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Noise-driven adaptation: in vitro and
mathematical analysis�
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Abstract

Variance adaptation processes have recently been examined in cells of the /y visual system and
various vertebrate preparations. To better understand the contributions of somatic mechanisms
to this kind of adaptation, we recorded intracellularly in vitro from neurons of rat sensorimotor
cortex. The cells were stimulated with a noise current whose standard deviation was varied
parametrically. We observed systematic variance-dependent adaptation (de2ned as a scaling of
a nonlinear transfer function) similar in many respects to the e3ects observed in vivo. The fact
that similar adaptive phenomena are seen in such di3erent preparations led us to investigate a
simple model of stochastic stimulus-driven neural activity. The simplest such model, the leaky
integrate-and-2re (LIF) cell driven by noise current, permits us to analytically compute many
quantities relevant to our observations on adaptation. We show that the LIF model displays
“adaptive” behavior which is quite similar to the e3ects observed in vivo and in vitro.
c© 2003 Elsevier Science B.V. All rights reserved.
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It is widely understood that sensory neurons adapt to the prevailing statistics of their
inputs [10]. Fairhall et al. [5] recently reported one such adaptation process in the /y
visual system; they described a motion-sensitive neuron that appears to scale its input–
output function to adapt its 2ring rate to the variance of the observed motion signal.
However, the mechanisms underlying this type of contrast-dependent adaptation are un-
known; speci2cally, it is unclear whether the observed phenomena arise from network
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Fig. 1. Experimental details. Sagittal slices were prepared from adolescent and adult rats (P14-P24) as
described in [8]. Brie/y, slices were maintained at 30◦C in arti2cial cerebrospinal /uid consisting of (in
mM): 125 NaCl, 2.5 KCl, 25 glucose, 25 NaHCO3, 1.25 NaH2PO4, 2 CaCl2, and 1 MgCl2. Cells were
visualized using infrared di3erential interference contrast microscopy with a 40× water immersion objective.
Dual-electrode whole-cell recordings were made using pipettes with 5–15 M resistance when 2lled with
(in mM): 100 K-gluconate, 20 KCl, 4 ATP-Mg, 10 phosphocreatine, 0.3 GTP, and 10 HEPES, pH 7.3
(310 mOsm). Recordings were performed in current clamp using Axoclamp 2B ampli2ers (Axon Instruments,
Foster City, CA), and stimulus presentation and data acquisition was managed using IGOR (Wavemetrics,
Lake Oswego, OR). Gaussian white noise current stimuli were delivered through one electrode, while voltage
was recorded through the other electrode and processed on- and o3-line. Left panel shows a photograph of
a cell with the recording and stimulating electrodes partially visible; right panel shows a sample trace of
the current input (including a jump between two values of noise variance), and the corresponding peri-event
time histogram (note that the noise current was not “frozen,” that is, a new noise current was drawn i.i.d.
for each trial).

dynamics or from dendritic or somatic mechanisms in individual neurons. We hypoth-
esized that (1) somatic mechanisms could account for at least part of the observed
adaptation phenomena, and that (2) these somatic e3ects are general in the sense that
they depend only weakly on the biophysical parameters governing a given neuron’s
behavior. To test hypothesis (1), we recorded intracellularly from layer V pyramidal
neurons in sensorimotor cortex in vitro (see Fig. 1 for details), while stimulating with
a noise current whose standard deviation (or “contrast”) was varied parametrically.
Hypothesis (2) will be addressed mathematically below.

For ease of comparison, we analyzed our data using the basic framework utilized
in [5] (see also, e.g., [4]). For each neuron, we estimated a separate spike-triggered
average (STA) at each current standard deviation [3], using data acquired after the
neuron had reached a steady-state 2ring rate. We then projected our stimulus onto the
normalized STA function (this operation is equivalent to a time-reversed convolution,
or 2ltering), and estimated, via a nonparametric histogram approach, the conditional
probability of a spike given each observed value of the projected current. These con-
ditional 2ring rate functions (termed N -functions, for nonlinearity, in keeping with
convention) will be the main object of our analysis (see Fig. 2 for an example).
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Fig. 2. Examples of N -functions for a single pyramidal neuron. Each curve represents data for a particular
standard deviation of input current.

Our main observations are as follows: 2rst, the STA (which is often thought of as a
linear pre2lter for the cell, the stimulus dimension to which the neuron is most sensi-
tive) changed with the standard deviation of the injected current. As � was increased,
we observed a systematic reduction in the time-to-peak as well as the half-width of
the STA, consistent with results seen in vitro [3] and in vivo [1]. We also observed
changes in the N -functions (Fig. 2). If we de2ne “gain” as the slope of the N -function,
we have that the gain of the observed cortical cells was consistently inversely propor-
tional to the standard deviation of the injected current; this result is strikingly similar
to those of Fairhall et al. [5].

What could explain the gain changes described above? One common model for
gain changes in cortical cells requires the presence of some channel whose conduc-
tance is dependent on the 2ring rate of the cell; it has been shown, for example,
that calcium-dependent potassium channels can lead to changes in the input-dependent
2ring rate of the cell (see e.g. [11]). It seems plausible that such macroscopic changes
in the 2ring rate could manifest themselves in changes at the more detailed level of the
N -function (although, to our knowledge, these e3ects have not been studied in detail).
However, we believe that an even simpler phenomenon is (at least partially) responsi-
ble here. Our hypothesis is that much of the “adaptation” phenomenon described above
can be explained by the basic spiking dynamics of the cell, even in the absence of
nonlinear ion channels. (See also [9], where a similar idea was proposed using di3erent
methods.)

To explain our results, we introduce some tools from the theory of stochastic
dynamical systems. We start with perhaps the simplest widely-used neural model,
the leaky integrate-and-2re (LIF) cell, described by the following equation:

dV
dt

=
1
�m

(VL − V + RmI) − (Vth − Vreset)	(V − Vth);
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where V denotes voltage, �m the membrane time constant, Rm the membrane resis-
tance, VL the leak reversal potential, Vth and Vreset the threshold and reset potential,
respectively, and I is an input current which in our case is given by a standard white
noise process of stationary mean 
 and standard deviation �.

A noise-driven dynamical system can, in general, be described either in terms of
the pathwise (single-trial) behavior of the system or in a distributional (ensemble)
sense. The pathwise behavior of the noise-driven LIF cell is easily understood: below
threshold, the cell is a one-dimensional Ornstein–Uhlenbeck process [7]; at threshold,
the voltage is reset instantaneously to Vreset. This system is clearly one-dimensional
and strong Markov; that is, its behavior in the future depends on its past only through
V at the present time. The distributional description of the noise-driven LIF model—
that is, the equations governing the behavior of the probability distribution on voltage,
P(V ), as a function of time—turns out to be most useful. The following Fokker–Planck
equation completely characterizes the distributional behavior of the system, given initial
conditions [7]

@P
@t

=
�2

0

2
@P2

@2V
+

1
�m

@[(V − V0)P]
@V

+ R(t)(	(V − Vreset) − 	(V − Vth))

with R(t) the time-dependent mean 2ring rate of the cell, �0 ≡ Rm�=�m, and

V0 = Rm
 + VL

the steady-state rest potential. The PDE above is a perturbed di3usion equation: the 2rst
term corresponds to di3usion (the e3ect of the injected noise on the voltage at time t),
the second is a drift term (corresponding to the V -dependent steady-state driving force
back towards the rest potential V0), and the third corresponds to the voltage probability
/ux resulting from spiking activity, which is subtracted from P(V ) at Vth and added at
Vreset. This equation has been introduced by several authors [2,6] as an approximation
to the behavior of the LIF cell under a barrage of random synaptic currents. Note that
since we are injecting Gaussian white noise and not a simulated superposition of PSPs,
the above equation is exact within the LIF framework.

Surprisingly, many of the quantities of interest turn out to be analytically com-
putable for this model. Most of what we need can be read directly from the following
steady-state solution to the PDE:

P(V ) =
2R
�2

0

∫ Vth

max(V;Vreset)
dV ′e[(V ′−V0)2−(V−V0)2]=�m�2

0 ;

where P(V ) denotes the invariant density and R is the equilibrium 2ring rate; note that
P(V ) is in a sense a perturbed Gaussian, as expected of the solution to a perturbed
di3usion equation with linear drift. We plot P(V ) for a few di3erent values of noise
in Fig. 3: when the injected noise is small (� near zero), P(V ) looks like a Gaussian
centered at V0. However, as � grows, P(V ) develops a kink at Vreset, dives nearly
linearly to zero at Vth, and develops a large negative tail. We will see below that the
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Fig. 3. Three examples of invariant densities, P(V ), for three di3erent values of noise variance �2. Vth is
−60 mV and Vreset is −75 mV here.

size of this negative tail—the probability that the Ornstein–Uhlenbeck process will have
wandered into a highly hyperpolarized state—has a critical e3ect on the “gain” of the
neuron, according to several reasonable de2nitions of gain.

Recall the de2nition of the N -function introduced above: this quantity is a conditional
2ring rate, given some 2ltered version of the recent stimulus. It is diQcult to approach
this gain function analytically when this 2lter is chosen by cross-correlation methods,
as in the preceding section, because the STA of the LIF cell turns out to be a rather
poorly behaved mathematical object (for example, it is not hard to show that this
function depends rather strongly on the time step dt of the numerical simulation, with
no well-de2ned limit in the continuous limit as dt → 0). Even when the 2lter is chosen
to be a step function, detailed analysis of this conditional 2ring rate function seems
to require a rather complicated analysis of the conditional pathwise behavior of the
Ornstein–Uhlenbeck process, which has in our hands not yet led to any interesting
conclusions. However, we can derive useful information about certain limits of the
gain function, as the support of the step 2lter shrinks to zero or goes to in2nity.

For example, we have an exact expression for the “transient gain function”

F0(x; �) ≡ lim
T→0

P

(
spike∈ (−T; 0]

∣∣∣∣∣
∫ 0

−T
I(t) dt = x

)
=
∫ Vth

Vth− xRm
�m

P(V ) dV

and the counterpart “long-time” gain function

F∞(x; �) ≡ lim
T→∞

P

(
s∈ (−dt; 0]

∣∣∣∣∣
∫ 0

−T
I(t) dt = xT

)

= −�
2
0

2
@P
+x(V )
@V

∣∣∣∣∣
V=Vth

dt + o(dt);
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Fig. 4. Three “gain functions” for integrate-and-2re cell: middle panel shows N -function, computed by Monte
Carlo; left panel is “transient” function F0(x; �), and right is “long-time” function F∞(x; �)=F∞(0; �), both
computed analytically. (Note that F∞(x; �)=F∞(0; �) is normalized so that the y-axis is a dimensionless
ratio.)

where the subscript in the last expression indicates the dependence of the invariant den-
sity on the DC input current. The variable x in the two expressions above corresponds
to the projected current (the x-axis in Fig. 2). The �-dependence of these functions
(computed analytically) is shown in Fig. 4; also shown are some sample N -functions,
computed via Monte-Carlo. These gain functions are all �-dependent, indicating strong
adaptive phenomena in the standard LIF cell.

We have two related main conclusions. First, a very simple preparation displays
“adaptation” to noise current input over a time scale of hundreds of milliseconds; this
adaptation phenomenon must be independent of any “upstream” (e.g., synaptic) pro-
cesses, since currents were injected and voltages measured directly at the same soma.
Second, perhaps more surprisingly, a very simple model, devoid of any interesting
dynamics save the (instantaneous) spiking process itself, adapts strongly to chang-
ing stimulus distributions; we can describe this behavior exactly, and it turns out to
match the in vitro data qualitatively. The fact that a model as generic as the LIF cell
displays adaptation so similar to that observed in vitro and in vivo seems to indi-
cate that variance-dependent adaptation is, in fact, a general feature of spiking cells in
the nervous system.
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