(
log2 Ld − log2 L0

)

where Ld is the likelihood of the observed data under a d-dimensional GLMHS-IS

model, L0 is the likelihood under the classical GLM IPP model, N is the number of

bins used to calculate the likelihood and ∆t is the bin size. N∆t measures the time

length of the data. Using base 2 units, the NLLR is measured in bits/sec. The results

for the IPP case are shown as solid lines with stars in Figure 3. Here we see that the

NLLR (computed on the test data) is increasing for all values of d (from 0 to 4) in both

data sets.

[Figure 3 about here]

We use a standard Likelihood Ratio Test (LRT) to determine significance in the

improvement since the models are nested (the GLMHS-IS model is equivalent to the

classical GLM model if the hidden dimension d = 0). We found that the GLMHS-IS

models provide significantly better representation than the classical GLM for all values

of d (details omitted to save space). One can also use standard model-selection crite-

rions such as the Bayesian Information Criterion (BIC) (Rissanen, 1989) to determine

model significance. Lower values of the BIC indicate that the model is better when

compared to another model. It was found that the BIC values is a decreasing function

with respect to the hidden dimension d. This indicates that larger hidden dimensions

provide better representation on the neural activity and hand kinematics. Again, we

emphasize that all the likelihood comparisons (in the above and in the following) are

on the testing data. This indicates that the improvement in the model-fitting is effective

as the result is already cross-validated.

NPP case. It is understood that including spike history terms is very important in
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the modeling of neural spiking processes (Brillinger, 1992; Paninski, 2004; Truccolo

et al., 2005; Truccolo and Donoghue, 2007). In the Non-Poisson process case, the

logarithm of CIF is a linear function of hand state, spike history, and hidden state;

that is, log λc
k = µc + βT

c xk + γT
c yc

k,N + lTc qk. In our data analysis, we choose N = 10.

This indicates that a neuron’s current spiking activity is related to its spike values in the

previous 100ms. Similar results were obtained as in the IPP case for both the goodness-

of-fit and in the comparison of the CIF between the GLMHS-IS NPP model and the

classical GLM model (the detail is omitted).

When calculating the NLLR in the NPP case, we fix L0 to be the likelihood under

the classical GLM IPP model as a baseline measure to compare the modeling improve-

ment between IPP and NPP cases. The results for the NPP case are shown as dashed

lines with circles in Figure 3. Here we see a similar trend as in the IPP case: NLLR is

increasing with respect to d for each dataset. These results indicate that both IPP and

NPP models with hidden inputs outperform the classical GLM model in the modeling

of neural spiking processes. Furthermore, increasing the hidden dimension can provide

a better representation. Finally, as a comparison between IPP and NPP models, we see

that the NLLRs for the NPP are greater than for the IPP (significant jump between solid

and dashed lines at d = 0 in Figure 3), suggesting that the NPP can better represent the

nature of the neural activity than the IPP. Similar LRT and BIC analyses can be applied

to quantify these results.

3.1.2. GLMHS-DS Model

In the GLMHS-DS model, the hand kinematics are allowed to influence the com-

mon inputs, and vice versa. While this idea is fairly straightforward, the mathemat-

ical approach involves more computations. We performed the same analysis as in

the GLMHS-IS model. The goodness-of-fit results for the GLMHS-DS model were

very similar to the previously discussed GLMHS-IS model, and are omitted to save

space. Moreover, similar to the result in the GLMHS-IS case (Fig. 2) the CIF under

the GLMHS-DS model can better characterize spiking activity than the classical GLM

model. For example, the GLMHS-DS model can correctly capture certain spiking sig-

nals whereas the CIF of the GLM model seems to be over-smoothing the data (data
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omitted).

[Figure 4 about here]

Figure 4 compares the NLLRs for both IPP and NPP cases under the GLMHS-DS

model. Here we still see an increasing trend in the NLLRs with respect to d for each

dataset. This indicates that the neural activity is better represented with the GLMHS-

DS model for both the IPP and NPP cases. Consistent with our results in the GLMHS-

IS model, the NLLRs for the NPP are greater than for the IPP, suggesting that the NPP

can better represent the nature of the neural activity than the IPP.

3.2. Decoding

In the identification stage, we used the EM algorithm to fit all necessary parameters

in the model, and performed model diagnostics including goodness-of-fit analysis and

likelihood calculations. Here we are interested in measuring the performance of our

model in the decoding on testing data. In this stage, we reconstruct the hand state

using the observed firing rates up to the current time. This “filtering” estimate would

be desirable in practical on-line applications.

[Figure 5 about here]

Figure 5 has an example for one trial in each of our datasets. Here we see that

our new model is able to capture the true value of the hand kinematics with the 95%

confidence intervals over time. Only in a few cases did the true hand kinematics stray

outside of the confidence limits. This is observed both in the IPP (Fig. 5 A) and NPP

(Fig. 5 B) cases. We quantify the decoding accuracy using a traditional 2-d Mean

Square Error (MSE) in the units of cm2, comparing the predicted hand trajectory to the

true hand trajectory in the testing data (Wu et al., 2006). The results are summarized in

Tables 1 (for GLMHS-IS models) and 2 (for GLMHS-DS models).

From Table 1, we notice that, for all values of d, the MSE in the GLMHS-IS is

better than in the classical GLM. Also, unlike the results in the linear case (Wu et al.,

2009) where the MSE was always decreasing with respect to d, here we see that larger

d does not always improve the decoding results. In Dataset 2, for example, the MSE

is very consistent for all four dimensions. Table 2 summarizes the decoding results for

the GLMHS-DS models. We found that overall the decoding here is more accurate than
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Method Dataset 1 Dataset 2

IPP NPP IPP NPP

classical GLM 9.17 8.61 [6%] 9.78 8.47 [13%]

d=1 8.66 (5%) 8.20 (5%) 7.91 (19%) 7.26 (14%)

d=2 8.41 (8%) 8.04 (7%) 8.11 (17%) 7.36 (13%)

d=3 8.50 (8%) 8.27 (4%) 7.79 (20%) 7.17 (15%)

d=4 7.77 (16%) 7.26 (16%) 7.70 (21%) 7.40 (13%)

Table 1: Comparison of decoding accuracy (MSE in the units of cm2) between GLMHS-IS models and the

classical GLM. The comparison is for both IPP and NPP cases in each of the two datasets. Numbers in

the square brackets indicate the improvement by the NPP over the IPP. Numbers in parentheses indicate the

improvement by the hidden state models over the classical GLM model.

that in the GLMHS-IS models. For example, here there are more improvements larger

than 10% in Dataset 1, and one improvement reaches 29% when d = 2 for the IPP case

in Dataset 2 which is the maximum over all models. This suggests that there should be

some direct interaction between the hand state and hidden state, and the interaction can

help better characterize the dynamic systems and improve decoding performance.

3.3. Comparison with the Linear State-Space Model with Hidden States

In (Wu et al., 2009), we proposed to add a multi-dimensional hidden state to a

linear Kalman filter model. Here we refer to it as a KFHS (Kalman filer with hidden

state) method. The KFHS shares many similarities to the GLMHS in this paper: 1)

Both KFHS and GLMHS are in the framework of state-space models where the neural

firing rate is the observation, and the hand kinematics and hidden state are the system

state with a linear Gaussian transition over time. 2) Adding the hidden state improves

the representation of the neural data (larger likelihoods in the hidden state models). In

particular, the likelihood increases with respect to the dimension of the hidden state. 3)

Adding the hidden state improves the decoding accuracy (lower mean squared errors).

Based on the same datasets as in this study, the decoding accuracy using the KFHS is

shown in Table 3 (reproducing the results in (Wu et al., 2009)). Comparing decoding

results of the KFHS and the GLMHS (in Tables 1 and 2), we found that MSE in the
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Method Dataset 1 Dataset 2

IPP NPP IPP NPP

classical GLM 9.17 8.61 [6%] 9.78 8.47 [13%]

d=1 8.59 (6%) 8.27 (4%) 7.81 (20%) 7.31 (14%)

d=2 7.53 (18%) 7.40 (14%) 6.95 (29%) 6.40 (24%)

d=3 8.02 (13%) 8.00 (7%) 7.19 (26%) 6.80 (20%)

d=4 7.71 (16%) 7.39 (14%) 7.24 (26%) 6.93 (18%)

Table 2: Mean Squared Error (in the units of cm2) of GLMHS-DS models and the classical GLM for IPP

and NPP cases in each of the two datasets. Numbers in the square brackets indicate of the improvement by

the NPP over the IPP. Numbers in parentheses indicate the improvement by the hidden state models over the

classical GLM model.

KFHS is lower in some cases, whereas higher in the others (though the GLMHS models

appear to often perform better than the classical Kalman filter).

Method Dataset 1 Dataset 2

classical KF 8.35 9.78

d=1 8.09 (3%) 8.37 (14%)

d=2 7.60 (9%) 8.23 (16%)

d=3 7.47 (11%) 7.61 (22%)

Table 3: Mean Squared Error (in the units of cm2) of KFHS models and the classical Kalman filter (KF) in

each of the two datasets. Numbers in parentheses indicate the improvement by the hidden state models over

the classical KF.

Though the main results are consistent, there are significant differences between

these two methods which are worth emphasizing: 1) The KFHS assumes the neural

firing is a continuous variable with a Gaussian distribution. The model can be identified

using the conventional EM algorithm (Dempster et al., 1977). In contrast, the GLMHS

is based on a more realistic and accurate non-linear discrete model of spike trains. The

model is identified based on an approximate EM method (Smith and Brown, 2003).

2) In the KFHS, neural firing rates are described as a linear Gaussian model without

spike history. In contrast, the firing rate in the GLMHS models can either include
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spike history (NPP model) or not (IPP model). 3) In the KFHS, it is necessary to

have dependency between the hand kinematics and the hidden state, since we found

empirically that the model can not be identified otherwise (the likelihood does not

increase in the EM iteration). However, both the GLMHS-IS and GLMHS-DS can

appropriately characterize the neural activity. 4) The hidden dimension in the KFHS

can only vary from 1 to 3 before performance begins to decrease, whereas the hidden

dimension in the GLMHS can be 4 or larger. 5) In the KFHS, higher hidden dimensions

resulted in better decoding accuracy. Such a trend is much weaker in the GLMHS-IS

and GLMHS-DS.

3.4. Analysis of the Hidden State

By adding a multi-dimensional hidden state to the classical GLM, we have obtained

better model fit as well as improved decoding. However, our understanding of the hid-

den state is still very limited as it is always unknown. Here we perform some rudimen-

tary analysis to explore its role in neural coding by examining the non-stationarity and

higher-order kinematics terms.

Non-stationarity check. It is widely known that neural activity in motor cor-

tex may be highly non-stationary over time (Carmena et al., 2005; Kim et al., 2006;

Chestek et al., 2007). Our recent study in the KFHS model indicated that each dimen-

sion of the hidden state decoded from neural activity has either a very weak or no trend

at all over time. Results similar to the KFHS model are also obtained under our new

GLMHS model. For example, fitting a linear regression to the 2-d GLMHS-IS model

revealed R2 values of .0001 and .0020, respectively. This suggests that the hidden states

do not appear to capture the non-stationarity in the neural signals. Instead, the hidden

state term is allowing us to properly account for overdispersion, i.e., higher variability

than would be expected in the purely Poisson GLM model.

Higher-order kinematics check. We have shown that adding a hidden state to the

GLM model can better characterize the neuronal activity when the kinematics include

position, velocity, and acceleration. The improvement is quantified by comparing the

likelihood in each model. One may naturally hypothesize that the improvement might

result from the fact that the neurons are not only tuned to position, velocity, and ac-
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celeration, but higher-order terms of the hand kinematic signal, and that the hidden

state model is able to capture this higher-order information. To check on this, we use

kinematics with various orders in the classical GLM and GLMHS models and compare

their likelihoods. It was found that the likelihood in the GLMHS is still consistently

larger than that in the GLM. As an example, the likelihood comparison in dataset 2 is

shown in Figure 6 where the kinematic order varies from 1 (position only) to 6 (po-

sition, velocity, acceleration, plus 4th, 5th, and 6th order kinematics). It is apparent

that the improvement in the GLMHS consistently holds over all kinematic orders. This

result suggests that the hidden state represents information other than the higher-order

kinematics.

[Figure 6 about here]

4. Discussion

Motor cortical decoding has been extensively studied over the last two decades

since the development of population vector methods (Georgopoulos et al., 1986; Moran

and Schwartz, 1999), and indeed even earlier (Humphrey et al., 1970). Previous meth-

ods have focused on probabilistic representations between spiking activity and kine-

matic behaviors such as the hand position, velocity, or direction (Paninski et al., 2004;

Brockwell et al., 2004; Truccolo et al., 2005; Sanchez et al., 2005; Wu et al., 2006).

However, it was found that the neural activity may also relate to other states such as

muscle fatigue, satiation, and decreased motivation (Carmena et al., 2005; Chestek

et al., 2007; Truccolo and Donoghue, 2007). In this paper, we have proposed to in-

corporate a multi-dimensional hidden state in the commonly used generalized linear

models, where the spike train can be characterized using an inhomogeneous Poisson

process (IPP) or a non-Poisson process (NPP). The hidden term, in principle, can repre-

sent any (unobserved or unobservable) states other than the hand kinematics. We found

that these hidden state models significantly improve the representation of motor corti-

cal activity in two independent datasets from two monkeys. Moreover, the decoding

accuracy can be improved by up to about 30% in some cases, compared to the standard

GLM decoder. These results provide evidence that, by taking into account the various
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hidden effects that we do not measure directly during an experiment, we can design

better online decoding methods, which in turn should prove useful in prosthetic design

and in online experiments investigating motor plasticity. Consistent with our recent

results in the linear case (Wu et al., 2009), and also related previous approaches due to

(Brockwell et al., 2007) and (Yu et al., 2006, 2009; Santhanam et al., 2009), we found

that the GLMHS models are able to better capture the over-dispersion, or extra “noise”,

in real motor cortical spike trains than the classical GLM method. This suggests that

the hidden state models could contribute to understand the uncertainty in neural data,

which is a key problem in neural coding (Churchland et al., 2006a,b). Moreover, we

think the same identification algorithms developed in this article can, in principle, be

applied to other point process models, but the log-concavity of the likelihood function

needs to be verified in each case.

A number of recent studies have emphasized similar points. For example, (Brock-

well et al., 2007) incorporated a hidden normal variable in the conditional intensity

function of a GLM-based model to address unobserved additional source of noise in

motor cortical data. One major difference from our study is that these authors assumed

that the noise term is independent over time and between neurons; in our case, the

hidden noise term was assumed to have strong correlations both in time and between

neurons, and even with the kinematic variables (in the GLMHS-DS model). It will be

interesting to combine these approaches in future work. In addition, the model identi-

fication in (Brockwell et al., 2007) was based on Markov Chain Monte Carlo (MCMC)

methods which are fairly computationally intensive; we used faster approximate EM

methods, which might be easier to utilize in online prosthetic applications.

The use of correlated latent variables in the modeling of neural spiking processes

was also previously examined in (Yu et al., 2006). They used latent variable models to

examine the dynamical structure of the underlying neural spiking process in the dorsal

premotor area during the delay period of a standard instructed-delay, center-out reach-

ing task. The identification of the model also follows an EM framework. The main

difference from this study is that they used Gaussian quadrature methods in the max-

imization of the expected log-likelihood in the M-step. In contrast, in our model the

Hessian matrix is negative definite (therefore the function is strictly concave), allowing
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us to use an efficient Newton-Raphson approach for the maximization (see also (Panin-

ski et al., 2009) for further discussion). More recently, these authors introduced Factor

Analysis (FA; (Santhanam et al., 2009)) and Gaussian Process Factor Analysis (GPFA;

(Yu et al., 2009)) methods for modeling these latent processes in the context of brain-

machine interfaces. The GPFA is an extended version of multivariate methods such as

Principal Component Analysis (PCA), in which temporal correlations are incorporated,

much as we utilize a simple Gaussian autoregressive prior model for the kinematics xk

and hidden state qk here. These authors used their methods, as we do here, to extract a

lower-dimensional latent state to describe the underlying neural spiking process which

can help account for over-dispersion and non-kinematic variation in the data. A few

differences are worth noting: first, (Yu et al., 2009) use a simple linear-Gaussian model

to model the (square-root transformed) spike count observations, while we have fo-

cused here on incorporating a discrete representation (including spike history effects)

of the spike trains. (Santhanam et al., 2009) investigate a Poisson model with larger

time bins than we used here and no temporal variability in their latent Gaussian effects,

but found (for reasons that remain somewhat unclear) that the fully Gaussian model

outperformed the Poisson model in a discrete (eight-target center-out) decoding task;

this is the opposite of the trend we observed in section 3.3. Second, there are some

technical computational differences: the general Gaussian process model used in (Yu

et al., 2009) requires on the order of T 3 time to perform each EM iteration, where T is

the number of time bins in the observed data (note that T can be fairly large in these

applications), whereas the state-space methods we have used here are based on recur-

sive Markovian computations that only require of order T time (Paninski et al., 2009).

Again, it will be very interesting to explore combinations of these approaches in the

future.

One other technical detail is worth discussing here. In the definition of the CIF

(Eqn. 5), one can also add interneuronal interactions in the history term (Brillinger,

1988, 1992; Paninski, 2004; Truccolo et al., 2005; Nykamp, 2007; Kulkarni and Panin-

ski, 2007a; Pillow et al., 2008; Stevenson et al., 2009; Truccolo et al., 2009). However,

this can significantly increase the computational burden, since now on the order of C2

parameters must be fit, where C ∼ 100 is the number of simultaneously observed cells.
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This large number of parameters could also generate instability in the model identifi-

cation; see, e.g., (Stevenson et al., 2009) for further discussion of these issues. (Note

that decoding in the presence of these interneuronal terms is quite straightforward, and

can be done in real-time; the bottleneck is in the model identification, which may make

these coupled multineuronal models somewhat less suitable for online decoding appli-

cations.) Thus, for simplicity, we set all interneuronal interaction terms to zero in this

study, but we plan to explore these effects in more detail in the future.

In this study, the hidden dimension only varies from 1 to 4. When the dimension

is larger, the EM identification procedure may become inefficient and unstable. Also,

in the linear KFHS (Wu et al., 2009), we found that the model could not be identified

by the EM algorithm if the kinematics and hidden state were assumed to evolve in-

dependently, or if the dimension of the hidden state is larger than 3. These problems

may also be due to the iterative update in the EM algorithm. To better address these

issues, we are exploring alternative approaches for the model identification. Based on

the log-concavity of the likelihood function, a direct Laplace approximation method

is attractive; see (Koyama et al., 2008, 2009; Paninski et al., 2009) for further details.

Our preliminary results show that this Laplace method can lead to significant improve-

ments in efficiency (gains in computational speed of approximately 2-4x compared to

the EM method). Further investigation of these techniques will be conducted in the

future. Finally, because of their accuracy and efficiency, the hidden-state models we

have discussed here (both the KFHS and GLMHS) should be useful tools in on-line

applications. An important next step will be to apply these new methods and to test

their efficacy in real-time closed-loop experiments.

Appendix

A. Posterior Distributions in GLMHS-IS

The estimation of qk|M , Wk|M , and Wk+1,k|M includes a forward (filtering) and a

backward (smoothing) step. The “filtering” step computes the posterior of hidden state

conditioned on the past and current observations. The computation is performed via a

point process filter (Eden et al., 2004).
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For k = 2, · · · , M:

qk|k−1 = Aqqk−1|k−1

Wk|k−1 = AqWk−1|k−1AT + Cq

Wk|k =

(
W−1

k|k−1 +

C∑

c=1

lTc (λc
k∆t)lc

)−1

qk=qk|k−1

qk|k = qk|k−1 + W−1
k|k

[ C∑

c=1

lTc (yc
k − λc

k∆t)
]
qk=qk|k−1

The “smoothing” step computes the posterior of hidden state conditioned on the

entire observations. As the posterior distributions are normal, the computation follows

a standard backward propagation (Haykin, 2001).

For K = M − 1, · · · , 1:

Jk = Wk|kAT
q Wk+1|k−1

qk|M = qk|k + Jk(qk+1|M − Aqqk|k)

Wk|M = Wk|k + Jk(Wk+1|M −Wk+1|k)JT
k

For K = M:

WM,M−1|M = WM|MJT
M−1

For K = M − 1, · · · , 2:

Wk,k−1|M = Wk|kJT
k−1 + Jk(Wk+1,k|M − AWk|k)JT

k−1

B. Newton-Raphson Method

We want to solve the equation

M∑

k=1

∫

qk

P(qk | · · · )[−λc
k∆tVk + yc

kVk]dqk = 0 (21)

where the vector,

Vk =



1

xk

yc
k,N

qk



, and yc
k,N =



yc
k−1
...

yc
k−N


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The integrand in Equation 21 includes two parts: The first one, −λc
k∆tVk, includes

the density rate, but the second one, yc
kVk, does not. The integration on the second part

can be easily obtained:

M∑

k=1

∫

qk

P(qk | · · · )[yc
kVk]dqk =

M∑

k=1

yc
k



1

xk

yc
k,N

qk|M



where the equality holds as 1, xk, and yc
k,N are constant with respect to the integration,

and by definition qk|M =
∫
qk

P(qk | · · · )qkdqk. Similarly, we can compute the integration

on the first part:

M∑

k=1

∫

qk

P(qk | · · · )[−λc
k∆tVk]dqk

=

M∑

k=1

[− exp(µc + βT
c xk + γT

c yc
k,N)][exp(lTc qk|M +

1
2

lTc Wk|Mlc)]∆t



1

xk

yc
k,N

qk|M + Wk|Mlc



.

Denoting the sums


µc + βT
c xk + γT

c yc
k,N = S 1

lTc qk|M + 1
2 lTc Wk|Mlc = S 2

qk|M + Wk|Mlc = S 3,

we try to find the root of the function f with variables µc, βc, γc, and lc; that is,

f



µc

βc

γc

lc



=

M∑

k=1

[− exp(S 1)][exp(S 2)]∆t



1

xk

yc
k,N

S 3



−
M∑

k=1

yc
k



1

xk

yc
k,N

qk|M



= 0. (22)

This system has a highly non-linear structure. There are no simple closed-form

solutions for updating the parameters µc, βc, γc, and lc, c = 1, · · · ,C. Here we use

a standard Newton-Raphson method to search the roots to the equation. Based on
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Equation 22, the Jacobian matrix for all parameters can be obtained as follows:

J = −
M∑

k=1

exp(S 1 + S 2)∆t



1 xT
k yc

k,N
T S T

3

xk xkxT
k xkyc

k,N
T xkS T

3

yc
k,N yc

k,NxT
k yc

k,Nyc
k,N

T yc
k,NS T

3

S 3 S 3xT
k S 3yc

k,N
T S 3S T

3 + Wk|M



= −
M∑

k=1

exp(S 1 + S 2)∆t





1

xk

yc
k,N

S 3





1

xk

yc
k,N

S 3



T

+



0

0

0

Wk|M





.

J is negative definite. This is because for each term in the above sum 1) exponential

term is always positive; 2) ∆t > 0; 3) any matrix multiplied by its transpose must be

semi-positive definite; 4) the matrix with covariance Wk|M in the last main diagonal

is semi-positive definite. Finally, the variability in the kinematics and neural activity

implies that the sum is nonsingular. This negative definiteness ensures fast convergence

in finding the root of f.

Finally, the Newton-Raphson update on parameters µc, βc, γc, and lc is written as:



µc

βc

γc

lc



(i+1)

=



µc

βc

γc

lc



− J−1f



µc

βc

γc

lc



(23)

C. Posterior Distributions in GLMHS-DS

As in the GLMHS-IS, the estimation of qk|M , Wk|M , and Wk+1,k|M includes a for-

ward (filtering) and a backward (smoothing) step. As the hand state in the GLMHS-DS

also follows a generative representation from the hidden state (Eqn. 14), more compu-

tations are required than that described in Appendix A.

Filtering. At first we define notation in the “filtering” step. For k = 2, · · · , M,

let qk|k−1 = E(qk |x1:k, y1:k−1), Wk|k−1 = Cov(qk |x1:k, y1:k−1) as the mean and covariance

of the prior estimate, and qk|k = E(qk |x1:k+1, y1:k), Wk|k−1 = Cov(qk |x1:k+1, y1:k) as the

mean and covariance of the posterior estimate. Then the recursive formula is as follows:
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For k = 2, · · · , M:

qk|k−1 = A22qk−1|k−1 + A21xk

Wk|k−1 = A22Wk−1|k−1AT
22 + Cq

Wk|k =

W−1
k|k−1 + AT

12C−1
x A12 +

C∑

c=1

(λc
k∆t)lclTc


−1

qk=qk|k−1

qk|k = qk|k−1 + Wk|k


C∑

c=1

(yc
k − λc

k∆t)lc + AT
12C−1

x (xk+1 − A11xk − A12qk|k−1)


qk=qk|k−1

The first two equations are naturally derived using the linear Gaussian transition of the

hidden state (Eqn. 15). The last two equations are based on the measurement on firing

rate (Eqn. 3) and hand state (Eqn. 14). The derivation of this posterior is similar to that

in an adaptive point process filter (Eden et al., 2004) and is described as follows:

Using the basic probability rules, we have

P(qk |x1:k+1, y1:k) ∝ P(yk, xk+1|qk, x1:k, y1:k−1)P(qk |x1:k, y1:k−1)

∝ P(yk |qk,Hk, xk)P(xk+1|xk,qk)P(qk |x1:k, y1:k−1)

Taking the logarithm, we have

log P(qk |x1:k+1, y1:k) = log P(yk |qk,Hk, xk) + log P(xk+1|xk,qk) + log P(qk |x1:k, y1:k−1) + const.

We further assume the posterior P(qk |x1:k+1, y1:k) follows a Gaussian distribution. Then

−1
2

(qk − qk|k)T W−1
k|k(qk − qk|k) =

C∑

c=1

(yc
k log λc

k − λc
k∆t) − 1

2
(qk − qk|k−1)T W−1

k|k−1(qk − qk|k−1)

− 1
2

(xk+1 − A11xk − A12qk)T C−1
x (xk+1 − A11xk − A12qk) + const.

Taking derivative with respect to qk on both sides, we have

−W−1
k|k(qk−qk|k) =

C∑

c=1

(yc
k−λc

k∆t)lc−W−1
k|k−1(qk−qk|k−1)+AT

12C−1
x (xk+1−A11xk−A12qk)

(24)

Let qk = qk|k−1 in Equation 24. Then,

qk|k = qk|k−1 + Wk|k


C∑

c=1

(yc
k − λc

k∆t)lc + AT
12C−1

x (xk+1 − A11xk − A12qk|k−1)


qk=qk|k−1
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Taking the derivative with respect to qk in Equation 24 and then let qk = qk|k−1, we

have

W−1
k|k = W−1

k|k−1 + AT
12C−1

x A12 +

C∑

c=1

(λc
k∆t)lclTc |qk=qk|k−1

Smoothing. In the smoothing step, we estimate qk|M , Wk|M , and Wk+1,k|M , which

describe the distribution of the hidden state conditioned on entire recording of firing

rate and hand kinematics. The procedure is the same as the smoothing recursion in

Appendix A expect for the computation of qk|M which results from the control input

term in Equation 15. The derivation is fairly standard and can be briefly described as

follows:

Use the probability rules,

log P(qk+1,qk |x1:M , y1:M) = log P(qk+1|qk, xk) + log P(qk |x1:k+1, y1:k)

− log P(qk+1|x1:k+1, y1:k) + log P(yk+1|x1:M , y1:M) (25)

Based on the normality assumption, we have

qk+1,qk |x1:M , y1:M ∼ N




qk+1|M

qk|M

 ,


Wk+1|M Wk+1,k|M

WT
k+1,k|M Wk|M





qk+1|qk, xk ∼ N(A22qk + A21xk,Cq)

qk |x1:k+1, y1:k ∼ N(qk|k,Wk|k)

Matching the linear term of qk on both sides of Equation 25, we have

qk|M = qk|k + Jk(qk+1|M − A22qk|k) − (Wk|k − JkWk+1|kJT
k )AT

22C−1
q A21xk
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Figure 1: Upper two panels: True hand trajectory, x- and y-position, for one example trial in the study.

Bottom panel: A raster plot of spike trains of 5 simultaneously-recorded neurons during the same example

trial. We plot the hand trajectory as one-dimensional plots to help show the temporal correspondence between

the hand trajectory and the spike trains.
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Figure 2: CIFs in GLMHS-IS and GLM with IPP spike trains in one example trial. Upper plot: The thick

black line denotes the CIF for the 50th neuron from Dataset 1 under the GLMHS-IS IPP Model with d = 4

with 95% confidence intervals (thin gray lines). The dashed black line denotes the CIF of the classical GLM.

Here we see that the CIF for the GLMHS-IS model can capture more of the dynamics of the spike train when

compared to the classical GLM. Lower plot: the original spike train.
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Figure 3: A. A comparison of the NLLRs for the GLMHS-IS models in the testing part of Dataset 1 when

the spike train is modeled as an Inhomogeneous Poisson process (solid line with stars) and when modeled

as a Non-Poisson process (dashed line with circles). The model is a classical GLM if the hidden dimension

d = 0. We notice that the NLLR increases as d increases in both IPP and NPP cases. Also, we see the NLLR

for the NPP case is higher than that for the IPP case. B. Same as A but for Dataset 2.
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Figure 4: A. A comparison of the NLLRs for the GLMHS-DS models in the testing part of Dataset 1 when

the spike train is modeled as an IPP (solid lines with stars) and when modeled as an NPP (dashed lines with

circles). The model is a classical GLM if the hidden dimension d = 0. We observe that the NLLR increases

with respect to d in both IPP and NPP cases. Also, we see the NLLR for the NPP case is higher than for the

IPP case. B. Same as A but for Dataset 2.
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Figure 5: A. True hand trajectory (dashed red), x- and y-position, of an example trial from dataset 1, and

its reconstruction (solid blue) and 95% confidence region (thin solid blue) using the GLMHS with d = 4

under the IPP case. The reconstruction by the classical GLM (solid green) is also shown here. B. Same as A

except from another trial in dataset 2 in the NPP case with d = 1 in the model. In both cases, we see that the

reconstructions from the GLMHS models perform well, and they are close to those from the classical GLM

models.
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Figure 6: Log-likelihoods of GLM (dashed line with stars) and GLMHS (solid line with circles) in dataset

2 where the kinematic order varies from 1 to 6. The GLMHS is an IS model with d=1. We see that the

separation between the GLM and GLMHS is fairly constant for all kinematic orders.
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