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Introduction

Observation: changes in scale (not just mean) of
random input can lead to “adaptation” (defined in
more depth below) [13, 12, 5]

2 hypotheses:

• (physiology) adaptation is at least partially single-
cell phenomenon

• (math) adaptation is generic (independent of cel-
lular details)



Results of Fairhall et al. (1)
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• firing rate “adapts” to changes in input scale

• adaptation to upward jumps is faster than to down-
ward jumps

• timescale of adaptation depends on timescale of
scale changes



Results of Fairhall et al. (2)
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• N -function adapts (exact definition below)



Experimental methods

Figure 1: Sagittal slices were prepared from adolescent and adult rats (P14-P24) as described
in [10]. Briefly, slices were maintained at 30◦C in articificial cerebrospinal fluid consisting of
(in mM): 125 NaCl, 2.5 KCl, 25 glucose, 25 NaHCO3, 1.25 NaH2PO4, 2 CaCl2, and 1 MgCl2.
Cells were visualized using infrared differential interference contrast microscopy with a 40X
water immersion objective. Dual-electrode whole-cell recordings were made using pipettes
with 5-15 M resistance when filled with (in mM): 100 K-gluconate, 20 KCl, 4 ATP-Mg, 10
phosphocreatine, 0.3 GTP, and 10 HEPES, pH 7.3 (310 mOsm). Recordings were performed
in current clamp using Axoclamp 2B amplifiers (Axon Instruments, Foster City, CA), and
stimulus presentation and data acquisition was managed using IGOR (Wavemetrics, Lake
Oswego, OR). Gaussian noise current stimuli were delivered through one electrode, while
voltage was recorded through the other electrode and processed on- and off-line (note that
the noise current was not “frozen,” that is, a new noise current was drawn i.i.d. for each trial).
Panel shows a photograph of a cell with the recording and stimulating electrodes partially
visible.



Basic experimental data
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Experimental Result 1: rate adaptation

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5

10

15

20

25

30

35

time (sec)

fir
in

g 
ra

te
 (H

z)

• τ− > τ+

• No oscillations seen

• No period-dependence seen (c.f. Fairhall et al.)



Result 2: changes in spike-triggered average
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Result 3: adapation of N-function
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Definition of N-function

N(K~x) ≡ P (spike|K~x)

(~x is stimulus, K is projection onto cell’s “linear
filter,” estimated by spike-triggered average)

K~x = “projected current”



Theoretical methods: IF model

dV

dt
=

1

τm
(VL − V + RmI)− (Vth − Vreset)δ(V − Vth)

τm = membrane time constant ≈ 20 ms
VL = leak reversal potential ≈ −70 mV
Rm = membrane resistance ≈ 40MΩ
I = input current (white Gaussian noise, fixed DC)
Vth = threshold potential ≈ −55 mV
Vreset = reset potential ≈ −65 mV



Basic tool: Fokker-Planck equation

Basic idea: instead of modeling single cells, model
population [7, 2, 9]

Fundamental object: P (V ), probability distribution
on voltage

∂P

∂t
= L(P ) + F (t)(δ(V − Vreset) − δ(V − Vth)),

L ≡
σ2

0

2

∂2P

∂V 2
+

1

τm

∂[(V − V0)P ]

∂V
;

F (t) time-dependent mean firing rate of the cell

σ0 ≡ Rmσ/τm

V0 ≡ Rmµ + VL

This equation exact in IF framework — no approx-
imations made



Steady-state solution to FP equation [8, 2]

P (V ) =
2F

σ2
0

∫ Vth

max(V,Vreset)

dV ′e
(V ′−V0)2−(V −V0)2

τmσ2
0
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Theoretical result 1: rate adaptation
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Result 2: spike-triggered average

Does not show width scaling behavior seen in vitro;
different model necessary (see, e.g., [6])

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ms

S
T

A
/m

ax
(S

T
A

)

σ = .3 nA
σ = .6 nA
σ = 1.2 nA

Some exact theory possible, using invariant measure
of FP equation; STA scales with σ and (more surpris-
ingly) time step of numerical integration



Result 3: adaptation of three N-functions

0 0.2 0.4 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Current pulse (nA)

P
(s

pi
ke

)

0 1 2

10

20

30

40

50

60

70

DC current (nA)
N

or
m

al
iz

ed
 fi

rin
g 

ra
te

0.2 0.4 0.6
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Projected current (nA)

P
(s

pi
ke

)

Figure 2: Three “gain functions” for integrate-and-fire cell: middle panel shows N -function,
computed by Monte Carlo; left panel is “transient” function F0(x, σ), and right is “long-time”
function F∞(x, σ)/F∞(0, σ), both computed analytically. (Note that F∞(x, σ)/F∞(0, σ) is
normalized so that the y-axis is a dimensionless ratio.)



IF gain functions: definitions

Transient gain function:

F0(x, σ) ≡ lim
dt→0

lim
T→0

P

(

spike ∈ (−dt, 0]

∣

∣

∣

∣

∫ 0

−T

I(t)dt = x

)

=

∫ Vth

Vth−
xRm
τm

P (V )dV,

Long-time gain function:

F∞(x, σ) ≡ lim
T→∞

P

(

spike ∈ (−dt, 0]

∣

∣

∣

∣

∫ 0

−T

I(t)dt = xT

)

≈ −
σ2

0

2

∂Pµ+x(V )

∂V

∣

∣

∣

∣

V =Vth

dt,

x corresponds to the projected current (x-axis, Fig. 2b).



Conclusions

• Cortical somata display much of the adaptive be-
havior observed in vivo,in various species and prepa-
rations

• Much of this behavior is replicated in the simplest
possible model [11]

• Different view of adaptive behavior; no efficient
coding concepts invoked

Directions

• Dynamics of current-based FP equation

• Conductance-based FP equation (no second-order
differential term; instead, jumps, like a delay equa-
tion in space).

• Dependence of τ on period in Fairhall et al. data:
network effect?
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