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ABSTRACT As recent advances in calcium sensing technologies facilitate simultaneously imaging action potentials in neuronal
populations, complementary analytical tools must also be developed to maximize the utility of this experimental paradigm.
Although the observations here are fluorescence movies, the signals of interest—spike trains and/or time varying intracellular
calcium concentrations—are hidden. Inferring these hidden signals is often problematic due to noise, nonlinearities, slow imaging
rate, and unknown biophysical parameters. We overcome these difficulties by developing sequential Monte Carlo methods
(particle filters) based on biophysical models of spiking, calcium dynamics, and fluorescence. We show that even in simple cases,
the particle filters outperform the optimal linear (i.e., Wiener) filter, both by obtaining better estimates and by providing error bars.
We then relax a number of our model assumptions to incorporate nonlinear saturation of the fluorescence signal, as well external
stimulus and spike history dependence (e.g., refractoriness) of the spike trains. Using both simulations and in vitro fluorescence
observations, we demonstrate temporal superresolution by inferring when within a frame each spike occurs. Furthermore, the
model parameters may be estimated using expectation maximization with only a very limited amount of data (e.g., ~5–10 s or
5–40 spikes), without the requirement of any simultaneous electrophysiology or imaging experiments.
INTRODUCTION

Recently, advances in the development of calcium indicators,

delivery techniques, and microscopy technologies have

facilitated imaging a wide array of preparations (1). In partic-

ular, calcium sensitive organic dyes (2,3) have been targeted

to populations of neurons both in vivo and in vitro using bulk

loading (3–5) and electroporation (6,7). Similarly, viral

infection, transgenics, and knock-ins have been used to

genetically target neurons with fluorescent proteins (8–10).

In conjunction with the development of improved calcium

indicators and loading techniques, the advent of 2-photon

microscopy now enables the visualization of neurons deep

within scattering tissue (11–14).

Thus, using calcium sensitive fluorescence to study neural

dynamics is becoming increasingly popular in a wide variety

of neural substrates, including individual spines (15–18),

dendrites (19–21), boutons (22,23), neurons (24–26), and

populations of neurons (3,6,27–35). Although the data

collected from these experiments are fluorescence movies,

the signals of interest are the precise spike times and/or the

intracellular calcium concentrations, [Ca2þ], of the observ-

able neurons.

Inferring the spike trains and calcium concentrations

from a fluorescence signal, however, is a difficult problem

for a number of reasons. First, observations are noisy. This

is a problem unlikely to be solved in the near future, as
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a major noise source is photon shot noise (36), which

reflects the quantal nature of light emission and detection.

Second, observations may have poor temporal resolution.

Although this problem may be partially mitigated by faster

cameras and scanning systems (14,37–39), faster imaging

tends to exacerbate the noise problem, as fewer photons

can be collected per image frame (36). Third, the relation-

ship between fluorescence observations and [Ca2þ] is

nonlinear, especially for fluorescent proteins (40,41). This

has placed undesirable and unnecessary restrictions on the

calcium indicators used for analysis, as the standard analyt-

ical tools assume a linear relationship between [Ca2þ] and

fluorescence (36,42–44) (though see Borst and Abarbanel

(45) for an exception). Fourth, the parameters governing

the calcium and fluorescence dynamics are typically

unknown a priori, and must be inferred from the data.

Nevertheless, there has been some significant progress

recently. For instance, Smetters et al. (28) demonstrated reli-

able detection of single action potentials and spike trains by

imaging bulk loaded fluorescent calcium dyes in vitro. Kerr

et al. (46)—motivated by the observation that neurons in the

rat motor and somatosensory cortices exhibit sparse

spiking—developed a custom template-matching algorithm

to detect the presence of single spikes in vivo using only

fluorescence signals (and more recently further refined this

approach (47)). The following year, Yaksi and Friedrich

(44)—aided by the observation that neurons in the intact

zebra fish olfactory bulb tend to respond to different odors

with different time-varying firing rates—developed a linear
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smoothing convolution kernel that effectively inferred the

time varying firing rate for an explant of an intact zebra

fish brain. More recently, Sato et al. (34) designed a clus-

tering algorithm using only in vivo calcium sensitive fluores-

cence signals to determine whether whisker stimulation

successfully induced a spike. Last year, Holekamp et al.

(48) applied the optimal linear filter for deconvolving a fluo-

rescence signal from anesthetized mice. Finally, Sasaki et al.

developed a nonparametric approach to infer spikes from

somatic calcium fluctuations (49).

The work presented here differs from previous efforts in

several key aspects. We start by constructing a well-defined

probabilistic ‘‘forward model’’ of the signals of interest and

the imaging process. Then, utilizing a sequential Monte

Carlo expectation maximization framework, we design

a particle filter smoother (PFS) to optimally infer the spike

times and calcium transients, given the observed fluores-

cence signals and the model. Even for relatively simple

scenarios, the PFS outperforms optimal linear deconvolution

by providing both a better inference and error bars. The

forward model may be generalized to account for a number

of features present in typical data sets. Specifically, by incor-

porating saturation and signal dependent noise sources, we

can perform inference on typical in vitro data sets. Further-

more, by allowing for intermittent observations (typical of

2-photon scanning experiments), we can perform superreso-

lution inference, i.e., detect not just whether a spike occurs

within a particular image frame, but also when within that

frame the spike occurred. By also introducing stimulus and

spike history dependence into the model, we can further refine

our estimate. Moreover, estimating the parameters requires

only a few seconds of fluorescence observations and a small

number of spikes (e.g., 5–40), and does not require tedious

simultaneous electrophysiology and imaging experiments.

We close by discussing further generalizations of the model

that may be required to apply a PFS to other experimental

preparations, such as in vivo imaging. All code is available

from the corresponding author upon request.

MODEL

The data sets of interest are sequences of images correspond-

ing to the calcium-sensitive fluorescence signals of some

neural activity. We aim here to construct the simplest forward

model that permits one to satisfactorily infer the spike trains

and calcium transients underlying these images. By forward

model, we mean a complete characterization of the proba-

bility distributions governing the hidden dynamics and noisy

observations, going ‘‘forward’’ from the spike train to the

images. To infer the spike trains from the observations, we

then invert our model. Below, we introduce a very simple

model used to explain the mathematical formalism developed

to infer the spike trains. Many of the simplifying assumptions

are then relaxed in the Results section to improve our esti-

mates when using in vitro data.
First, we assume a single-compartmental, equipotential

model of the imaged neuron, over which the fluorescence

signal may be spatially averaged, yielding a one-dimensional

time varying fluorescence signal for each image frame, Ft.

This assumption is justified by the observation that the calcium

dynamics within the neuron are relatively fast (19,50). Next,

we assume that the fluorescence at any time is a noisy linear

function of [Ca2þ] at that time:

Ft ¼ a
�
Ca2þ �

t
þ bþ sF3F;t; (1)

where a and b set the scale and offset for the fluorescence

signal, respectively, sF is the standard deviation of the noise,

and 3$, t denotes a standard normal Gaussian throughout this

text.

Modeling [Ca2þ]t requires some additional assumptions.

First, after each spike, [Ca2þ]t jumps instantaneously. This

approximation is justified by the observation that calcium

rise time is quick relative to the decay time (42,51). Second,

each jump is the same size, A; that is, for now we neglect

[Ca2þ]t saturation effects due to channel inactivation and buff-

ering (52). Third, [Ca2þ]t decays exponentially with time

constant t, to a baseline calcium concentration, [Ca2þ]b; i.e.,

we lump the myriad calcium extrusion and endogenous

buffering mechanisms and assume a single average time

constant. Fourth, the [Ca2þ]t dynamics themselves have

some Gaussian noise source, scaled by sc. Taken together,

these assumptions imply the following model:�
Ca2þ �

t
�
�
Ca2þ �

t�1
¼

� D

t

��
Ca2þ �

t�1
�
�
Ca2þ �

b

�
þ Ant þ sc

ffiffiffiffi
D
p

3c;t;

(2)

where D¼ 1/(frame rate) is the time step size (the variance is

scaled by D to ensure that the noise statistics are independent

of the frame rate), nt is the number of spikes that occurred in

the t-th frame, and sc scales the noise. Note that because we

have assumed here a linear observation model (i.e., Eq. 1

states that Ft is a linear function of [Ca2þ]t), our model is over-

parameterized. More precisely, both A and a set the scale, and

[Ca2þ]b and b set the offset. Furthermore, because the noise is

not signal dependent, both sF
2 and a set the effective signal-

to-noise ratio (SNR). Therefore, in the following, we let a¼ 1,

b ¼ 0, and s2
F ¼ 1, without loss of generality (later, we deal

with this overparameterization by introducing a nonlinear

observation model).

To model the spike train, we let nt be a Bernoulli (binary)

random variable, which spikes in each time step with proba-

bility pD:

nt � Bðnt; pDÞ; (3)

where Bðnt; pDÞ indicates that nt ¼ 1 with probability pD,

and nt ¼ 0 with probability 1 – pD (where 0 < pD < 1).

Equation 3 therefore implies that spiking at time t is
Biophysical Journal 97(2) 636–655
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independent of other spikes and the intracellular calcium

concentration. Fig. 1 depicts a spike train (top panel), the

resulting calcium transients (second panel), and the fluores-

cence observations (third panel), simulated according to this

model.

MATHEMATICAL METHODS

Given the above model, our goal is to take the entire

sequence of fluorescence observations, F1:T ¼ [F1, ., FT]

(where T indexes the final observation in the sequence),

and infer the underlying spike train, n1:T. More formally,

we want to find PqðntjF1:TÞ, the probability of the neuron

spiking in each frame (which depends on the parameters,

q ¼ t; ½Ca2þ�b;
�

A; sc; pg), given all the fluorescence obser-

vations. We use a framework called sequential Monte Carlo

(using a PFS) to find these probabilities (53), embedded

within an expectation maximization algorithm (54) to esti-

mate the parameters. As this approach is becoming relatively

common within neuroscience (55–61)—and it may be

thought of as a generalization of either i), the Baum-Welch

algorithm for Hidden Markov Models (62), or ii), the Kal-

man filter smoother for state-space models (63)—we relegate

the details to the Appendices, and simply state the general

procedure here.

We must first define a number of terms. Our model

consists of a number of time-varying states, each governed

by a set of parameters (which are constant). The states may

be subdivided into observation states, denoted by Ot, and

hidden states, denoted by Ht. Together, the states comprise

the complete likelihood, which may be simplified, given

our model assumptions, as follows (62):

PqðO1:T;H1:TÞ ¼ PqðH0Þ
YT

t¼ 1

PqðHtjHt�1ÞPqðOtjHtÞ; (4)

where PqðH0Þ is the initial distribution of hidden states,

PqðOtjHtÞ is the observation distribution, and PqðHtjHt�1Þ
is the transition distribution. For this model, the observation

state is the fluorescence measurement, Ot ¼ Ft; and the

hidden states are whether or not the neuron spiked, and the

magnitude of the intracellular calcium concentration,

Ht ¼ nt; ½Ca2þ�tg
�

. We typically take the initial distribution

to be baseline values, i.e., the initial calcium is [Ca2þ]b and

initial value for the spike train is 0. The observation distribu-

tion is defined for the above model as:

PL
qðOtjHtÞ ¼def

Pq

�
Ft

���Ca2þ �
t
; nt

�
¼ Pq

�
Ft

���Ca2þ �
t

�
¼ N

�
Ft; a

�
Ca2þ �

t
þ b; s2

F

�
¼ N

�
Ft;
�
Ca2þ �

t
; 1
�
; (5)

which follows from Eq. 1 and the discussion following

(where ¼def
indicates that PL

qðOtjHtÞ is defined for this linear

model). Similarly, the transition distribution for the above

model is defined as:
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where bmðntÞ ¼ ½Ca2þ�t � D=tð½Ca2þ�t�1 � ½Ca2þ�bÞ þ Ant,

and the above equation follows from Eqs. 2 and 3.

Now the goal is to efficiently estimate PqðHtjO1:TÞ ¼
Pqðnt; ½Ca2þ�tjF1:TÞ, the posterior distribution of the hidden

signals, given all the observations, for all t. Estimating this

distribution is problematic, because spike trains are inherently

nonlinear. Therefore, linear filters (such as the Wiener filter),

are inadequate, so nonlinear filters (such as particle filters),

must be used. We proceed by taking a (PFS approach, which

breaks this problem down into two recursions. In the forward

recursion, we recursively estimate Pqðnt; ½Ca2þ�tjF1:tÞ, the

probability of spiking and [Ca2þ] at time t, given the fluores-

cence observations from time 1 up to and including t. Upon

reaching time T, we recurse backward until t ¼ 1, to get

Pqðnt; ½Ca2þ�tjF1:TÞ, the probability of spiking and [Ca2þ] at

time t given all the fluorescence observations (i.e., both before

and after t).
We use a particle filter to approximate the forward recur-

sion. The key is that PqðHtjO1:tÞ may be well approximated

by generating a number of weighted samples (or ‘‘particles’’)

(53):

PqðHtjO1:tÞz
XN

i¼ 1

wðiÞt dðHt �HðiÞt Þ; (7)

where wt
(i) is the relative likelihood of the state at time t

taking value H
ðiÞ
t , and d($) is the Dirac delta function (i.e.,

d(x) ¼ 1 when x ¼ 0 and d(x) ¼ 0 otherwise). Thus, at each

time step, one samples N particles, and then computes the

weight of each. It can be shown that the weights may be recur-

sively computed by using (53)

wðiÞt z
PqðOtjHðiÞt ÞPqðHðiÞt jH

ðiÞ
t�1Þw

ðiÞ
t�1

qðHðiÞt Þ
; (8)

where qðHðiÞt Þ, the sampling distribution (or sampler) is

chosen to make the approximation in Eq. 7 as accurate as

possible. In general, the sampler may depend on all the

particle history and any observations (both past and future).

The most common choice is the ‘‘prior sampler’’,

qðHðiÞt Þ ¼ PqðHðiÞt jHðiÞt�1Þ, in which we sample directly from

the transition distribution. The prior sampler is very simple

to use, because we know how to sample from each of the

distributions comprising the transition distribution for this

model (given by Eq. 6). The next most common choice is

the ‘‘one-observation-ahead sampler’’ (53), qðHðiÞt Þ ¼
PqðHðiÞt jH

ðiÞ
t�1;OtÞ, which may be written explicitly in terms

of our model:

PL
qðHtjHt�1Þ ¼

def Pq

��
Ca2þ �

t
; nt

���Ca2þ �
t�1
; nt�1

�
¼ Pq

��
Ca2þ �

t

���Ca2þ �
t�1
; nt

�
PqðntÞ

¼
N
��

Ca2þ �
t
; m̂nt; s

2
cD
�
ðpDÞ if nt ¼ 1

N
��

Ca2þ �
t
; s2

cD
�
ð1� pDÞ otherwise

(
(6)
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qðHðiÞt Þ ¼ Pq

	
HðiÞt

���HðiÞt�1;Ot



¼ Pq

	
nðiÞt ;

�
Ca2þ �ðiÞ

t

���nðiÞt�1;
�
Ca2þ �ðiÞ

t�1
;Ft



¼ Pq

	
Ft

����Ca2þ �ðiÞ
t



Pq

	�
Ca2þ �ðiÞ

t

����Ca2þ �ðiÞ
t�1
; nðiÞt



Pq

�
nðiÞt

�
=Z; (9)
where the equalities follow from our model assumptions, and

Z acts as a normalizing constant that does not depend on nt or

[Ca2þ]t. The one-observation-ahead sampler conditions

directly on the next fluorescence observation, and therefore

‘‘anticipates’’ where to best place the next hidden samples

(see Appendix A for details). In practice, the one-observa-

tion-ahead sampler is more efficient than the prior sampler,

meaning that we can use fewer particles to obtain the same

accuracy for the approximation in Eq. 7 (53). Thus, all the

particle filters developed here implement the one-observa-

tion-ahead sampler (or a close approximation to it).

When implementing either sampler, after iterating several

time steps, the weights of some of the particles approach

zero, making the representation in Eq. 7 degenerate, and

therefore hurting the quality of the particle approximation.

To remedy this situation, whenever the approximate effec-

tive number of particles drops below some threshold (typi-

cally taken to be N/2), the particles may be ‘‘resampled’’

by sampling (with replacement) from the population of parti-

cles. The probability of resampling each particle is related to

its weight (64) (see Appendix A for details of how to weight

and resample from this distribution).

One recursively repeats these three steps (sampling,

computing weights, and resampling if necessary) for each

time step, starting at t ¼ 1, and continuing through t ¼ T,

thus completing the forward recursion (i.e., the particle

filter), and yielding an approximation to PqðHtjO1:tÞ for

each time step. Upon reaching t ¼ T, one initializes

PqðHðiÞT jO1:TÞ ¼ w
ðiÞ
T , and then uses the following backward

recursion, going from t ¼ T to t ¼ 1, to approximate

PqðHtjO1:TÞ for each time step:

PqðHðiÞt ;H
ðjÞ
t�1jO1:TÞ ¼ PqðHðiÞt jO1:TÞ

PqðHðiÞt jH
ðjÞ
t�1Þw

ðjÞ
t�1P

j

PqðHðiÞt jH
ðjÞ
t�1Þw

ðjÞ
t�1

(10a)

Pq

�
H
ðjÞ
t�1

��O1:T

�
¼
XN

i¼ 1

Pq

�
HðiÞt ;H

ðjÞ
t�1

��O1:T

�
: (10b)

This backward recursion is often referred to as a ‘‘particle

smoother’’, and comprises the backward component of our

PFS approach. Thus, our PFS provides the distributions in

Eq. 10 (for a particular model). For instance, the linear obser-

vation particle filter provides the distributions in Eq. 10, when

modeling the spiking, calcium, and fluorescence dynamics ac-

cording to Eqs. 1–3 (cf. Fig. 1, bottom panel). Given the distri-

butions in Eq. 10, we can perform various inferences. For
example, the expected number of spikes at each time step,

given all the observations, may be computed by

E
�
nt

��F1:T

�
¼
XN

i¼ 1

nðiÞt Pq

�
nðiÞt

��F1:T

�
¼
XN

i¼ 1

nðiÞt Pq

�
HðiÞt

��O1:T

�
:

(11)

Other quantities of interest (such as the posterior variance,

median, etc.) may be computed in a similar fashion, since we

have computed the full posterior distribution, PqðntjF1:TÞ
(which, hereafter, is referred to as the posterior mean of

the spike train, or simply inferred spike train). All these

computations require reasonable estimates of the parameters.

By using an expectation maximization approach (54), we

can iterate inferring the distributions of interest (e.g.,

PqðntjF1:TÞ), and learning the parameters. More precisely,

we optimize the following expected log likelihood (65):

bq ¼ argmax
q

XT

t¼ 1

XN

i;j¼ 1

�
Pq0 ðHðiÞt ;H

ðjÞ
t�1jO1:TÞ

� ln PqðHðiÞt jH
ðjÞ
t�1Þ þ

XN

i¼ 1

Pq0 ðHðiÞt jO1:TÞ

� ln PqðOtjHðiÞt Þ
�
; (12)

where q
0
is the estimate of the parameters from the previous

iteration, i.e., those used to obtain the distributions in Eq. 10,

which may be thought of as weights on the transition and

observation log-densities. Importantly, the above log likeli-

hood for this model was constructed to ensure that all the

parameters may be quickly estimated using standard gradient

ascent techniques. Details may be found in Appendix B.

EXPERIMENTAL METHODS

Slice preparation and imaging

All animal handling and experimentation were done according to the

National Institutes of Health and local Institutional Animal Care and Use

Committee guidelines. Somatosensory thalamocortical slices 400 mm thick

were prepared from C57BL/6 mice at age P14 as described (66). Neurons

were filled with 50 mM Fura 2 pentapotassium salt (Invitrogen, Carlsbad,

CA) through the recording pipette. Pipette solution contained 130

K-methylsulfate, 2 MgCl2, 0.6 EGTA, 10 HEPES, 4 ATP-Mg, and 0.3

GTP-Tris, pH 7.2 (295 mOsm). After cells were fully loaded with dye,

imaging was done by using a modified BX50-WI upright confocal micro-

scope (Olympus, Melville, NY). Image acquisition was performed with

the C9100-12 charge-coupled device camera from Hamamatsu Photonics

(Shizuoka, Japan) with arclamp illumination at 385 nm and 510/60 nm
Biophysical Journal 97(2) 636–655
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collection filters (Chroma, Rockingham, VT). Images were saved and

analyzed using custom software written in MATLAB (The Mathworks, Na-

tick, MA).

Electrophysiology

All recordings were made using the Multiclamp 700B amplifier (Molecular

Devices, Sunnyvale, CA), digitized with National Instruments 6259 multi-

channel cards and recorded using custom software written using the LabView

platform (National Instruments, Austin, TX) . Waveforms were generated

using MATLAB and were given as current commands to the amplifier using

the LabView and National Instruments system. The shape of the waveforms

mimicked excitatory (inhibitory) synaptic inputs, with a maximal amplitude

of þ70 pA (�70 pA).

RESULTS

Main result

The main result of this work is depicted in Fig. 1, which shows

a spike train, calcium concentration, and resulting fluores-

cence observations (first through third panels, respectively)

when simulated according to the simple linear observation

model, Eqs. 1–3 (where linear observation refers to the rela-

tionship between [Ca2þ]t and Ft). For this model, we devel-

oped a linear PFS to perform optimal inference of the spike

train (in Appendix A, see ‘‘Linear observation particle filter’’,

for details). Although the optimal linear deconvolution (i.e.,

the Wiener filter; see Holekamp et al. (48) for a detailed

discussion on using the Wiener filter to infer spikes from

calcium imaging) performs reasonably well (fourth panel),
even in this relatively simple example, the linear observation

PFS (bottom panel) provides several advantages. First, the

spike train inferred by the linear observation PFS (dark
blue, bottom panel) is a better estimate of the actual spike train

than the estimate using the Wiener filter (red and blue, fourth
panel). This follows because the Wiener filter assumes that the
Biophysical Journal 97(2) 636–655
spike train has a Gaussian distribution, and therefore admits

both partial and negative spikes, neither of which is possible

in our model. Second, the PFS provides not only the proba-

bility of a spike occurring in each time bin, but also the entire

distribution (from which we may compute error bars; light
blue in bottom panel). An even more fundamental advantage

of the PFS framework is its generalizability. Below, we

address a number of important generalizations to the model,

each of which requires just a minor modification of the

dynamics equations, sampling distribution, and particle filter

(but the smoother remains the same). We then apply each

generalization to in vitro data to demonstrate its utility.

Saturation

The relationship between the fluorescence signal and [Ca2þ]t

is often characterized by a nonlinear saturating function,

S([Ca2þ]t):

Ft ¼ aS
��

Ca2þ �
t

�
þ bþ ht: (13)

The above equation states that at any time, the expected

value of fluorescence is a nonlinear saturating function of

the calcium signal. The gain (or slope), a, accounts for all

the factors contributing to signal amplification, including

the number of fluorophores in the neuron, the brightness of

each fluorophore, the gain of the image acquisition system,

etc. The offset, b, accounts for any factor leading to

a constant background signal, such as baseline fluorescence.

The nonlinear saturation function, S([Ca2þ]t), is often taken

to be the Hill equation, i.e., S(x)¼ xn/(xnþ kd), where n is the

Hill coefficient, and kd is the dissociation constant (42). The

noise term, ht, may be generalized similarly. Assuming the

primary noise source is photon shot noise, it would be appro-

priate to model noise as a Poisson process, which could be
FIGURE 1 Inferring a spike train from calcium based

fluorescence observations, simulated according to Eqs. 1–3.

The optimal linear (Wiener) filter significantly smoothes the

observations, but fails to yield precise spike times. Our

linear observation PFS, however, provides both a better esti-

mate of the spike train and error bars indicating our confi-

dence level. Top panel: simulated spike train (number of

spikes). Second panel: simulated intracellular calcium

concentration (mM). Third panel: simulated (observed) fluo-

rescence (a.u.). Fourth panel: Wiener filter (positive

‘‘spikes’’ in black, negative ‘‘spikes’’ in gray) (number of

spikes). Bottom panel: Posterior mean (black) and variance

(gray) of inferred spike train using the linear observation

PFS (note the absence of negative spikes) (probability).

Gray triangles in bottom two panels indicate ‘‘true’’ simu-

lated spike times. Conventions, units, and parameters are

consistent throughout the figures unless otherwise indicated.

Parameters: D¼ 25 ms, N¼ 100 particles, p¼ 0.7, t¼ 0.5 s,

A ¼ 5 mM, [Ca2þ]b ¼ 0.1 mM, sc ¼ 1 mM.
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well approximated by a Gaussian distribution for large

photon counts (36):

ht ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xS
��

Ca2þ �
t

�
þ sF

q
3F;t; (14)

where sF scales the signal/noise ratio (SNR). These assump-

tions change the observation distribution from Eq. 5 to

PNL
q

�
Ot

��Ht

�
¼def N

�
Ft; aS

��
Ca2þ �

t

�
þ b; xS

��
Ca2þ �

t

�
þ sF

�
:

(15)

To perform optimal inference on this model (i.e., Eqs. 2, 3, 13,

and 14), we construct a nonlinear observation PFS (where

nonlinear observation refers to the relationship between Ft

and [Ca2þ]t given by Eq. 15). The nonlinear observation

PFS is different from the linear observation PFS because

the observation distributions for which the two filters were

designed differ, thus the one-observation-ahead sampler,

qðHðiÞt Þ ¼ PqðHðiÞt jH
ðiÞ
t�1;OtÞ; changes (in Appendix A, see

‘‘Nonlinear observation particle filter’’, for details).

Fig. 2 shows an example of data simulated using the above

model (Eqs. 2, 3, 13, and 14; top three panels). Two important

differences between this model and the linear model are

apparent. First, the nonlinear saturating function, S([Ca2þ]t),

causes the fluorescence to decay more slowly than the

calcium. Thus, if one were to simply deconvolve the spike

trains from the raw fluorescence observations, the estimate

of the spike train, n1:T, and time constant, t, would be biased.

Second, as [Ca2þ] accumulates, the fluorescence transients

due to a spike become smaller. This reduces the effective

SNR, obfuscating estimating the jump size, A. The Wiener

filter (fourth panel), which cannot incorporate a nonlinearity,

performs less well in this scenario than in the linear scenario.
This may be evident from the observation that peaks in the

Wiener filter output become smaller and closer to the noise

when the signal approaches saturation. The nonlinear obser-

vation PFS, however, explicitly models this nonlinearity,

and therefore can infer spikes very accurately even in the satu-

rating regime (fifth panel). Furthermore, using the nonlinear

observation PFS, we can reconstruct the unsaturated [Ca2þ]t

(bottom panel) in addition to the spike train (when assuming

Eq. 15 accurately describes the relationship between calcium

and fluorescence). This is an absolute estimate of [Ca2þ]t,

meaning that we infer the baseline calcium concentration

and jump size in real units (as opposed to only relative units),

which follows because relative changes in fluorescence corre-

spond with absolute changes in the unsaturated calcium

concentration, due to the assumed nonlinear relationship

between Ft and [Ca2þ]t.

Fig. 3 shows an example of saturating fluorescence obser-

vations recorded in vitro (top panel). Within a burst, later

spikes cause fluorescent transients that are smaller than the

first few spikes. This is evident from the Wiener filter, in

which the inferred spike size becomes much smaller in large

bursts (second panel). The nonlinear observation PFS,

however, accurately infers exactly one spike for each frame

in which a spike occurred (third panel). Furthermore, we infer

the underlying and nonsaturating calcium transients (bottom
panel), which is not possible using linear methods. Fig. 4

shows another example of a spike train recorded in vitro,

but with far noisier observations and a more ‘‘naturalistic’’

spike train. As in Fig. 3, even though the effective SNR of

the Wiener filter output deteriorates as the fluorescence signal

saturates, the nonlinear observation PFS can accurately infer

precise spike times.
FIGURE 2 Inferring a simulated spike train upon incor-

porating a more realistic saturating observation and noise

model (Eqs. 13 and 14, respectively). As the fluorescence

signal approaches saturation, the effective SNR of the

Wiener filter’s output degrades substantially. Our nonlinear

observation PFS, however, accurately infers the precise

spike times even when the signal is strongly saturating,

and provides an estimate for the unsaturated calcium

concentration (which is obtainable due to the assumed

nonlinear relationship between calcium and fluorescence).

Top four panels as in Fig. 1. Fifth panel: posterior mean

(black) and variance (gray) of inferred spike train using

the nonlinear observation PFS (probability). Bottom panel:

posterior mean (black) and variance (gray) of calcium

inference using the nonlinear observation PFS (mM).

Tick mark at 200 mM. Parameters different from Fig. 1:

p ¼ 0.99, A ¼ 50 mM, t ¼ 2 s, x ¼ 4 � 10�4 mA/photon.,

sF ¼ 10�4 mA, n ¼ 1, kd ¼ 200 mM.
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FIGURE 3 Using only strongly saturating in vitro fluo-

rescence measurements to infer precise spike times within

short bursts recorded in vitro. As the number of spikes in

a burst increases, the fluorescence signal begins to saturate,

drastically reducing the effective SNR of the Wiener filter

output. The nonlinear observation PFS, however, correctly

infers the precise timing of each spike, regardless of the

number of spikes within a burst. Note that the parameters

were initialized poorly (not shown), and the algorithm

quickly converged to a set of parameters that accurately in-

ferred the precise spike times, and provided an estimate of

the nonsaturating calcium transients, using only the data

shown. Top panel: in vitro saturating fluorescence measure-

ments. Second panel: Wiener filter. Third panel: nonlinear

observation PFS spike train inference. Bottom panel:

nonlinear observation PFS [Ca2þ] inference. D z 50 ms.
Superresolution

Technological limitations often impose an undesirable upper

bound on the imaging frame rate. In this context, superresolu-

tion denotes the ability to infer spike trains with more precision

than the frame rate. Our assumptions may be generalized for

superresolution inference by modifying the observation model.

First, we reduce the time step size by a factor, d, such that

D¼ 1/(d� frame rate). Now we have two cases for the obser-

vation distribution: the case described by Eq. 15 (which

now occurs every d time steps), and the ‘‘null’’ case, where

no observation occurs (and therefore, PqðOtjHtÞ ¼ 1). To

perform optimal inference given this more sophisticated obser-

vation distribution, we develop a superresolution PFS (in

Appendix A, see ‘‘Superresolution particle filter’’, for details).

Fig. 5 shows how the superresolution PFS inference precision

scales with both imaging frame rate and observation noise.

Importantly, the probability of spiking in each time step within

an image is not uniform, but rather, tends to be higher around

the actual spike time. As the noise is increased, the probabilities

further spread and flatten, but still yield an accurate estimate of

the total number of spikes per frame (assuming one tends to

collect a large enough number of photons per pixel to be

detected by the imaging system).
Biophysical Journal 97(2) 636–655
One interesting result of this analysis is that imaging faster,

while increasing noise and decreasing SNR per frame (36),

can actually increase fidelity (i.e., effective SNR). This may

be seen by comparing panels arranged diagonally ascending

to the right, which show how the inference performs upon

increasing frame rate and noise proportionally. Although

the SNR per frame decreases, because more information is

available about the decay, superior inference precision may

be achieved. This suggests that given the option, it is always

advantageous to image as quickly as possible, even at the

expense of reduced SNR per frame.

Spike history and stimulus dependence

So far, we have assumed that our neuron generates spikes

independent of both external stimuli and its own spike history

(cf. Eq. 3). These two inputs (stimuli and spike histories) may

be incorporated into this framework by replacing p of Eq. 3

with a generalized linear model (GLM) (67). GLMs have

recently been used extensively to model spike trains from

a variety of different preparations and modalities (see, for

example Paninski et al. (68)). Although many GLMs could

be applied here, to fit within the sequential Monte Carlo

expectation maximization framework, we require that i), the
FIGURE 4 Using only strongly saturating and very noisy

in vitro fluorescence measurements to infer precise spike

times in a ‘‘naturalistic’’ spike train recorded in vitro. As

in Fig. 3, as the fluorescence signal approaches complete

saturation, the effective SNR of the Wiener filter is substan-

tially reduced, whereas our nonlinear observation PFS fares

relatively well. Conventions as in Fig. 3. D z 25 ms.
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FIGURE 5 Array of inference capabilities when using

the superresolution PFS. Although for these simulations,

D ¼ 20 ms, observations are made only ‘‘intermittently’’

(i.e., once every d time steps), corresponding to a two-

photon scanning experiment, for instance. Depending on

the effective SNR, the spike train inference can be better

than the image frame rate would naively permit, achieving

superresolution. Each panel shows fluorescence observa-

tions (black dots; a.u.), spike trains simulated using Eqs.

2, 3, 13, and 14 (gray triangles), and posterior mean and

variance of spiking at each time (black and gray, respec-

tively). Subsequent columns (rows) increase noise (frame

rate) by a factor of 2. Panels arranged diagonally upward

and rightward therefore indicate how inference might

improve by simply scanning faster (even though SNR per

image frame degrades). Parameters different from Fig. 2:

p ¼ 4. A ¼ 20 mM. [Ca2þ]b ¼ 20 mM.
log likelihood is concave in the parameters of the GLM, and

ii), the dynamics are Markovian. To satisfy our first constraint

(concavity), we propose to allow the probability of spiking, pt,

to be a time-varying nonlinear function of the input to the

neuron, yt:

pt ¼ 1� e�f ðytÞD; (16)

where f($) is some convex and log-concave function (see

Huys and Paninski (59) for more details on Eq. 16). In

general, the input to the neuron, yt, may be subdivided into

a multidimensional stimulus, xt, and a set of spike history

terms, ht ¼ h1;t;.; hL;tg
�

, yielding

yt ¼ k0xt þ w0ht; (17)

where k is a linear filter operating on the stimulus (which is

closely related to the spike-triggered-average of the neuron

(70)), w weights the spike history terms (71), and 0 denotes

the transpose operation. To satisfy the second constraint

above (Markovian dynamics), we use a set of exponentially

decaying terms, each with a unique time constant

hl;t � hl;t�1 ¼ �
D

thl

hl;t�1 þ nt�1 þ shl

ffiffiffiffi
D
p

3l;t; (18)

implying that after each spike, each spike history term jumps,

and then decays back to zero with its time constant thl
(and

each process has noise with variance s2
hl

D). Equation 18 is

sufficiently general to account for most spike history effects,

including refractoriness, burstiness, facilitation, adaptation,

and oscillations (72). To optimally infer spikes given this

more sophisticated model (i.e., Eqs. 2, 13, 14, and 16–18),

we modify our superresolution PFS to incorporate the above

GLM, yielding a GLM PFS (in Appendix A, see ‘‘GLM

particle filter’’, for details).
Fig. 6 shows a simulation using a model that incorporates

saturation and signal-dependent noise, as well as stimulus

and spike history dependent spiking, with an unsatisfactorily

slow frame rate (top six panels). Although the superresolution

PFS accurately infers in which frame spikes occur (seventh
panel), its superresolution abilities are limited due to satura-

tion and low SNR. By contrast, the GLM PFS accurately

infers spike times with superresolution precision by utilizing

the input and spike history dependence (bottom panel). Note

that even when multiple spikes occur within a single image

frame, the GLM PFS correctly infers the number of spikes,

and provides a good estimate for the precise timing of each

spike (see simulated data and inference between 0.5 and 1 s).

Fig. 7 uses in vitro data to compare the Wiener filter,

superresolution PFS, and GLM PFS. Here, a neuron under

patch clamp (current clamp mode) was stimulated with

a time-varying current (top panel). The exact spike times

were recorded electrophysiologically (second panel), while

simultaneously imaging the fluorescence signal (third
panel). The Wiener filter (fourth panel) generates ‘‘bumps’’

near the frames in which spikes arrived, but generally fails to

identify individual spike times.

The superresolution PFS succeeds in identifying the spikes,

but with limited temporal resolution (fifth panel). By

including stimulus information and spike history dependence,

the GLM PFS further refines the temporal estimates beyond

that of our sampling interval. From this data set, we could

achieve a temporal precision of ~25 ms, even though observa-

tions were only obtained once per 100 ms (bottom panel).

Learning the parameters

All of the above results depend on our ability to estimate the

parameters. The models were constructed to ensure that the
Biophysical Journal 97(2) 636–655
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FIGURE 6 GLM PFS permits refining spike inference

precision by incorporating both stimulus and spike history

dependence into the model and sampler. This highly satu-

rating and noisy example was simulated using Eqs. 2, 13,

14, 16, 17, 18, and obtaining an observation only once

per five time steps. Whereas the superresolution PFS

correctly identifies in which frames a spike occurs, only

the GLM PFS—which not only samples spikes conditioned

on the next observation, but also the spike history and stim-

ulus—can achieve superresolution on this kind of data. Top

panel: external stimulus (a.u.). Second panel: a single spike

history term was simulated for this model (unitless). Third

panel: probability of spiking. Fourth panel: simulated spike

train. Fifth panel: simulated [Ca2þ]. Sixth panel: observa-

tions (dots indicate observation times, lines are merely

linear interpolation for visualization purposes). Seventh

panel: superresolution PFS spike inference. Bottom panel:

GLM PFS spike inference. Parameters different from

Fig. 5: k ¼ 1.7. u ¼ – 0.3. thl
¼ 50 ms. shl

¼ 0:01.
log likelihood functions were concave jointly in all the

parameters, facilitating using standard gradient ascent tech-

niques to find their maximum likelihood estimators. Table 1

shows the parameter estimates using only noisy fluorescence

observations including very few spikes. As the number of

spikes underlying the observations increases, our parameter

estimates improve both in accuracy and precision. This

suggests that upon learning the parameters from the

in vitro data, our absolute calcium concentration estimates

reflect the true values (which could be confirmed using ratio-
Biophysical Journal 97(2) 636–655
metric dyes or calibration experiments (42)). Importantly,

these computations may be performed relatively quickly.

More specifically, the number of computations scales

linearly with T and quadratically with N (due to Eq. 10). In

practice, for all the above examples (both simulated and

real), a single iteration ran in approximately real time on

a standard laptop computer (i.e., 5 s of data required 5 s of

computation; requiring only ~100 particles to obtain

sufficiently accurate approximations for all examples).

Moreover, parameters typically converged in <50 iterations,
FIGURE 7 The GLM PFS can infer spikes from real data

with superresolution using external stimulus and spike

histories. While the Wiener filter provides bumps around

frames in which a spike occurred, both the superresolution

PFS and the GLM PFS correctly infer in which frame

spikes occur. Only the GLM PFS, however, can resolve

spike times with superresolution. Top panel: external

stimulus. Second panel: real spike train. Third panel: real

fluorescence. Fourth panel: Wiener filter. Fifth panel: super-

resolution PFS spike inference. Bottom panel: GLM PFS

spike inference. D z 100 ms. d ¼ 4.
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TABLE 1 Mean (standard deviation) of calcium parameters estimated using only short fluorescence observations

Parameter True value 5 spikes 10 spikes 20 spikes 40 spikes Units

A 5 4.6 (1.4) 4.9 (0.36) 4.8 (0.82) 5.0 (0.16) mM

t 0.5 0.57 (0.35) 0.59 (0.12) 0.58 (0.12) 0.52 (0.036) sec

[Ca2þ]b 5 3.4 (3.8) 3.3 (3.2) 3.5 (1.7) 4.3 (0.92) mM

Data were simulated assuming Eqs. 2, 3, 15, and 16 (i.e., no external stimulus or spike history effects). All parameters were initialized to be incorrect by a factor

of 2, which more than spans the typical physiological range (44). The simulation parameters were chosen to reflect the noise statistics of the in vitro data from

Figs. 3, 4, and 7. We simulated four cases, each corresponding to a different number of spikes underlying the observed fluorescence (i.e., 5, 10, 20, or 40). For

each case, we ran between 5 and 10 simulations. Parameters converged either when the difference between the likelihoods in two subsequent iterations no

longer exceeded a minimum threshold, or the number of iterations exceeded 50. The baseline calcium concentration, [Ca2þ]b, is the most difficult parameter

to learn because of the nonlinear saturation, which makes the likelihood along the [Ca2þ]b dimension relatively flat.
so inference on data collected during the day can be

completed overnight.

DISCUSSION

We started by constructing a very simple model relating

spiking, calcium, and fluorescence observations, and showed

that our linear observation PFS both i), improves inference

accuracy over the optimal linear method and ii), provides error

bars (cf. Fig. 1). Then, we relaxed a number of the assump-

tions, to show how our method can be generalized. First, we

postulated a more realistic observation model, by incorpo-

rating both saturation and signal-dependent noise, and

showed that a nonlinear observation PFS outperforms the

Wiener filter (cf. simulated data in Fig. 2 and real data in

Figs. 3 and 4). Then, we demonstrated superresolution capa-

bilities, by inferring when within an image frame spikes

occur, using our superresolution PFS (cf. Fig. 5). By incorpo-

rating a GLM to govern spiking activity in our model, we

could also account for spike history and stimulus dependen-

cies, utilizing our GLM PFS (cf. Fig. 6), and further enhance

the inference precision using in vitro data (cf. Fig. 7). These

results all depend on an ability to accurately estimate the

model parameters, even when given only short (~5–10 s

and 5–50 spikes) and noisy fluorescence observations.

Importantly, estimating these parameters did not require any

additional simultaneous electrophysiology or imaging

experiments; rather, all inferences and parameter estimations

were performed using only the fluorescence observations.

Simultaneous imaging and electrophysiological experiments,

however, for confirmation, would be desirable in novel prep-

arations. Finally, as each iteration may be performed in real

time, and the parameters converged in <50 iterations, this

analysis does not impose severe computational restrictions,

and may be performed between experimental sessions, for

instance (though see (73) for a complementary ‘‘online’’ algo-

rithm). These examples demonstrate the power of the

proposed particle filtering methods.

Although the above generalizations were sufficient to infer

the spikes in this data set, further generalizations may be

necessary for other preparations. Perhaps most importantly,

we ignored several prominent noise sources. For instance,

the point spread function of a 2-photon microscope in vivo
often spans several microns in the axial dimension, which is

sufficiently large to capture activity in the surrounding neuro-

pil (74). Furthermore, tissue movement is often a problem,

especially when imaging animals that are awake and/or

behaving (75). Although both axial resolution and movement

artifacts are currently being addressed experimentally, we

could incorporate these additional noise sources into our

model as well (by modifying our noise assumptions, Eq. 14).

The dynamics of each of the states could also be general-

ized in a number of ways. First, bleaching is often a problem,

especially for in vivo settings. This could easily be incorpo-

rated in our framework by allowing the observation parame-

ters, {a, b, x, sF}, to decay with time constants that could

be inferred directly. Second, although we implicitly assumed

that fluorescence achieves steady-state instantaneously, we

could instead include more realistic fluorescence dynamics,

which may be necessary for slower indicators, such as the

genetically encoded probes (41). Third, the proposed model

for calcium dynamics, Eq. 2, could be generalized in a number

of ways. For instance, we could i), enable the transient influx

in [Ca2þ]t due to a spike be variable, or ii), incorporate

additional time constants, to facilitate a noninstantaneous

rise time, adaptation, extrusion, or other more sophisticated

calcium dynamics (76).

Finally, one of the major goals of large-scale calcium fluo-

rescence imaging experiments is to understand the dynamics

of neural populations (3,29). The proposed methodology

could readily be implemented while imaging a heterogeneous

population of neurons by estimating the observation,

calcium, and spiking dynamics parameters independently

for each observable neuron. Alternately, an important aspect

of our proposed model is the spike history terms, which here

only cause effects in a single neuron. This model may easily

be generalized to include not only the ‘‘self-coupling’’ spike

history effects discussed here (cf. Fig. 6), but also ‘‘cross-

coupling’’ terms, which model the effects that one neuron’s

activity has upon other ‘‘target’’ neurons in the observed

population (70,71,77). Then, estimating these interneuronal

spike history weights u corresponds to estimating a func-

tional connectivity matrix of the network. We will address

the practical limitations of inference quality and parameter

estimation accuracy for large populations of neurons in

future work.
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APPENDIX A: DETAILS FOR CONSTRUCTING THE
PARTICLE FILTERS

In this appendix, we provide details for sampling, computing the weights,

and resampling. The simplest and most common sampling strategy is to

let the sampling distribution be the prior (or transition) distribution, i.e.,

qðHðiÞt Þ ¼ PqðHðiÞt jH
ðiÞ
t�1Þ. In general, when sampling from the prior transi-

tion distributions, the importance weights simplify:

~wðiÞt ¼
Pq

�
Ot

��HðiÞt

�
Pq

�
HðiÞt

��HðiÞt�1

�
w
ðiÞ
t�1

qðHðiÞt Þ
¼ Pq

�
Ot

��HðiÞt

�
w
ðiÞ
t�1;

(19)

which follows from substituting PqðHðiÞt jH
ðiÞ
t�1Þ for qðHðiÞt Þ, and then

canceling this transition distribution from both the numerator and denomi-

nator. If the observation Ot is significantly different from the value predicted

by the observation distribution, PqðOtjHðiÞt Þ, then the prior sampler wastes

most of its samples by choosing particles with values of Ht that do not corre-

spond to the observations. Thus, to construct an accurate approximation to the

true underlying distribution, many particles would be required. Unfortu-

nately, many of these particles would be relatively unlikely, and therefore,

have their corresponding weights close to zero, i.e., wt
(i) z 0. To mitigate

this effect, one must resample frequently, to eliminate particles that are far

from the observation, and replicate ones that are close. Note that it is only

by virtue of resampling that the observations are incorporated into this

sampler.

More efficient sampling can be achieved by using a sampling

distribution that explicitly considers the observations. A common

approach is to use the ‘‘one-observation-ahead’’ sampler (53), qðHðiÞt Þ ¼
PqðHðiÞt jH

ðiÞ
t�1;OtÞfPqðOt jHtÞPqðHtjHðiÞt�1Þ. Because constructing the one-

observation-ahead sampler is tractable for all the models considered in the

main text, below we provide details for constructing such samplers.

Linear observation particle filter

For the linear observation model, we have

qL
q

	�
Ca2þ �ðiÞ

t
; nðiÞt



¼def

PL
q

	
Ft

���Ca2þ �ðiÞ
t



¼ Pq

	�
Ca2þ �ðiÞ

t

���Ca2þ �ðiÞ
t�1
; nðiÞt



Pq

�
nðiÞt

�
; (20)

where the L superscript indicates that this is the sampling distribution for

the linear observation model, and the three distributions on the right-

hand-side of Eq. 20 are given by Eqs. 1–3 (note that qL
qð,Þ is implicitly

a function of both [Ca2þ]t�1
(i) and Ft). To sample spikes, we must compute

qL
qðn
ðiÞ
t Þ by integrating out ½Ca2þ�ðiÞt . Having sampled nt

(i) for each

particle, we may then sample from qL
qð½Ca2þ�ðiÞt Þ. Below we provide

details for sampling both nt and [Ca2þ]t, conditioned on the next

observation.

Constructing qL
qðn
ðiÞ
t Þ

We sample spikes from qL
qðn
ðiÞ
t Þ, which we compute by integrating out

[Ca2þ]t
(i) from Eq. 20:

qL
q

�
nðiÞt

�
¼
Z

qL
q

	�
Ca2þ �ðiÞ

t
; nðiÞt



d
�
Ca2þ �ðiÞ

t
(21a)

� Pq

�
nðiÞt

�Z
Pq

	�
Ca2þ �ðiÞ

t

���Ca2þ �ðiÞ
t�1
; nðiÞt



�Pq

�
Ft

���Ca2þ �ðiÞ
t

�
d
�
Ca2þ �ðiÞ

t
;

(21b)
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which corresponds to the probability of particle i sampling a spike, given its

previous value for calcium, [Ca2þ]t�1
(i), and the current observation, Ft. To

evaluate the above integral, we first note that the observation distribution

may be written as a Gaussian function of [Ca2þ]t
(i), i.e.,

PL
q

	
Ft

���Ca2þ �ðiÞ
t



¼ N

	
Ft;
�
Ca2þ �ðiÞ

t
; 1



¼ N
	�

Ca2þ �ðiÞ
t

; Ft; 1


; (22)

which follows the fact thatNðx; m; s2Þ ¼ N ðm; x;s2Þ. Now, given that both

the distributions in the integral in Eq. 21 can be written as Gaussian func-

tions of [Ca2þ]t
(i), we use the fact that the integral of the product of two

Gaussian functions of the same variable yields a Gaussian:

where s ¼ s1
2 þ s2

2. We can therefore evaluate the integral in Eq. 21b

by plugging in the distributions given by Eqs. 1 and 2, and swapping terms

as in Eq. 22:

GL
q

�
nðiÞt

��Ft

�
¼def

Z
Pq

	�
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t
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�
d
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t
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Z

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðs2

F þ s2
cDÞ

p exp


� 1

2

�
Ft � C

ðiÞ
t

�2

s2
F þ s2

cD

�
;

(24)

where we let C
ðiÞ
t ¼ ð1� D

t
Þ½Ca2þ�ðiÞt�1 þ An

ðiÞ
t þ D

t
½Ca2þ�b, which is implic-

itly a function of nt
(i). We compute GL

qðn
ðiÞ
t jFtÞ for the two cases, nt

(i) ¼ 0

and nt
(i) ¼ 1, and then, for each particle, one samples from

~qL
q

�
nðiÞt

�
¼ B

�
nðiÞt ; pD

�
GL

q

�
nðiÞt

��Ft

�
(25a)
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Constructing qL
qð½Ca2þ�ðiÞt Þ

Having sampled spikes, we can plug them back into Eq. 20, and integrate out

nt
(i), to obtain the distribution from which we sample [Ca2þ]t:

qL
q

	�
Ca2þ �ðiÞ

t



� 1

Z
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; (26)
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s
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(23)
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which follows from having already sampled ntðiÞ (as above, we have sup-

pressed the explicit conditioning on [Ca2þ]t�1
(i) and Ft, for clarity). Using

the rule that the product of two Gaussians results in a weighted

Gaussian:

1ffiffiffiffiffiffi
2p
p

s1

exp


� 1

2

�
x � m1

s1

�2�
� 1ffiffiffiffiffiffi

2p
p

s2

exp


� 1

2

�
x � m2

s2

�2�

¼ 1

Z

1ffiffiffiffiffiffiffiffi
2p2
p exp

(
� 1

2

	
x � 2ðm1

s1
þ m2

s2
Þ

2

s

)
;

(27)

where 2 ¼
�

1

s2
1

þ 1

s2
2

��1

, we obtain:

qL
q

��
Ca2þ �ðiÞ

t

�
¼ N

��
Ca2þ �ðiÞ

t
; S
ðiÞ
L

�
Ft

1
þ C

ðiÞ
t

sc

ffiffiffiffi
D
p
�
;S
ðiÞ
L

�
;

(28)

where
XðiÞ

L

¼
	

1þ 1

s2
c D


�1

Computing the weights and resampling when sampling from
PL

qð½Ca2þ�ðiÞt ; n
ðiÞ
t Þ

At each time step, the weights are updated according to Eq. 8, which, for this

model, may be expanded:

~wðiÞt ¼ w
ðiÞ
t�1PL

q

	
Ft

���Ca2þ �ðiÞ
t



¼

Pq

	�
Ca2þ �ðiÞ

t

���Ca2þ �ðiÞ
t�1
; n
ðiÞ
t



Pq

	
n
ðiÞ
t



qL

q

	
n
ðiÞ
t



qL

q

	�
Ca2þ �ðiÞ

t


 ; (29)

where the three distributions in the numerator are given by Eqs. 1, 2, and 3.

One resamples if the effective number of particles is too small (typically

taken to be N/2 (53)):

N�1
eff ¼

XN

i¼ 1

�
wðiÞt

�2
; (30)

which indicates whether too much of the weight is centered on too few

particles (53).

Nonlinear observation particle filter

Replacing the linear observation distribution given by Eq. 5 with the nonlinear

observation distribution given by Eq. 15 requires modifying qðHðiÞt Þ. In partic-

ular, the rules governing the products of Gaussians cannot be used directly, as

PqðFtj½Ca2þ�tÞ is not a Gaussian function of [Ca2þ]t (it is a Gaussian function

of S([Ca2þ]t). Therefore, we approximate PNL
q ðFtj½Ca2þ�tÞ using the standard

Laplace approximation (78), to obtain

PNL
q

	
Ft

����Ca2þ �
t



zN

	�
Ca2þ �

t
; ~mt; ~s

2
t



; (31)

where ~m and ~s2 denote the approximate mean and variance of this distribu-

tion. Having this approximation, we can then plug-in the approximate mean

and variance into Eq. 23 and 27, to obtain qNL
q ðn

ðiÞ
t Þ and qNL

q ð½Ca2þ�ðiÞt Þ for

this nonlinear observation model.
To generate the Laplace approximation to PNL
q ðFtj½Ca2þ�tÞ, we first

compute a first-order Taylor series approximation of g(x) ¼ aS([Ca2þ]t) þ b,

expanded around x:

g
��

Ca2þ �
t

�
zgðxÞ þ

��
Ca2þ �

t
�x
�
g
0 ðxÞ

¼ Ft þ
��

Ca2þ �
t
�x
�
g
0 ðxÞ; (32)

where x ¼ g–1(Ft) and g0(x) ¼ dg(x)/dx. Plugging this approximation into

Eq. 31, we have ~mt ¼ g�1ðFtÞ and ~st ¼ ðSð½Ca2þ�tÞ þ sFÞ=g
0 ðxÞ. Plugging

in the Hill function for S($), and solving for x and g0(x) yields

x ¼ g�1
�
Ft

�
¼
�

kdðb� FtÞ
Ft � b� a

�1=n

(33)

g
0�

x
�
¼
�

kdðb� FtÞ
Ft � b� a

�1=n
nkdðb� FtÞ
F� b� a

�
�
� kd

F� b� a
� kdðb� FtÞ
ðFt � b� aÞ2

�
:

(34)

So, plugging Eqs. 33 and 34 into ~mt and ~st, respectively, we can obtain

a Gaussian function of [Ca2þ]t as in Eq. 31. Note that this approximation

holds whenever [Ca2þ]t is in some range, lb< [Ca2þ]t< ub, where the lower

and upper bounds (lb and ub, respectively) are functions of {a, b, x, sF, n,

and kd}. Given those parameters, we subjectively determine these limits.

When the next observation is beyond those bounds, the likelihood function

is approximately flat, so we sample according to the transition distribution,

PqðHt jHt�1Þ (i.e., use the prior sampler, ignoring the next observation). In

practice, this is extremely rare.

Fig. 8 shows the accuracy of this approximation, for a particular example.

Importantly, this approximation need not be exact, as any distribution

pushing the particles toward PqðHtjHt�1;OtÞ is an improvement over the

prior sampler. We therefore use this approach to approximate

PNL
q ðFtj½Ca2þ�tÞ.

Constructing qNL
q ðn

ðiÞ
t Þ

As for the linear case, we first evaluate the integral in Eq. 21b, but we replace

Eq. 22 with Eq. 31, yielding

GNL
q

�
nðiÞt

��Ft

�
¼def 1

Z

1ffiffiffiffiffiffi
2p
p �

~s2
t þ s2

cD
�

� exp


� 1

2

�
~mt � C

ðiÞ
t

�2�
~s2

t þ s2
cD
�2

�
:

(35)

We may then construct qNL
q ðn

ðiÞ
t Þ as we did for the linear case above, but

replacing GL
qðn
ðiÞ
t jFtÞ in Eq. 25 with GNL

q ðn
ðiÞ
t jFtÞ.

Constructing qNL
q ð½Ca2þ�ðiÞt Þ

Again, having the approximation in Eq. 31, constructing qNL
q ð½Ca2þ�ðiÞt Þ

follows directly from the linear case, by substituting Eq. 31 for

PqðFtj½Ca2þ�ðiÞt Þ into Eq. 26:

qNL
q

��
Ca2þ �ðiÞ

t

�
¼ N

��
Ca2þ �ðiÞ

t
; S
ðiÞ
NL

�
~mt

~st

þ C
ðiÞ
t

sc

ffiffiffiffi
D
p
�
;S
ðiÞ
NL

�
; ð36Þ

where
XðiÞ
NL

¼
� 1

~s2
t

� 1

s2
c D

��1
.
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FIGURE 8 Gaussian likelihood approximation when modeling

the relationship between [Ca2þ]t and Ft using Eqs. 13 and 14. To

sample {nt, [Ca2þ]t} conditioned on the next observation, we

approximate the nonlinear observation distribution (Eq. 15) to be

a Gaussian function of [Ca2þ]t. Top panel: expected Ft for a range

of possible values of ln [Ca2þ]t (solid line). Middle panel: same as

top panel but for variance. Bottom panel: given a fluorescence

observation, Ft ¼ 0.8, the actual likelihood of [Ca2þ]t (solid line)

and Gaussian approximation to it (dotted line), both normalized

for comparison purposes. The solid circles in the top panel and

middle panel show the mFv and sFv for [Ca2þ]v at the mean of

the distribution plotted in the bottom panel.
Computing the weights and reweighting when sampling from
qNL

q ð½Ca2þ�ðiÞt ; n
ðiÞ
t Þ

Computing the weights for the this nonlinear observation particle filter

proceeds as in Eq. 29, but replacing qL
qð,Þ with qNL

q ð,Þ. We again use

Eq. 30 to reweight when appropriate.

Superresolution particle filter

The goal of the superresolution particle filter is to sample spike times in such

a way as to be able to infer when within each image frame a spike occurs, as

opposed to simply whether a spike occurs within an image frame. Impor-

tantly, this requires a time discretization more fine than the image frame

rate admits, i.e., we let D ¼ 1/(d � frame rate), where d sets the number

of time steps per image frame. This strategy might be desirable for a number

of reasons. First, often the image capture hardware or software drops frames,

so one would like to be able to handle dropped frames in a natural way. But

perhaps more importantly, imaging is often the bottleneck for temporal reso-

lution. When using 2-photon microscopy, imaging is ‘‘intermittent’’ due to

scanning. This follows because scanning each line typically only takes

~2 ms, whereas scanning the entire frame takes on the order of 50 – 500 ms

(depending on how many scan lines one chooses per frame). Thus, one

might observe a particular cell for only 2 ms at a time every d � 2 ms

(assuming d scan lines, and the cell is only observed in 1 of those lines).

In such a scenario, a reasonable model would be

PS
q

�
Ft

���Ca2þ �
t

�
¼def

NðFt; m2P; s

2
2PÞ if t=d˛Z

1 otherwise;
(37)

where m2P¼ aS([Ca2þ]t)þ b, s2P¼ xS([Ca2þ]t)þ sF, and Z is the set of all

positive integers. Alternately, if one is using either epifluorescence or

confocal imaging, images might not be intermittent, but rather, slow due

to the relatively slow frame rates obtainable with today’s cameras

(i.e., ~50 Hz). In such a scenario, although a similar discretization of time

would be appropriate, the observation model (Eq. 37) must be modified to
Biophysical Journal 97(2) 636–655
reflect that the camera would be integrating the photons over the entire

image frame time period.

In particular, we would replace S([Ca2þ]t) with the integrated photon

count since the previous observation,
Ptþd

s¼t Sð½Ca2þ�sÞ. We therefore assume

PS
qð,Þ is defined as in Eq. 37 below without loss of generality (note,

however, that the below sampler is not optimal for nonscanned images).

We could use the prior sampler, which would ignore Eq. 37 when gener-

ating samples, and then weight the samples as before at observation time

steps. This approach, however, becomes even more inefficient when sub-

sampling the step size. Fig. 9 shows an explanatory example of a single

spontaneous spike underlying intermittent observations. Because the prob-

ability of generating a spike in any time bin is relatively low when using

the prior sampler, no particles actually sampled a spike, and therefore the

inferred distribution misses the spike. However, by conditioning on the

next observation (i.e., using the one-observation-ahead sampler), particles

sample spikes in the appropriate time bin, and the inferred distribution

is then more accurate. Below, we provide details for constructing and

implementing the one-observation-ahead sampler when observations are

intermittent.

Superresolution one-observation-ahead sampling intuition

The key to one-observation-ahead sampling—when observations are inter-

mittent—is to sample spikes between observations conditioned on the

next observation. In other words, if v is the time of the next observation,

we would like to sample from

qðHðiÞt Þ ¼ PqðHtjHðiÞt�1;OvÞfPs
qðOvjHtÞPqðHtjHðiÞt�1Þ

qS
q

	�
Ca2þ �ðiÞ

t
; nðiÞt



¼ PNL

q

	
Fv

����Ca2þ �ðiÞ
t



� PNL

q

	�
Ca2þ �ðiÞ

t

����Ca2þ �ðiÞ
t�1
; nðiÞt



Pq

�
nðiÞt

�
;

(38)

where Eq. 38 only differs from Eq. 20 by replacing PL
qðFt j½Ca2þ�tÞ with

PNL
q ðFvj½Ca2þ�tÞ, which may be thought of as the probability of the next
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FIGURE 9 The one-observation-ahead sampler outper-

forms the prior sampler. The top left panels show the prior

sampler (i.e., sampling using the transition distribution,

PqðHt jHt�1Þ). Observations were made essentially noise

free at times u and v. At each time step, for each particle,

a value for ht was sampled first (top panels; unitless),

then nt (second panels; number of spikes), then [Ca2þ]t

(third panels; mM). The size of the dots is proportional to

the weights for each particle at each time step. Note that

for the prior sampler, they are all the same, which follows

from Eq. 19 and the fact the no observations are made

between u and v. The height of the bars is proportional to

the number of sampled spikes at that time. At observation

times, one resamples according to the particle weights,

wt
(i). The probability of sampling a spike was low here,

so no spikes were actually sampled by the prior sampler

at these times. The top right panels show the resulting

mean and variances. The bottom left panels show that the

one-observation-ahead sampler is more efficient. Particles

sampled a spike at the actual spike time, resulting in an

accurate spike time inference (right). No stimulus was

present. Parameters as in Fig. 6.
observation, Fv, given the current calcium concentration, [Ca2þ]t. Thus, to

sample from Eq. 38, we must compute PNL
q ðFvj½Ca2þ�tÞ for all t starting at

the last observation, until v. We start by letting t ¼ v, which is identical to

the nonintermittent case. Then, we recurse backward, computing

PNL
q ðFvj½Ca2þ�sÞ for s between v – 1 and v – d. Below, we fill in the details.

At time v, we can approximate PNL
q ðFvj½Ca2þ�vÞ using Eqs. 13 and 14.

Assuming we wish to use a nonlinear observation model as above, we approx-

imate this distribution as a Gaussian function of [Ca2þ]t, using Eq. 31. At

t ¼ v – 1, the neuron could either have spiked or not. If the neuron did not

spike, to move backward from [Ca2þ]v to [Ca2þ]v�1, calcium should do the

inverse of decay (cf. Eq. 40). This is the standard backward recursion, familiar

from the Hidden Markov Model literature (62). However, if the neuron did

spike, [Ca2þ]v�1 should be A mM below [Ca2þ]v. In either case, because the

noise on the [Ca2þ]t transitions is Gaussian, the distribution maintains its

Gaussianity, and its variance slightly increases. Thus, the distribution of

[Ca2þ]v�1 is a mixture of Gaussians. At v – 1, we have a two-component

mixture, one component for nv�1 ¼ 1 and one for nv�1 ¼ 0 The component

coefficient (probability of being in that component), an, v�1, is the expected

probability of spiking or not. The left panel of Fig. 10 depicts the Gaussian

mixture for several time steps preceding an observation. At time t ¼ v,

PNL
q ðFvj½Ca2þ�vÞ is approximated as a Gaussian. At time t ¼ v – 1, the distri-

bution is a mixture of two Gaussians. The top Gaussian’s mean is centered

around the mean of the Gaussian at t ¼ v. This follows from the fact that

the calcium time constant is much larger than the step size, t[D; therefore,

the amount of decay (or rather, inverse decay) in a few time steps is relatively

small. The other Gaussian’s mean is centered around A mM below the top one,

corresponding to where the calcium would be at t¼ v – 1 if a spike occurred at

that time step, forcing [Ca2þ]t to jump up by A mM in the next time step.

Recursing backward one more step yields a four-component mixture, as

each component in the mixture at v – 1 could have gotten there either from

the neuron spiking or not at time v – 2. The coefficient for each of the 4

components is proportional to the expected probability of having that partic-

ular sequence of spikes, i.e., at v – 2, we have four possible sequences:
(00), (01) (10), and (11), corresponding to no spikes, only spiking at time

v – 1, only spiking at time v – 2 and spiking at both v – 1 and v – 2, respec-

tively.

Note that at v – 2, two of the components nearly completely overlap. In

fact, those two components correspond to (01) and (10), i.e., the sequences

FIGURE 10 Approximate distribution closely matches exact (analytical)

distribution. We approximate the 2v–u component mixture with a v – u þ 1

component mixture, as in Eq. 47. Left panel: the exact distribution is

a mixture, with 2v–u components. Right panel: we approximate this mixture

with only v – u þ 1-components. Note that the two panels are visually

extremely similar.
Biophysical Journal 97(2) 636–655
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with exactly one spike. One can therefore approximate the two components

corresponding to a single spike at v – 2 as just one Gaussian component.

The right panel of Fig. 10 shows this approximation: at t ¼ v – 2, the distri-

bution in the right panel is a mixture of only three Gaussians. The middle

Gaussian has a mean and variance chosen to approximate the two Gaussians

that are nearly overlapping at t ¼ v – 2 (cf. Eqs. 47 and 48, below). It

should be clear that this approximation is very accurate. Note that at t ¼ v

and t ¼ v – 1, the left and right panels are identical, as there need not be

any approximation.

More generally, at any time v – t, all the components resulting from the

same number of spikes between t and v can be combined into a single

component. One must simply take care to modify the component weights,

means, and variances appropriately. Upon doing so, at time t, instead of

a mixture with 2v–t components, we are left with a mixture of v – t þ 1

components (i.e., one component per possible number of spikes until time

v). For instance, assuming that d ¼ 20, we obtain a 220 z 106 component

mixture in the no-approximation situation, versus a 21 component mixture

when using our approximation, a four order of magnitude reduction in

computational load. Comparing the left and right panels for t ¼ v – 3 and

t ¼ v – 4 shows the accuracy of this approximation going back 3 and 4

time steps, respectively. Because this approximation is so accurate, we use

this approximation for PNL
q ðFvj½Ca2þ�tÞ.

Computing PNL
q ðFvj½Ca2þ�tÞ for all t ˛ (u, v)

Initializing PNL
q ðFvj½Ca2þ�vÞ. If u is the time of the last observation, and v is

the time of the next observation, we initialize PNL
q ðFvj½Ca2þ�vÞ using the

same Laplace approximation as in the previous section:

PNL
q

	
Fv

����Ca2þ �
v



zN

	�
Ca2þ �

v
; ~mv; ~s

2
v



: (39)

Recursing backward. At v – 1, we use the following backward recursion,

PNL
q

�
Fv

���Ca2þ �
v�1

�
¼
X

n¼ 0;1

an;v�1

Z
PNL

q

�
Fv

���Ca2þ �
v

�
Pq

��
Ca2þ �

v

���Ca2þ �
v�1
; nv ¼ n

�
d
�
Ca2þ �

v
; (40)

to generate the two-component Gaussian the mixture model corresponding

to the neuron spiking or not at time v – 1. The component coefficients,

{a1,v�1, a0,v�1} are the expected probabilities of spiking or not,

E[nv�1¼1] and E[nv�1¼0], respectively, given by Eq. 3. The transition

distributions, Pqð½Ca2þ�vj½Ca2þ�v�1; nv ¼ nÞ for nv ¼ 0 and nv ¼ 1 are

given by

Pq

��
Ca2þ �

v

���Ca2þ �
v�1
; nv

�
¼ N

��
Ca2þ �

v
; Cv; s

2
cD
�
;

(41)

where either nv¼ 0 or nv¼ 1, which follows from Eq. 2, where Cv is defined

as in Eq. 24. We now have all parts necessary to evaluate the integral in Eq.

40, to get a Gaussian distribution in [Ca2þ]v�1. First, simply write down the

integral, substituting in the known distributions:
Using the fact that the integral of two Gaussian functions of the same vari-

able yields a Gaussian (cf. Eq. 23), we can evaluate the integral in Eq. 42:

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p
�
~s2

v þ s2
cD
�q exp


� 1

2

ð~mv � cðnvÞÞ2

~s2
v þ s2

cD

�
: (43)

where cðnvÞ ¼ ð½Ca2þ�v�1 � D
t
ð½Ca2þ�v�1 � ½Ca2þ�bÞ þ AnvÞ. Rewriting this

as a Gaussian function of [Ca2þ]v�1, we have

1

Z
N
	�

Ca2þ �
v�1

; ~mS
v

	
n


;
	

~sS
v


2

; (44)

where ~mS
vðnÞ ¼ ð~mv � Anv � D

t
½Ca2þ�bÞ=ð1� D

t
Þ, ð~sS

vÞ
2 ¼ ð~s2

v þ s2
c DÞ=

ð1� D
t
Þ2, and Z is a normalization factor (which is only a function of t and

D). Plugging this result back into Eq. 40 yields

PNL
q

�
Fv

���Ca2þ �
v�1

�
¼

X
n¼ 0;1

an;v�1N
	�

Ca2þ �
v�1

; ~mS
v

	
n


;
	

~sS
v


2

;

(45)

where we have dropped Z because the component coefficients, a1,v�1 and

a0,v�1, set the appropriate weights for the above mixture (and Z does

not depend on the data or the mixture identity). This provides the intuition

for a more general backward recursion

PNL
q

�
Fv

���Ca2þ �
t�1

�
¼

X
n¼ 0;1

an;t�1

X2v�t

m¼ 1

amtN
	�

Ca2þ �
t�1

; ~mS
mt

	
n


;
	

~sS
t


2

;

(46)

where m indexes one of the 2v–t possible spike trains between t and v,

corresponding to one component of the mixture, and ~mS
mtðnÞ ¼

ð~mmt � Ant � D
t
½Ca2þ�bÞ=ð1� D

t
Þ. Each component coefficient, amt, is the

probability of sampling the particular spike train indexed by m, at time t.

Similarly, ~mmt is the expected value for [Ca2þ]t given Fv and a particular

spike train indexed by m, computed recursively using Eq. 46. The variance

of each component is the same because the variance is not a function of the

data or whether the neuron spikes.

Approximating the 2v–t component mixture. To reduce this mixture from

an intractable 2v–t components to a tractable v – t þ 1 components, we

approximate all the components at time t conditioned on the same number

of spikes as a single component:X
m˛M

amtN
��

Ca2þ �
t
; ~mS

mt
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;
	

~sS
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2
�

zam�tN
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�
;

(47)

where M ¼
Pv
s¼t

ns ¼ m�, am� t ¼
P

m amt , bmm�t ¼
P

m amtbmmt , and

bs2
m� t ¼ bs2

t þ
P

m amtðbmmt � bmm� tÞ2. Thus, we must compute these three terms

for all m* ¼ 0, ., v – t – 1 and all t ¼ u þ 1, ., v – 2 to sample
Z
PNL

q
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v
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Pq

��
Ca2þ �

v

���Ca2þ �
v�1
; nv ¼ n

�
d
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�
þ Anv; s

2
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�
:

(42)
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fromand these mixtures at each time step between observations (this

approximation is only necessary when t < v – 1, because otherwise we

simply keep the two-mixture Gaussian). The approximation in Eq. 47 is

good because the distribution of calcium is governed largely by the

number of spikes since the last observation, and only somewhat modu-

lated by the particular spike train in that time period. Thus, in other

words, for each time step, we approximate

PNL
q

�
Fv

���Ca2þ �
t

�
zbPq

	
Fv

���Ca2þ �
t



¼
Xv�t

m� ¼ 0

am�tN
	�

Ca2þ �
t
; bmm�t; bs2

m�t



: (48)

Superresolution sampling details. Having constructed an approximation to

PNL
q ðFvj½Ca2þ�tÞ, we may now plug that into Eq. 38, to construct the distri-

butions from which we actually sample each of the hidden states. The spike

history terms are sampled from the transition distribution, because most of

their variance derives from previous spikes, and not observations. So we

need only construct a sampling distribution for nt and [Ca2þ]t.

Superresolution sampling spikes. Sampling spikes for the intermittent

case follows from Eq.21b, but we replace PqðFt j½Ca2þ�ðiÞt ÞwithbPqðFvj½Ca2þ�tÞ:

q
�
nðiÞt

�
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Z
Pq
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t�1
; nðiÞt



� bPq
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t



d
�
Ca2þ �

t
:

(49)

As in Eq. 21b, one can compute the above integral using Eq. 23, to generate

a Gaussian for each component in the mixture of bPqðFvj½Ca2þ�tÞ:

Gm�

q

	
nðiÞt

���Fv



¼def 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p
�bs2

m�t þ s2
cD
�q

� exp


� 1

2

� bmm�t � C
ðiÞ
tbs2

m�t þ s2
cD

�2�
;

(50)

which we compute for nt
(i) ¼ 0 and nt

(i) ¼ 1 (recalling that Ct
(i) is implicitly a

function of n
ðiÞ
t , as defined in Eq. 24). Thus, for each particle, one samples from:

~qS
q

�
nðiÞt

�
¼ B

�
nðiÞt ; pD

� Xv�t

m� ¼ 0

am�tGm�

q

�
nðiÞt

��Fv

�
(51a)

qS
q

�
nðiÞt

�
¼

~qS
q

�
n
ðiÞ
t

�P
n
ðiÞ
t ¼f0;1g

~qS
q

�
n
ðiÞ
t

�: (51b)

where qS
qðn
ðiÞ
t Þ is implicitly conditioned on both [Ca2þ]t�1

(i) and Fv.

Superresolution sampling calcium. Sampling calcium in the intermittent

case follows from Eq. 26, but we replace PqðFt j½Ca2þ�ðiÞt Þwith bPqðFvj½Ca2þ�tÞ:�
Ca2þ �ðiÞ

t
� qS

q

	�
Ca2þ �ðiÞ

t



¼ bPq

�
Fv

���Ca2þ �
t

�
Pq

��
Ca2þ �ðiÞ

t

����Ca2þ �ðiÞ
t�1
; nðiÞt

�
¼

Xv�t

m� ¼ n
ðiÞ
t

am�tN
��

Ca2þ �
t
; m
ðiÞ
cm�t; s

2
cm�t

�
;

(52)
where qS
qð½Ca2þ�ðiÞt Þ is implicitly conditioned on n

ðiÞ
t ; [Ca2þ]t�1

(i) , and Fv, and

we let

s�2
cm�t ¼ bs�2

m�t þ ðs2
cDÞ�2

(53)

m
ðiÞ
cm�t ¼ s2

cm�t

 bmm�tbs2
m�t

þ C
ðiÞ
t

s2
cD

!
: (54)

To sample from this mixture, one first samples a component according to its

coefficient am� t , and then samples from the Gaussian corresponding to that

component. Notice, however, that the sum in Eq. 52 starts at n
ðiÞ
t , because

if n
ðiÞ
t ¼ 1, then the component corresponding to zero spikes between t

and v should not be considered for that particle.

Computing the weights and reweighting when sampling from

qS
qð½Ca2þ�ðiÞt ; n

ðiÞ
t Þ. Computing the weights for the this superresolution

particle filter proceeds as in Eq. 29, but replacing qL
qð,Þwith qS

qð,Þ. We again

use Eq. 30 to reweight when appropriate.

GLM particle filter

Until now, we have assumed that the spiking probability was independent of

both the stimulus and previous spikes. However, if we replace Eq. 3 with

a GLM (such as described by Eqs. 16 – 18), we obtain a more general model.

In such a scenario, the transition distribution becomes:

PqðHtjHðiÞt�1Þ ¼ Pq

��
Ca2þ �

t

���Ca2þ �ðiÞ
t�1
; nðiÞt

�
�Pq

�
nðiÞt

��hðiÞt

�
Pq

�
hðiÞt

��nðiÞt�1; h
ðiÞ
t�1

�
:

(55)

Thus, the one-observation-ahead sampler must change to reflect the spike

history terms. Specifically, now nt depends on h
ðiÞ
t , which implies that h

ðiÞ
t

must be sampled before nt. Although one could sample the spike histories

conditioned on the observations (i.e., from the one-observation-ahead

sampler), because they are functions of nt�1, the variance mostly comes

from whether the neuron spiked in the previous time step. Thus, they can

simply be sampled from their transition distributions without much loss of effi-

ciency. Therefore, we sample each spike history term from Pqðhl;tjhðiÞl;t�1Þ,
which is given by Eq. 18.

Having sampled h
ðiÞ
t for each particle, we must now sample nt condition-

ally:

~qG
q

�
nðiÞt

�
¼

B
�
nðiÞt ; 1� ef ðbþ k0xt þu0hðiÞt Þ

� Xv�t

m� ¼ 0

~am�tGm�

q

�
nðiÞt

��Fv

�
ð56aÞ

qG
q

�
nðiÞt

�
¼

~qG
q

�
n
ðiÞ
t

�P
n
ðiÞ
t ¼f0;1g

~qG
q

�
n
ðiÞ
t

�; (56b)

where Gm�

q ðn
ðiÞ
t jFvÞ is from Eq. 50, and ~am� t is an approximation to am� t ,

necessary because the spike history terms make am� t not analytically trac-

table (because they have not yet been sampled for times after t). Consider

computing a1,v�1 in the absence of spike history terms:

a1;v�1 ¼ 1� e�f ðbþ k0xv�1ÞD: (57)

The probability of not spiking is simply a0,v�1 ¼ 1 – a1,v�1. When spike

history terms are present, f($) would also be a function of hv�1, which has not

yet been sampled. We therefore must recursively approximate the expected

value for each spike history term using
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E
�
hl;t

�
¼ E

h�
1� D=thl

�
hl;t�1 þ nt�1 þ sh

ffiffiffiffi
D
p

3t

i
¼
�
1� D=thl

�
E
�
hl;t�1

�
þ E

�
nt�1

�
; (58)

for all t ˛ (u, v), where u is the time of the previous observation. Then, we let

~a1;tzE
�
nt ¼ 1

�
z1� ef ðbþ k0xt þw0E½htÞ�D; (59)

and ~a0;t ¼ 1� ~a1;t. By iterating between Eqs. 58 and 59 for t ¼ u, ., v, we

get the expected probability of the neuron spiking at any time.

Sampling calcium proceeds as in Eq. 52, having now sampled the spikes

conditioned on the spike history terms. Computing the weights proceeds as

in the superresolution case, as both the numerator and denominator of Eq. 29

get multiplied by PqðhðiÞt jh
ðiÞ
t�1Þ, so they cancel one another.

APPENDIX B: LEARNING THE PARAMETERS

In this appendix, we describe how to estimate all of the parameters

mentioned in the main text (i.e., including the generalizations). For brevity,

we use the following notation:

J
ði;jÞ
t;t�1 ¼ PqðHðiÞt ;H

ðjÞ
t�1jO1:TÞ

M
ðiÞ
t ¼ PqðHðiÞt jO1:TÞ:

For learning all the parameters governing the transition distribution, we

make use of the following identity for our model:

ln PqðHðiÞt jH
ðjÞ
t�1Þ ¼ ln Pq

	�
Ca2þ �ðiÞ

t

����Ca2þ �ðjÞ
t�1
; nðiÞt



þ ln Pq

�
nðiÞt

��hðiÞt

�
þ ln PqðhðiÞt jh

ðjÞ
t�1Þ;

(60)

which follows from Eqs. 2 and 16–18. Therefore, we can maximize the like-

lihood with respect to the parameters governing any of the hidden states

independently of the parameters governing the other hidden states. For

example, maximizing the likelihood with respect to b; k;wgf depends

only on Pqðnt jhtÞ.

Spike rate parameters

To compute the maximum likelihood estimates of the spike rate parameters,

define F be the set of index pairs, (i, t), for which particle i spikes at time t.

Then, by letting yt ¼ bþ k0xt þ w0ht, and plugging in Eqs. 16 and 18 into

12, and maximizing with respect to b; k;wgf , we have:nbb;bk; bw}¼ argmax
fb;k;wg

XT

t¼ 1

XN

i;j¼ 1

J
ði;jÞ
t;t�1

�
ln Pq

�
nðiÞt

��hðiÞt

��
¼ argmax

fb;k;wg

X
ði;tÞ˛F

MðiÞt lnð1� ef ðbþ k0xt þw0hðiÞt ÞDÞ

þ
X
ði;tÞ;F

MðiÞt f ðb þ k0xt þ w0hðiÞt ÞD;

(61)

where H
ðiÞ
t has been integrated out of Jt, t�1

(i, j) because P
qðnðiÞt jh

ðiÞ
t Þ

is indepen-

dent of the previous time step. For the likelihood of this function to have no

nonglobal extrema (so that one can quickly estimate the parameters of the

model using any gradient ascent technique), it is sufficient that f($) be

both convex and log-concave (a typical example is f($) ¼ – exp($)) (59).

Then, this maximization can be solved efficiently using any gradient ascent

technique, such as MATLAB’s fminunc. To expedite the computa-

tional process, one can also provide the gradient and Hessian for this

likelihood function, which are easily calculated here.

Calcium parameters

By substituting Eq. 2 into Eq. 12 and maximizing with respect to {t, A,

[Ca2þ]b, sc}, we have:

where m
ði;jÞ
t;t�1 ¼ ð1� D

t
Þ½Ca2þ�ðjÞt�1 � An

ðiÞ
t � D

t
½Ca2þ�b. Thus, we have a stan-

dard weighted Gaussian maximum likelihood estimation problem. Thus,

solving for bt, bA, and ½cCa2þ�b is independent of bsc:nbt; bA; hcCa2þ
i

b
} ¼ �1

2
argmax

t;A;½Ca2þ �
b>0

;XT

t¼ 1

XN

i;j¼ 1

J
ði;jÞ
t;t�1

	�
Ca2þ �ðiÞ

t
�m

ði;jÞ
t;t�1


2

;

(63)

which is a linearly constrained quadratic programming problem, efficiently

solved by MATLAB’s quadprog, for instance. The constraints

follow naturally from biophysical properties, e.g., time constants

must be positive. To use quadprog, we must write this as:

bx ¼ argmin
x>0

1

2
x0Qx þ L0x; (64)

which requires computing the sufficient statistics, Q and L. We therefore

make the following substitutions:

Cði;jÞt ¼

2664
�
Ca2þ �ðjÞ

t�1
D

�n
ðiÞ
t

�D

3775
0

; x ¼

264
1=t

A�
Ca2þ �

b
=t

375;
dði;jÞt ¼

�
Ca2þ �ðiÞ

t
�
�
Ca2þ �ðjÞ

t�1
;

(65)

which enables one to write Eq. 63 as a constrained quadratic programming

problem:

bx ¼ 1

2
argmin
xpR0;cp

XT

t¼ 1

XN

i;j¼ 1

J
ði;jÞ
t;t�1

������Cði;jÞt x þ dði;jÞt

������2
2
; (66)

(bt; bA; hcCa2þ
i

b
; bsc

)
¼ argmax

t;A;½Ca2þ �
b
;sc

XT

t¼ 1

XN

i;j¼ 1

J
ði;jÞ
t;t�1

	
ln Pq

	�
Ca2þ �ðiÞ

t

����Ca2þ �ðjÞ
t�1
; nðiÞt





¼ argmax
t;A;½Ca2þ �

b
;sc

XT

t¼ 1

XN

i;j¼ 1

J
ði;jÞ
t;t�1

�
� 1

2
ln

�
2ps2

cD

�
� 1

2

	�Ca2þ �ðiÞ
t
�m

ði;jÞ
t;t�1

sc

ffiffiffiffi
D
p


2
�
; (62)
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where the constraint is that all the parameters must be nonnegative (p ¼ 3

here). We can compute Q and L:

Q ¼
XT

t¼ 1

XN

i;j¼ 1

J
ði;jÞ
t;t�1C

ði;jÞ
t
0 Cði;jÞt (67)

L ¼
XT

t¼ 1

XN

i;j¼ 1

J
ði;jÞ
t;t�1Cði;jÞt dði;jÞt ; (68)

and plug these quantities into a constrained quadratic program, which yieldsbx, from which we obtain the parameters. One can then solve for the variance

by plugging in btc, bA, and ½cCa2þ�b for t, A, and [Ca2þ]b in Eq. 62, evaluating

its gradient, and then setting the gradient to zero, yielding

bs2
c ¼ argmax

s2
c

XT

t¼ 1

XN

i;j¼ 1

J
ði;jÞ
t;t�1

�
� 1

2
ln
�
2ps2

cD
�

� 1

2

	�
Ca2þ �ðiÞ

t
�m

ði;jÞ
t;t�1


2

s2
cD

�
(69a)

0
X

t ¼ f1;.; Tg
i; j˛f1;.;Ng

J
ði;jÞ
t;t�1 �

 
1

sc

þ

	�
Ca2þ �ðiÞ

t
�u
ði;jÞ
t;t�1


2

s3
cD

!
¼ 0

(69b)

bs2
c ¼

1

TD

XT

t¼ 1

XN

i;j¼ 1

J
ði;jÞ
t;t�1

	�
Ca2þ �ðiÞ

t
�m

ði;jÞ
t;t�1


2

¼ 1

TD

�
� 1

2
bxQbx þ L0bx�; (69c)

where the normalization by T follows from the fact thatP
i;j˛f1;.;Ng J

ði;jÞ
t;t�1 ¼ 1 for all t. Note that it is by virtue of assuming

a nonlinear relationship between [Ca2þ]t and Ft that A, sc, and [Ca2þ]b

may be estimated exactly, as opposed to only being identifiable up to a scale

and offset term. We note here that we could further constrain our parameter

estimates by making use of known relationships between the above param-

eters (1).

Spike history parameters

Each spike history term has dynamics similar to the [Ca2þ]t dynamics.

However, the jump size is fixed at 1 for the spike history terms (as its effect

is scaled by the spike history weight, u). Also, we assume the time constants

for these spike histories are known and fixed, as they comprise a basis set

that spans the space of reasonable spike history effects. The only remaining

parameters to estimate are the variances of the noise, which, like the variance

for [Ca2þ]t noise, can be solved for analytically:

bs2
hl
¼ 1

TD

XT

t¼ 1

XN

i;j¼ 1

J
ði;jÞ
t;t�1

	
h
ðiÞ
l;t �

	
1� D

thl



h
ðjÞ
l;t�1 � nðjÞt


2

:

(70)

Observation parameters

The observation likelihood is given by

Spike Times for Fluorescent Imaging
where k is a constant independent of the parameters of interest. Maximizing

likelihood functions of this form — a Gaussian likelihood whose variance

depends on the mean—typically follows an iterative procedure (79).

First, perform a linear regression to estimate a and b, while holding x and

sF fixed:

�ba; bb} ¼ argmin
a;bR0

XT

t¼ 1

XN

i¼ 1

�
Ft � aS

��
Ca2þ �

t

�
� b
�2

xS
��

Ca2þ �
t

�
þ sF

þ ln
�
xS
��

Ca2þ �
t

�
þ sF

�
; (72)

and then perform another on the residuals to get x and sF:�bx; bsF} ¼ argmin
x;sFR0

�
rt � xS

��
Ca2þ �

t

�
� sF

�2
; (73)

where rt are the residuals from Eq. 72. Since each of these steps increases the

likelihood, iterating these two steps is guaranteed to converge (79).
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