
This article was downloaded by:[Columbia University]
On: 19 June 2008
Access Details: [subscription number 788828738]
Publisher: Informa Healthcare
Informa Ltd Registered in England and Wales Registered Number: 1072954
Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Network: Computation in Neural
Systems
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713663148

Inferring input nonlinearities in neural encoding models
Misha B. Ahrens a; Liam Paninski b; Maneesh Sahani a
a Gatsby Computational Neuroscience Unit, University College London, London, UK
b Department of Statistics and Center for Theoretical Neuroscience, Columbia
University, New York, USA

Online Publication Date: 01 January 2008

To cite this Article: Ahrens, Misha B., Paninski, Liam and Sahani, Maneesh (2008)
'Inferring input nonlinearities in neural encoding models', Network: Computation in
Neural Systems, 19:1, 35 — 67

To link to this article: DOI: 10.1080/09548980701813936
URL: http://dx.doi.org/10.1080/09548980701813936

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article maybe used for research, teaching and private study purposes. Any substantial or systematic reproduction,
re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly
forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be
complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be
independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings,
demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or
arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713663148
http://dx.doi.org/10.1080/09548980701813936
http://www.informaworld.com/terms-and-conditions-of-access.pdf

D
ow

nl
oa

de
d

B
y:

 [C
ol

um
bi

a
U

ni
ve

rs
ity

] A
t:

22
:1

3
19

 J
un

e
20

08

Network: Computation in Neural Systems

March 2008; 19(1): 35–67

Inferring input nonlinearities in neural

encoding models

MISHA B. AHRENS1, LIAM PANINSKI2,

& MANEESH SAHANI1

1Gatsby Computational Neuroscience Unit, University College London,

London, UK and 2Department of Statistics and Center for Theoretical

Neuroscience, Columbia University, New York, USA

(Received 21 December 2006; accepted 19 November 2007)

Abstract
We describe a class of models that predict how the instantaneous firing rate of a neuron
depends on a dynamic stimulus. The models utilize a learnt pointwise nonlinear transform of
the stimulus, followed by a linear filter that acts on the sequence of transformed inputs.
In one case, the nonlinear transform is the same at all filter lag-times. Thus, this
‘‘input nonlinearity’’ converts the initial numerical representation of stimulus value to
a new representation that provides optimal input to the subsequent linear model. We describe
algorithms that estimate both the input nonlinearity and the linear weights simultaneously;
and present techniques to regularise and quantify uncertainty in the estimates. In a second
approach, the model is generalized to allow a different nonlinear transform of the stimulus
value at each lag-time. Although more general, this model is algorithmically more
straightforward to fit. However, it has many more degrees of freedom than the first approach,
thus requiring more data for accurate estimation. We test the feasibility of these methods on
synthetic data, and on responses from a neuron in rodent barrel cortex. The models are
shown to predict responses to novel data accurately, and to recover several important
neuronal response properties.

Keywords: Auditory system, somatosensory processing, visual system

Correspondence: M. Sahani, Gatsby Computational Neuroscience Unit, University College London, London, UK.

E-mail: maneesh@gatsby.ucl.ac.uk

ISSN 0954-898X print/ISSN 1361-6536 online/08/010035–67 � 2008 Informa UK Ltd.

DOI: 10.1080/09548980701813936

D
ow

nl
oa

de
d

B
y:

 [C
ol

um
bi

a
U

ni
ve

rs
ity

] A
t:

22
:1

3
19

 J
un

e
20

08

Introduction

Neural encoding models predict how the instantaneous firing rate of a neuron

varies in response to a dynamic input, such as a jittering bar in the visual field,

a time-varying sound, the activity of a group of upstream neurons, or a combination

of such an input and the spike history of the neuron itself. One major reason for

interest in such models is that, once fitted to neural data, their parameters can be

used to investigate the encoding properties of the modeled neuron; this may, in

turn, shed light on the function of the corresponding brain area. In one of the

simplest and most widely-used models, the predicted firing rate is a weighted

linear combination of preceding stimulus values. In many cases, such linear models

do not predict the firing rate of a neuron well (Sahani and Linden 2003b; Machens

et al. 2004). Thus, while their parameters may sometimes be broadly indicative of

the encoding properties of the neuron, the picture they yield is at best incomplete,

and may occasionally be radically inaccurate (e.g., Christianson et al. 2007). This

suggests that nonlinear encoding models may be needed to provide an accurate

description of the neuron’s functional response (e.g., Marmarelis and Naka 1973;

de Ruyter van Steveninck and Bialek 1988; Schwartz et al. 2002).

Considerable effort has recently been directed towards linear-nonlinear-Poisson

(LNP) models, where a linear temporal filter acting on a time-varying stimulus

signal is followed by a static nonlinearity (Brenner et al. 2000; Schwartz et al. 2002;

Paninski, 2003, 2004; Sharpee et al. 2004; Simoncelli et al. 2004; Pillow

and Simoncelli 2006). One motivation for such models is to capture the

particular nonlinearity inherent in neuronal spike generation, although some other

nonlinearities may also be described this way. By contrast, here we focus on

nonlinear transforms that precede a temporal linear filtering stage. Such transforms

may model nonlinear synaptic or dendritic responses in the neuron being described,

but may also capture nonlinearities at earlier stages of processing or in

receptor transduction (where, for example, stimulus strength may be encoded

logarithmically, or with power-law scaling). Input nonlinearities such as these can,

in principle, lead to significant failures of the linear model. To take an elementary

example, suppose that a neuron combined filtered inputs from two populations of

half-wave rectifying sensors, the populations being sensitive to stimulus deflections

in opposite directions, as in Figure 1. If the influence of both populations

in

ou
t

in

ou
t

in

ou
t in

ou
t+

+

+
−

in out =

Figure 1. Schematic network with a symmetric input-output relation. �: inhibitory
connection. þ: excitatory connection. All ‘‘neurons’’ are half-wave rectifiers. The output
will be insensitive to the sign of the input; hence a linear fit to the I–O function (dashed line)
is constant.

36 M. B. Ahrens et al.

D
ow

nl
oa

de
d

B
y:

 [C
ol

um
bi

a
U

ni
ve

rs
ity

] A
t:

22
:1

3
19

 J
un

e
20

08

were roughly equal, the neuron would effectively respond to the absolute value

of the sensory inputs. In this case, a linear model fitted to a stimulus that contained

equal deflections in both directions, could do no better than predict a constant

firing rate.

We describe two models designed to capture such input nonlinearities, inspired

by techniques that generalize linear regression to the nonlinear setting (e.g., Suits

et al. 1978). The first is a bilinear model, in which, prior to a linear combination,

a single estimated nonlinear transform is applied to all the stimulus values. In the

second model this constraint is relaxed, and a separate nonlinearity is estimated for

each input to the linear combination stage. For reasons that will become apparent,

we will refer to this as the ‘‘full-rank’’ model. It is related to the generalized additive

model (Breiman and Friedman 1985; Hastie and Tibshirani 1999). Despite the

larger number of parameters involved, the full-rank model is algorithmically more

straightforward to fit than the bilinear one. However, the many additional degrees of

freedom mean that, in comparison to the bilinear model, many more data are

needed to achieve a given level of reliability in the estimated parameters.

Furthermore, the resulting description is considerably less compact than the

bilinear model, potentially leading to difficulties in interpretation.

Algorithms to estimate the parameters of both models are described at the

beginning of the following section. The bilinear model, and implicitly the full-rank

model, have appeared before in the context of Hammerstein cascades or NL cascade

models (e.g., Narendra and Gallman 1966; Hunter and Korenberg 1986; Juusola

et al. 1995; Bai 1998; Westwick and Kearney 2001). Here, we give these models a

probabilistic basis, which allows us to develop principled techniques for regularisa-

tion (see ‘‘Regularisation’’) and estimation of error bars (see ‘‘Error bars through

Gibbs sampling’’); we draw connections between the full-rank model and the

bilinear model (see ‘‘Rank-k models’’); and we extend the formulation of the

bilinear model to the framework of predicting point-process spike trains, leading to

the generalized bilinear model or the ‘‘NLNP model’’. (See ‘‘Fitting spike trains:

Generalized bilinear or NLNP models’’). We then evaluate the models on simulated

and real neural data.

The models

The bilinear model

Model Specification. Consider a one-dimensional time-varying stimulus s(t),

which evokes a neuronal response r(t). The linear predictive model is given

by r̂ðtÞ ¼ cþ
P�max

�¼0 w�sðt � �Þ, where c is a background firing rate, w is a

(�maxþ 1)–dimensional vector of weights – sometimes called the linear receptive

field of the neuron – and r̂ðtÞ is the predicted firing rate of the cell at time t. The

model parameters are set so that r̂ðtÞ matches the real firing rate r(t) as closely as

possible. In the following, r(t) will usually represent a peri-stimulus-time histogram

(PSTH), i.e., the number of spikes in a time bin around t, averaged over multiple

trials in which the same stimulus is presented. In this case, a natural measure of

closeness is the average squared difference between r̂ðtÞ and r(t), corresponding to

the Gaussian likelihood. In a later section we will consider the case in which r(t) is a

Input nonlinearities in neural encoding models 37

D
ow

nl
oa

de
d

B
y:

 [C
ol

um
bi

a
U

ni
ve

rs
ity

] A
t:

22
:1

3
19

 J
un

e
20

08

single-trial spike train with 1 (spike) or 0 (no spike) in each time bin. Here, the

negative log-likelihood (or deviance) of a point-process model will be a more

suitable distance metric. Generalization to higher dimensional stimuli is straightfor-

ward: in this case, the index � would range over time and space, for example, instead

of just time.

In this section, we introduce an unknown pointwise transformation f(�) of s(t) into

the model, and derive an algorithm to estimate the corresponding parameters.

This transformation will be referred to as the ‘‘input nonlinearity’’. The model has

the form

r̂ðtÞ ¼ cþ
X�max

�¼0

w� f ðsðt � �ÞÞ: ð1Þ

In many cases, the appropriate f is not known and must be estimated from the data,

at the same time as the linear parameters. Once f has been estimated, the resulting

model is conceptually almost as simple as the linear model, but can be considerably

more powerful. We call this the ‘‘bilinear’’ model for reasons that will become clear

below. Figure 2 shows the decomposition of the transformation between the

stimulus and the predicted neural response. The constant c (not shown in the figure)

is important because it allows the other terms of the model to describe fluctuations

around the baseline firing rate, rather than the firing rate itself, thus reducing the

chances of predicting negative firing rates.

s(t)

f(s(t))

r(t)

f(.)

w

Figure 2. Schematic view of the bilinear model. It consists of two stages, or neural processing
operations. First, the stimulus values are transformed by an input nonlinearity f(�), and
second, a temporal filter w acts on the transformed stimulus values to form a predicted spike
rate. w and f(�) are both unknown and to be learnt from the data. An output nonlinearity is
optional and not shown in the figure. If the input nonlinearity stage is removed, or,
equivalently, f(�) set to the identity, then the model reduces to the linear model. The free
parameters of the model are surrounded by grey boxes.

38 M. B. Ahrens et al.

D
ow

nl
oa

de
d

B
y:

 [C
ol

um
bi

a
U

ni
ve

rs
ity

] A
t:

22
:1

3
19

 J
un

e
20

08

Estimation procedure. For fixed f, it is straightforward to estimate optimal

weights w by linear regression from the transformed stimulus. Thus, one procedure

to find a suitable input nonlinearity might be to try a variety of plausible functions,

re-estimating w for each one, and then select the function and weight vector that

provide the best overall prediction. However, this approach rapidly becomes

impractical as the space of functions to be explored expands, particularly given the

possibility that each neuron in a population might be best fit with a different f.

An alternative is to parametrize f, as a linear combination, with weights bi, of a fixed

set of basis functions {fi}:

f ð�Þ ¼
X

i

bi fið�Þ: ð2Þ

A similar parametrization is often used in the context of standard regression, and

a general discussion of basis set selection may be found in the relevant literature

(e.g., Hastie et al. 2001). Basis functions should to be chosen to span as well as

possible the space of anticipated input nonlinearities; a suitable choice might be

based on background knowledge of the physiology and responses of the brain area,

on the particular stimulus used, on computational resources (more basis

functions require more memory and time), and possibly some initial exploration.

In this article we use 16 piecewise linear basis functions; see Appendix A for

the definition. Inserting Equation 2 into the model (Equation 1) gives:

r̂ðtÞ ¼ cþ
P

�i w�bifiðsðt � �ÞÞ. Making the abbreviation Mt�i¼ fi(s(t� �)), the model

can be re-expressed in a compact way: r̂ðtÞ ¼ cþ
P

�i w�biMt�i. This expression is

further simplified by redefining M. Let us rewrite the three-dimensional object M as

a family of matrices, one for each time point t, so that for all (t, �, i), the (�, i)th

element of the matrix M(t) is Mt�i– that is, [M(t)]�i¼Mt�i. We then augment each

M(t) by one row and one column; in block notation,

MðtÞ
1 0

0 MðtÞ

� �
; ð3Þ

and then reform these augmented matrices into a (now augmented) data array M.

Similarly, we augment w [wc w] and b [bc b]. If we now write, using the

augmented objects,

r̂ðtÞ ¼
X
�i

w�biMt�i:

then we see that the constant term c has been replaced by the product wcbc.

In this form, the model has two parameter vectors w and b, with w describing the

response to time, and b describing the input nonlinearity. M is the augmented data

array and is fixed. Note that it is convenient here to use the same symbols for

both the original and augmented objects. In the following, the exact meanings

of w, b and M will vary – how they are defined will be clear from context.

Using the same symbols leaves the structure of the model, and the associated

algorithms, invariant.

The parameter vectors w and b are estimated by minimizing the squared distance

between the observed and the predicted spike rates, E ¼
P

tðrðtÞ � r̂ðtÞÞ2 ¼ kr� r̂k2.

(An alternative is to maximise a point-process likelihood; this will be

Input nonlinearities in neural encoding models 39

D
ow

nl
oa

de
d

B
y:

 [C
ol

um
bi

a
U

ni
ve

rs
ity

] A
t:

22
:1

3
19

 J
un

e
20

08

described below.) One way to carry out this minimisation is through a sequence of

alternating updates. We first group terms in the model to obtain:

r̂ðtÞ ¼
X
�i

w�biMt�i ¼
X
�

w�

X
i

biMt�i

 !
¼
X
�

w�Bt�

or r̂¼Bw, where the matrix B is defined by Bt�¼
P

ibiMt�i. In other words, if b

is held fixed it can be combined with the other fixed components of the model,

which are collected in the data array M, to produce a pseudo-data matrix B. As the

resulting expression is linear in w, it can easily be inverted to obtain the estimate

w¼ (B>B)�1B> r. This is the unique best estimate of w under the squared-error

objective function E given fixed b, provided B>B is of full rank (if B>B is of reduced

rank, the inverse in the definition of w is interpreted as a pseudoinverse, uniquely

selecting one of the many optimal estimates).

Alternatively, if w is held fixed, the model can be written

r̂ðtÞ ¼
X
�i

w�biMt�i ¼
X

i

bi

X
�

w�Mt�i

 !
¼
X

i

biWti;

with Wti¼
P
� w� Mt�i. Now the conditional estimate for b is (W>W)�1W>r, which is

again optimal in the sense described above.

Thus, each individual update for w or b, reduces the squared error in the

prediction. By repeating the updates in alternation, starting from an arbitrary initial

value for one of the parameter vectors, we obtain an algorithm that is guaranteed to

converge to a (local) minimum in the objective function. The values of w and b at

convergence then yield both the baseline firing rate in their first elements c¼wc � bc,

and an optimal temporal filter and input nonlinearity in their remaining elements.

The procedure described here has the structure of alternating least squares (ALS)

(e.g., Young et al. 1976). Although the matrices B and W were introduced above

for clarity, in practice, if the length of the stimulus is large compared to the size of

w and b, there is a faster and more economical implementation of the algorithm.

This is described in Appendix B. Figure 3 shows an example of a model fitted to

artificial data themselves generated by a fixed bilinear model with a threshold-linear

input nonlinearity. The underlying firing rate was determined according to r(t)¼
P
�

w� f (s(t� �)), with s(t) a Gaussian distributed stimulus, w the temporal filter shown

and f(x)¼ x if x > 0 and f(x)¼ 0 if x� 0. The observed firing rate was taken to be the

average of five spike trains drawn from this underlying firing rate, rectified so that

negative values were set to zero (i.e.[r(t)]þ is the probability of having a spike in the

bin around t).

Note that, once the input nonlinearity has been determined for a particular cell,

it may be fixed and used to derive extended versions of the linear model such as the

generalized linear model (which may include an output nonlinearity) or models with

spike history terms (Pillow et al. 2005; Truccolo et al. 2005). If the input

nonlinearity is consistent across a subset of a population of cells, it may also be fixed

(or approximated by a simpler function) so that estimation in the remainder of the

population can be carried out more directly. It is also possible to estimate spike

history terms simultaneously with the input nonlinearity and the temporal filter (see

‘‘Fitting spike trains: Generalized bilinear or NLNP models’’).

40 M. B. Ahrens et al.

D
ow

nl
oa

de
d

B
y:

 [C
ol

um
bi

a
U

ni
ve

rs
ity

] A
t:

22
:1

3
19

 J
un

e
20

08

As discussed above, the squared-error objective function for a linear model is

guaranteed to have a unique optimum. Unfortunately there is no similar guarantee

of uniqueness for the bilinear model. The alternating least squares algorithm is

guaranteed to converge, and, at each step there is a unique optimum for each of the

parameter vectors w and b conditioned on the other; however, as the other vector also

changes during the optimisation, the point of convergence may lie at only a local

minimum of E. This issue will be discussed further in the next section, where it will

be seen to arise from a non-convexity of the parameter space. However, although we

were able to find a few such local minima in numerical simulations using random

data arrays M and r; in practice, these have not caused difficulty when working with

real neural data. For example, at most two different local minima were ever

observed in the neuronal data discussed in this article (see ‘‘Demonstration on real

data’’), and they were almost identical in shape. However, it is possible that in larger

models careful initialisation of the parameters might be important (e.g., see ‘‘Rank-k

models’’). Another important property of the model is the fact that different

parameter values may imply identical models (e.g., if w is scaled up, but b scaled

down by the same factor, the model does not change); this will be discussed further

below (see ‘‘Degeneracies’’). Because of this invariance, we scale the input

nonlinearity to have a maximum value of 1 in all the given examples, so that the

scale of the full model is carried by the temporal filter.

0 0.2 0.4

−5

0

5

10

15

20

(a)

(c)

(d)

(b)

W
ei

gh
t (

sp
ik

es
/s

ec
−1

)

Temporal filter

Time (s)

Original
Inferred

min 0 max
0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 w
ei

gh
t

Input nonlinearity

Stimulus value
T

ria
ls

0 0.5 1 1.5 2 2.5 3
0

20
40

Time (s)

R
at

e
(H

z)

Generated Predicted

Figure 3. Example of a bilinear model fit. A known bilinear model was used to generate
an underlying firing rate, from which five spike trains were drawn according to P(spike
at t)¼ [r(t)]þ. The resulting PSTH was then used to infer new bilinear parameters by
minimising the squared error. (a): Temporal filter and (b): Input nonlinearity of the original
(dashed) and inferred (black) bilinear models. Error bars are shown in grey. The inferred
value of the spontaneous rate c, set to zero in the original model, was indistinguishable from
zero. (c): Simulated spike trains. (d): Generated PSTH (grey) and the firing rate predicted by
the inferred model (black). With the bin size defined to be 15 ms, we used 15 s of the observed
firing rate per trial (i.e. 75 s of data in all) to infer the bilinear model. With this bin size, the
average firing rate is 16 Hz.

Input nonlinearities in neural encoding models 41

D
ow

nl
oa

de
d

B
y:

 [C
ol

um
bi

a
U

ni
ve

rs
ity

] A
t:

22
:1

3
19

 J
un

e
20

08

The full-rank model

The bilinear model is directly linked to the concept of a ‘‘separable’’ receptive field

(DeAngelis et al. 1995; Depireux et al. 2001; Linden et al. 2003). Consider, for

example, a visual spatiotemporal receptive field. Taking only one spatial

dimension for simplicity, this can be described by a matrix W, with elements W�x,

such that the corresponding linear spike rate prediction model would be

r̂ðtÞ ¼
P�max

�¼0

P
x W�xSðt � �; xÞ, where S(t, x) is the (one dimensional) time-varying

movie that is played on the retina. Such a receptive field would be called separable if

the matrix W was of rank 1; that is, it could be written as the outer product of two

separate vectors, u in time and v in space: W�x¼ u�vx. Even if W were not strictly

of rank 1, provided its singular value spectrum were dominated by just one value,

it might still be useful to approximate the receptive field in a separable form.

A separable model is described by only dim(u)þdim(v) parameters, instead of the,

typically much larger, dim(u)�dim(v) for the full-rank matrix W. Thus, fewer data

are needed to estimate the separable model well. On the other hand, the class of

separable receptive fields is strictly less flexible than the general class of full-rank

receptive fields; for instance, a separable receptive field cannot model direction

selectivity in a visual cell.

The parameters of the bilinear model appear as the products w�bi. Thus, this

model may be thought of as embodying a separable receptive field in time (�) and in

stimulus value (i), with the data tensor Mt�i, a two-dimensional dynamic stimulus

that varies in the � and i dimensions. This view then suggests a generalization of

the bilinear model, in which the rank-1 matrix of elements w�bi, is replaced by a

general matrix C�i to form the full-rank model. As a generalization of the bilinear

model, the full-rank model has the potential to capture more intricate structure in

the stimulus response function; but as it has more parameters (dim(w)�dim(b)

instead of dim(w)þdim(b)), the data requirements and risks of overfitting will be

higher.

The full-rank model uses the same data array M as the bilinear model, but is linear

in the parameters C�i and c,

r̂ðtÞ ¼ cþ
X
�i

C�iMt�i ¼ cþ
X
�i

C�i fiðsðt � �ÞÞ: ð4Þ

Thus, the minimum-squared-error parameters can be found in a single step,

using standard linear regression methods. This implies that the full-rank model

has a unique global optimum in the sense discussed above. In particular, both

the squared-error objective function E (defined as for the bilinear model), and

the parameter space (the space of all matrices C�i and constant offsets c) are

convex: E is convex because it is quadratic, and the parameter space is convex

because adding any two general matrices together produces another valid matrix.

This joint convexity guarantees the uniqueness of the optimum. This view also

suggests why the bilinear model may have multiple squared-error minima. If we

regard the bilinear model as a restriction of the full-rank model to rank-1

parameter matrices, the objective function remains convex, but the space of

parameters is no longer so. In particular, a convex combination of two rank-1

matrices is generally of rank 2. This constraint on the parameters then leads to

the possibility of multiple optima.

42 M. B. Ahrens et al.

D
ow

nl
oa

de
d

B
y:

 [C
ol

um
bi

a
U

ni
ve

rs
ity

] A
t:

22
:1

3
19

 J
un

e
20

08

Rank-k models

The bilinear model may be viewed as a rank-1 special case of the full-rank model.

In a similar vein, one may also consider rank-k sub-models for higher values of k.

Such models may be able to capture more detailed response properties of a neuron

than can the rank-1 bilinear model, while needing fewer data for accurate estimation

than would the full-rank model. One common method for finding low rank

approximations to a matrix is to use the singular value decomposition (SVD,

Strang 1988). Thus, taking the leading outer product term in the SVD of the full-

rank parameter matrix would yield a rank-1 approximation with the form of the

bilinear input nonlinearity model (Bai 1998). However, the parameters (w, b) found

in this way minimize the Frobenius distance between C and wb>, rather than the

squared error between the observed and the predicted firing rates. Thus, while the

SVD method may provide a good initial guess for w and b, the alternating

least squares procedure described above is still needed to minimise the objective

function E.

If the weight matrix C is of rank k, it can be written as the sum of k outer product

terms, C�i ¼ w1
�b

1
i þ w2

�b
2
i þ � � � þ wk

�b
k
i . Thus, the rank-k model is equivalent to a

sum of k bilinear models, and the firing rate prediction is given by

r̂ðtÞ ¼ cþ
P

k

P
� wk

� f
kðsðt � �ÞÞ. Again, the parameters w1. . .k and b1. . .k may be

initialized using SVD, but using SVD alone would minimize an inappropriate

objective function (the Frobenius distance to the full-rank matrix C). Thus, the

alternating least squares procedure is needed to minimize the squared error. This

requires that the data array M be redefined once again. For example, if k¼ 3, the

matrix M(t) would be augmented thus

MðtÞ

1 0 0 0

0 MðtÞ 0 0

0 0 MðtÞ 0

0 0 0 MðtÞ

0
BBB@

1
CCCA;

(with ‘‘0’’ indicating blocks of 0’s) and these matrices then reformed into the data

array as before. Similarly the vectors w and b are redefined as w [wc w1 w2 w3]

and b [bc b1 b2 b3]. With these redefinitions, the rank-3 model assumes the same

form as the simple bilinear model: r̂ðtÞ ¼
P

�i w�biMt�i. Thus, the parameters can be

found with the ALS procedure, and the three bilinear models (as well as the

constant c¼wcbc) recovered.

Models with multiple stimulus features

The framework discussed above allows for arbitrary transformations of the

instantaneous stimulus value, once the stimulus has been expressed as

a time-varying quantity s(t). But there may be multiple ways to translate a physical

stimulus into s(t) – for instance, in the context of analysis of whisker barrel data, s(t)

might correspond to the feature ‘‘position’’, or to the feature ‘‘velocity’’, of whisker

motion. These features lead to different bilinear models with potentially different

performances1 (Pinto et al. 2000). This is not true in a linear model if the stimulus

Input nonlinearities in neural encoding models 43

D
ow

nl
oa

de
d

B
y:

 [C
ol

um
bi

a
U

ni
ve

rs
ity

] A
t:

22
:1

3
19

 J
un

e
20

08

features are linear transformations of one another. In the bilinear model, however,

that equivalence is broken by the input nonlinearity.

One way to choose the most appropriate stimulus or stimulus feature would be to

train sequentially a model for each stimulus, and then find the most predictive of the

resulting models. However, it might be that the stimuli features interact or jointly

influence the firing rate, or there might be two distinct inputs that might affect the

neuronal firing with potentially different input nonlinearities and temporal

properties, e.g., the light intensity and sound volume of an audiovisual stimulus.

In this case, it would be desirable to have a model that uses all relevant stimuli to

construct the predicted firing rate. It is common practice to formulate the design

matrices of linear models such that they include multiple stimuli (e.g., Luczak et al.

2004); a similar formulation can be applied to the data tensor M of the bilinear and

full-rank models. As an example, consider the following model that assumes an

additive combined effect of three stimuli on the firing rate:

r̂ðtÞ ¼ cþ
X
�

w1
� f

1ðs1ðt � �ÞÞ þ w2
� f

2ðs2ðt � �ÞÞ þ w3
� f

3ðs3ðt � �ÞÞ
� �

;

where s1,2,3(t) are three different stimuli or stimulus features, each with their own

temporal filter (e.g., w1) and input nonlinearity (e.g., f 1, determined by b1).

We define tensors M1,2,3 for each stimulus as before, e.g., M1
t�i ¼ f 1

i ðs
1ðt � �ÞÞ (the

different stimuli may be assigned the same, or different, basis functions). In tensor

notation, the model is

r̂ðtÞ ¼ cþ
X
�i

w1
�b

1
i M1

t�i þ w2
�b

2
i M2

t�i þ w3
�b

3
i M3

t�i

� �
:

Training such a model is similar to training a rank-k model. Again, we define

a new stimulus tensor by collecting each of the inputs in a diagonal block at

every time:

MðtÞ ¼

1 0 0 0

0 M1
ðtÞ 0 0

0 0 M2
ðtÞ 0

0 0 0 M3
ðtÞ

0
BBB@

1
CCCA;

where e.g., ½M1
ðtÞ��i ¼M1

t�i. (Each block of M(t) is now associated with a different

stimulus feature or stimulus, whereas in the rank-k model each block was associated

with the same input.) If we also concatenate the w1,2,3 and the b1,2,3 vectors to form

w¼ [wc w1 w2 w3] and b¼ [bc b1 b2 b3], then the model again takes on the form of

the simple bilinear model: r̂ðtÞ ¼
P

�i w�biMt�i. Thus, the parameters b and w can be

estimated as before, using the ALS procedure. Again, the optimal b may be

uniquely defined given w, and vice versa: all of our convexity discussion carries

through unmodified to this more general setting. Once converged, the individual

temporal filters and input nonlinearities, and the constant offset, may be extracted

from these concatenated vectors.

The full-rank analogue of the above uses the same stimulus array. The model is

r̂ðtÞ ¼ cþ
X
�i

C1
�iM

1
t�i þ C2

�iM
2
t�i þ C3

�iM
3
t�i

� �
¼
X
�i

C�iMt�i:

44 M. B. Ahrens et al.

D
ow

nl
oa

de
d

B
y:

 [C
ol

um
bi

a
U

ni
ve

rs
ity

] A
t:

22
:1

3
19

 J
un

e
20

08

This is again the standard linear form of a full-rank model. After estimating

the matrix C with the usual method the individual receptive fields are obtained

as follows:

C ¼

c 0 0 0

0 C1 0 0

0 0 C2 0

0 0 0 C3

0
BBB@

1
CCCA:

The 0’s of this matrix indicate blocks of entries that do not participate in the

regression due to the block-diagonal form of M, because in the model, these entries

are multiplied by zeroes.

Regularisation

A concern when fitting models to limited or noisy data, is that the parameters of the

model be overfit to the particulars of the data set, thereby increasing the error in the

parameter values, and in firing rates predictions for novel stimuli. Such concerns

may be partially addressed by regularisation.

In minimizing the squared error E ¼ kr� r̂k2, we have implicitly been looking

for the maximum likelihood (ML) solution for the parameters (wML and bML)

under a noise model

rðtÞ ¼ r̂ðtÞ þ ��ðtÞ;

where �(t) is a zero mean and unit variance Gaussian random variable, and � is the

(unknown) noise scale. Gaussian noise is a reasonable assumption because the

PSTH is the average of multiple spike trains, so that by the central limit theorem,

the noise around the ‘‘true’’ rate is approximately Gaussian. The likelihood of the

observed spike rate under this model is ð2��2Þ
�T=2 expð�kr� r̂k2=2�2Þ and

therefore minimizing E maximizes the likelihood. This probabilistic formulation

permits both principled regularisation techniques, and estimation of the uncertainty

in the parameter values. Given an observation of r, the noise term induces

a probability distribution over the parameters of the model. If we specify prior

probability distributions on those parameters that describe our expectations, such as

a degree of smoothness in w, we can obtain regularised estimates of the parameters

of the model. A convenient (technically, conjugate) choice is a Gaussian prior;

e.g., P prior(w)�N (0, Sw) with Sw the prior covariance matrix describing the

expected smoothness, size, etc. of w. If the following, the prior will often be

specified by the inverse covariance Dw so that Sw
¼ [Dw]�1.

Bilinear model. As described above, the update for w, when b is fixed, is just

the solution to a linear regression problem with design matrix Bt�¼
P

i biMt�i.

Incorporating a Gaussian prior distribution into a linear regression problem with

Gaussian noise is quite well understood in the neural encoding setting (Sahani and

Linden 2003a; Machens et al. 2004): we simply maximize the log-posterior

distribution on w instead of the log-likelihood. This log-posterior may be written

as logðPðw;bjM; rÞÞ ¼ �ð1=2�2Þr̂
T
r̂þ ð1=�2ÞrT r̂ � ð1=2ÞwTDww � ð1=2ÞbTDbbþ

const, where the constant does not depend on w or b, while r̂ is given in terms of

Input nonlinearities in neural encoding models 45

D
ow

nl
oa

de
d

B
y:

 [C
ol

um
bi

a
U

ni
ve

rs
ity

] A
t:

22
:1

3
19

 J
un

e
20

08

w and b by the model; this expression can be maximised analytically with respect to

w to obtain the usual regularised least squares solution:

w ¼ ðBTBþ �̂2Dw
Þ
�1BTr:

Here, �̂2 is an estimate of the noise scale �2, which is often absorbed into the

definition of Dw or made part of an automatic regularisation method, to be discussed

shortly. In a technique known as ridge regression, the matrix Dw is a multiple of the

identity, so that the values of w are encouraged to be small. Another common choice

for Dw is a matrix with 2’s on the diagonal and �1’s on the neighbouring positions,

all scaled by a parameter �w which sets the ‘‘strength’’ of the regularisation

(equivalently, 1/�w sets the reliability of the data). Such a Dw will penalise high

derivatives of w; as can be seen from the corresponding Gaussian log-prior on w,

which is proportional to �w>Dww¼�
P

i[w(iþ 1)�w(i)]2. The regularised final

estimate of w, after the ALS iterations, is now the maximum a posteriori (MAP)

estimate, wMAP.

The case of b is more complicated, because our prior expectations may be

relevant to the input nonlinearity f(x)¼
P

ibi fi(x) rather than to b itself:

smoothness in b is not exactly the same as smoothness in f. In Appendix C we

derive expressions for Db that control the first and second derivatives of f. Db is

defined there in quadratic form, so that e.g., to penalise the first derivative of f we

find Db such that bTDbb ¼ �b �
R
ð@f ðxÞ=@xÞ2dx. (This is the continuous analogue of

Dw defined above.) Again there is a multiplier �b which sets the strength of the

regularisation. Once the prior has been set, the update for b becomes

b ¼ ðWTWþ �̂2Db
Þ
�1WTr, with Wti¼

P
� w�Mt�i. The regularised final estimate is

now bMAP.

The priors described above depend on simple scaling parameters �w and �b,

which determine the strength of regularisation. Further parameters may be used to

control other aspects of the priors, such as the extent of smoothing (e.g., Sahani and

Linden 2003a). That is, the priors are formulated to depend on one or more

parameters �w,b; these parameters may be determined entirely by prior expectations,

or may be chosen by a cross-validation procedure; good values may depend on the

size, amount of noise, etc, of the dataset. A more principled way of setting the �’s is

through an automatic adaptive regularisation method described in Appendix F. This

method is similar to evidence optimization techniques that have been applied to

linear models (Sahani and Linden 2003a). After implementation, these automatic

techniques can produce good results with no time spent on manual intervention.

Full-rank model. Regularising the full-rank model is not straightforward,

because in the time direction it uses a discrete basis, whereas in the stimulus

value direction it uses a piecewise linear (i.e. continuous) basis. In Appendix D we

adopt the somewhat unusual strategy of penalizing the first derivative in the time

direction (this is the standard thing to do) but the second derivative in the stimulus

value direction (this still promotes smoothness but allows functions to have steep

slopes). Again, the regularisation is done through a Gaussian prior on the model

parameters C, specified as a regularisation matrix DC – the analogue of Dw or Db for

the bilinear model parameters. In Appendix D, we derive expressions for DC so that

rough receptive fields are penalized. Linear evidence optimisation techniques can be

readily applied here (e.g., using an adaptive prior �DC and learning an optimal value

46 M. B. Ahrens et al.

D
ow

nl
oa

de
d

B
y:

 [C
ol

um
bi

a
U

ni
ve

rs
ity

] A
t:

22
:1

3
19

 J
un

e
20

08

for �, or by using other forms of prior covariance matrices; see Sahani and Linden

2003a).

Error bars through Gibbs sampling

Error bars for the parameters of a linear model with Gaussian noise are easy to

find. A linear model is defined by a design matrix X (the stimulus), a set of weights v

(the receptive field), an observation vector y (the spike rate) and a noise scale �,

so that y¼Xvþ ��, with � independent Gaussian noise with zero mean and unit

variance. If D were the inverse prior covariance, then the error bars on v would

be estimated by the square root of the diagonal elements of the posterior covariance

matrix �̂2ðXTXþ �̂2DÞ�1, as these diagonal elements give the marginal variances

of the parameters. In the bilinear case, the error bars are determined by the

spread of the posterior distribution of the parameters, Pðw;bjr;M;Dw;Db; �̂2Þ,

around the estimated parameters, wMAP and bMAP. Unlike the linear case, there is

no simple analytical estimate for this distribution, or for the corresponding

marginal variances, due to the dependencies between w and b. Fortunately,

however, it is quite easy to sample from this distribution by a procedure known as

Gibbs sampling (e.g., MacKay 2004). This sampling approach, detailed in

Appendix E, produces a set of samples {wn, bn}, which can be used to derive

estimates for the error bars empirically, by finding the pointwise standard deviations

of these samples around wMAP and bMAP. Some precautions are needed, described

in the next section, to ensure that these estimates are correct. Also note that the

estimated error bars for b are not the error bars on the input nonlinearity

f (�)¼Fb¼
P

i bi fi(�), where F is the matrix or operator containing the basis

elements fi(�) : if is the sample covariance matrix of the Gibbs samples {[bn]i}

around [bMAP]i, then the error bar on f(x) at position x is given by the

formula ðF FT
Þ
1=2
x;x .

The error bars for the parameters of the full-rank model can be estimated in

the same way as for a linear model, but once again they must be converted to

error bars on the receptive field. The posterior covariance matrix is

¼ �̂2ðMTMþ �̂2DC
Þ
�1 (see ‘‘Regularization’’; M is here the data array and DC

the regularisation array, both with (�, i) vectorised so that they become matrices).

Defining an appropriate basis matrix F similar to the above, the error bars are

now ðF FT
Þ
1=2
x�;x�.

Degeneracies

Bilinear model. It is possible for multiple settings of the parameters in a model to

be degenerate; that is, for models with those different parameters to produce

predictions that are identical in all respects. If such degenerate sets of parameters

exist, the model is said to be nonidentifiable: even if infinite data were available, the

parameters of the model could not be identified uniquely. The bilinear model

contains such degeneracies: the model does not change if w! ��w and b! 1=� � b,

because the parameters appear only in the product wb>. As we are generally

interested in the shape, but not absolute scale, of w and b, this nonidentifiability

need not pose a serious problem to interpretation of the estimated parameters.

Input nonlinearities in neural encoding models 47

D
ow

nl
oa

de
d

B
y:

 [C
ol

um
bi

a
U

ni
ve

rs
ity

] A
t:

22
:1

3
19

 J
un

e
20

08

However, it may lead to overestimation of the error bars. Error bars indicate the

range of values for which the firing rate predictions of the model are consistent with

the observed data; if any change in a parameter can be countered by changes in

other parameters so that r̂ is left unchanged, the error bars may potentially be

infinitely large (if there is no prior information to constrain the parameter

estimates). Probabilistically, such degeneracies induce directions in parameter

space for which the likelihood does not change. The Gibbs sampling procedure will

draw samples along these directions, and thus the empirical estimates of parameter

variance will be overestimated. Figure 4 illustrates this issue by showing four

equivalent configurations of the bilinear model.

The bilinear model has a second degeneracy: a constant (say d) added to each

element of b is interchangeable with a change in the constant c:

cþ
X
�i

w�ðbi þ dÞMt�i ¼ cþ
X
�i

w�biMt�i þ d �
X
�i

w�Mt�i:

Here the last term is constant with respect to b:

X
�i

w�Mt�i ¼
X
�

w�

X
i

fiðsðt � �ÞÞ ¼
X
�

w� � 1; ð5Þ

because the piecewise linear basis functions sum to 1 at every point,
P

i fi(x)¼ 1.

(A number of commonly used bases share this property, e.g., the piecewise linear,

discrete, and spline bases. If the basis functions do not sum to 1, the degeneracy

will persist in general, but the requisite transformation of b will be more

complicated than a constant offset as in this case.) Thus, an addition of d to each

element of b can be countered by subtracting d �
P
� w� from c. The equivalence

of the models thus obtained may again lead to misleadingly large error bars on b

and c. This additive degeneracy is also illustrated in Figure 4.

One way to remove the additive degeneracy and restore the identifiability of the

model, is to remove one function fj from the basis set {fi(�)} before constructing the

0

Time τ

w

0

Stimulus value s

f (
s)

Figure 4. Degeneracies of the bilinear model. Different line styles represent different
models, which are all equivalent. The crosses on the left represent the constant terms
c¼w1 � b1.

48 M. B. Ahrens et al.

D
ow

nl
oa

de
d

B
y:

 [C
ol

um
bi

a
U

ni
ve

rs
ity

] A
t:

22
:1

3
19

 J
un

e
20

08

data array M: this forces f(�)¼
P

i 6¼j bi fi(�) to be zero at a specific point (it is zero at

the j th node, f(xj)¼ 0; see Appendix A); Equation 5 does not then hold because
P

i 6¼j

fi(�) 6¼ 1. Thus, the additive degeneracy disappears and the Gibbs samples cannot

vary in offset. (Another approach to removing the additive degeneracy in the case of

the bilinear model would be to remove the constant offset c from the model entirely,

absorbing the offset into b. However, this would not remove a similar degeneracy of

the full-rank model; see below.) The multiplicative degeneracy can be fixed after

convergence, by rescaling the Gibbs samples to minimize the squared distance

between the samples and bMAP. The inverse rescaling is then applied to the

corresponding w samples.

Full-rank model. The full-rank model is also non-identifiable for basis vectors

that sum to 1 at each point: changing C�i to C�iþ d�, for any vector d whose elements

sum to zero, gives r̂ðtÞ ! r̂ðtÞ þ
P

� d�
P

i fiðsðt � �ÞÞ ¼ r̂ðtÞ þ
P

� d� � 1 ¼ r̂ðtÞ.

That is, there is no change in the input–output relation of the model, but the

receptive field does change: a(�,x)¼
P

i C�i fi(x)! a (�, x)þ d�. Once again, this can

lead to overestimation of the error bars. Fortunately, this problem can be tackled

in the same way as the additive degeneracy in the bilinear model: remove one

of the basis functions fj from the basis set { fi }, so that
P

i6¼j fi(�) 6¼ 1 and the

degeneracy disappears.

Rank-k models. In the specific instance of a rank-k model, a further degeneracy

arises from the model invariance under a permutation of the k parameter vectors.

In the example given previously, any permutation of the indices 1,2,3 of w1,2,3 and

b1,2,3 leads to the same model. This degeneracy generally poses no problem for error

bar evaluation, because the Gibbs sampler will rarely jump between such equivalent

parameter arrangements, these being separated by regions of parameter space with

very low probability.

Output nonlinearity

It may be helpful at times to extend the input nonlinearity model to also include an

output nonlinearity; one clear example might be if the input nonlinearity model by

itself predicted negative rates at many times. One approach, although suboptimal, is

to first fit a bilinear or full-rank model to give an estimated firing rate r̂ðtÞ, and then

find a pointwise function g(�) so that gðr̂ðtÞÞ is a better estimate of r(t) than was r̂ðtÞ

alone. One strategy for identifying g, described by Chichilnisky (2001), is to find the

average number of spikes that are elicited when r̂ falls within a certain interval; g(�) is

then defined to take this average value on that interval. This strategy is equivalent to

the basis function expansion used for the input nonlinearity, expressing the function

g in a discrete basis g(�)¼
P

j dj gj(�), and fitting to the data ðr̂ðtÞ; rðtÞÞ. The vector of

weights d is fit by linear regression, just as was b in the bilinear model. In place of a

discrete set of basis functions, one can choose any set; here, we use piecewise linear

basis functions with the same type of regularising prior as was used for the input

nonlinearity. The fitting of the output nonlinearity is just one-dimensional nonlinear

regression (Suits et al. 1978), and may be applied easily to either the bilinear or full-

rank models.

As described, the bilinear model parameters are fit before the output nonlinearity

is found, and will generally not be optimal. The optimization could be extended by

minimizing the squared error E ¼
P

tjr(t)�
P

j dj gj(
P
�i w� bi Mt�i)j

2 with respect to

Input nonlinearities in neural encoding models 49

D
ow

nl
oa

de
d

B
y:

 [C
ol

um
bi

a
U

ni
ve

rs
ity

] A
t:

22
:1

3
19

 J
un

e
20

08

(d, w, b), using e.g., gradient descent techniques. On one model data set, generated

using a sigmoid g, we found that although this further optimisation did indeed

decrease the squared error, most of the benefit had already been achieved by fitting g

after the other parameters had been fixed (data not shown). Another option is to fix

g instead of inferring it, and optimise w and b. This leads to a generalized bilinear

model, which is discussed in the following section in the context of models for single

spike trains, rather than of models for average rates. The developments of that

section can be applied to PSTH models as well; with the negative squared error �E

(and its corresponding derivatives) taking the place of the log-likelihood (and its

corresponding derivatives) defined below.

Fitting spike trains: Generalized bilinear or NLNP models

The discussion thus far has dealt with the use of input nonlinearity models to fit

spike rates, by minimizing the squared-error objective function between the

predicted rate and the average time-binned spike counts over multiple repetitions of

the same stimulus. Similar models can also be used to fit the probability of spiking in

a single trial. This requires two extensions. First, a cost function more appropriate

to spike-time data must be adopted, and second, the predictions of the models must

be constrained to be probabilistically meaningful. This section thus develops the

theory of the input nonlinearity models in the context of (a) a point-process

likelihood and (b) a fixed output nonlinearity. As mentioned in the preceding

section, the introduction of the fixed output nonlinearity may also be relevant in the

context of mean-rate prediction models.

A cost function appropriate to spike-time data is suggested by the theory of point

processes, although the continuous-time form must be discretised in practice.

Consider a spike train in which the individual spikes occur at times {tk}. Let the

value of the model prediction, r̂ðtÞ, give the expected number of events in the time

bin centred at time t; that is, the instantaneous spike rate in a bin of width dt is

predicted to be r̂ðtÞ=dt. Then, if we write r̂ðtkÞ for the predicted count in the bin in

which the kth actual spike falls, the point-process log-likelihood can be

approximated (neglecting constant terms; Berman and Turner 1992):

L ¼
X

k

log r̂ðtkÞ �
X

t

r̂ðtÞ

In this expression, r̂ðtÞ must be positive at the spike times tk, and more

generally – for instance, if the likelihood of model is to be evaluated on

cross-validation data – everywhere. Thus, we consider here models that include

an output nonlinearity, taking the form r̂ðtÞ ¼ gð
P

� w�f ðsðt � �ÞÞÞ ¼ gð
P

�i Mt�iw�biÞ

(bilinear) or r̂ðtÞ ¼ gð
P

�i Mt�iC�iÞ (full-rank), with g a fixed function (the link

function, or output nonlinearity), and the constant offset c is incorporated into M as

usual. We do not attempt to estimate g as in the previous section. The argument of

g is thus either bilinear or linear. Commonly, a linear model with output

nonlinearity, and exponential family likelihood, is called a Generalized Linear

Model (GLM; McCullagh and Nelder, 1989) or Linear-Nonlinear-Poisson Model

(LNP; Simoncelli et al. 2004); thus the bilinear version is a Generalized Bilinear

50 M. B. Ahrens et al.

D
ow

nl
oa

de
d

B
y:

 [C
ol

um
bi

a
U

ni
ve

rs
ity

] A
t:

22
:1

3
19

 J
un

e
20

08

Model or NLNP model (the first N standing for nonlinear) as depicted in Figure 5,

while the full-rank version is a GLM.

The parameters of these models are as before, i.e. w and b, or C, and must be

found by maximizing L. In this case, there is no analytical solution that maximises L

even for the full-rank model, and so the optimal parameters must be found by

iterative methods such as gradient ascent. For the full-rank model, general

results for GLMs apply, and a unique optimum of L is guaranteed if g is convex

and log-concave (Paninski 2003, 2004).

For the bilinear model, defining for brevity y(t)¼
P
�i Mt�i w� bi so that

r̂ðtÞ ¼ gðyðtÞÞ, the gradient with respect to b is given by

@L

@bj

¼
X

k

g0ðyðtkÞÞ

gðyðtkÞÞ

X
�

Mtk�jw� �
X

t

g0ðyðtÞÞ
X
�

Mt�jw�

with a similar expression for @L/@w�. Note that this gradient simplifies when g is the

exponential function as then g0(y)/g(y)¼ 1. The Gaussian priors over b and w,

introduced for regularisation, are still applicable. Incorporating these, the objective

function becomes the log-posterior L � ð1=2ÞwTDww� ð1=2ÞbTDbb, and the

gradient with respect to b becomes @L/@bj� [Dbb]j (with the expression for

the w gradient being similar), where Dw and Db are the regularisation matrices

described above.

Note that if g is convex and log-concave (e.g., exp(y) or log(1þ exp(y))), the

property of the squared-error case that the objective function is concave in each

parameter vector alone (for a fixed setting of the other) is preserved – i.e., if b is

fixed, then the objective is concave in w and thus has a unique optimum (Paninski

2004). This implies that the model can easily be fit by alternating maximization as

before – that is, switching between maximizing L with respect to w keeping b fixed,

and with respect to b keeping w fixed. In our experience, this alternating

maximization appears to converge more rapidly than simultaneous gradient ascent

with respect to w and b jointly. In addition, it is possible to adapt the iteratively

reweighted least squares (IRLS) algorithm, conventionally used for GLMs, to an

alternating form suitable for the generalized bilinear model.

One of the main reasons to use spike-time data rather than average spike rates is

that the spike history of the neuron can be incorporated in the model in a

Output nonlinearity

s τ
Input nonlinearity

Stimulus

Linear filter

f(s) g(.)w

Poisson spiking

Spike−response current

z

Figure 5. Schematic view of the bilinear model with output nonlinearity. The parameters
in the grey boxes are learnt from the data. The model may be used with or without the
spike-response term.

Input nonlinearities in neural encoding models 51

D
ow

nl
oa

de
d

B
y:

 [C
ol

um
bi

a
U

ni
ve

rs
ity

] A
t:

22
:1

3
19

 J
un

e
20

08

natural way (Paninski 2004). Spike history effects, such as refractory periods and

self-excitation, are often modeled as an additive feed-back influence called the

‘‘spike-response current’’: after each spike, a term z, varying over a small interval

of J time bins, is fed back, so that j time steps after the last spike, the probability

of spiking is changed by an amount zj. Incorporating such a term into the bilinear

model gives

r̂ðtÞ ¼
X
�i

w�biMt�i þ
XJ

j¼1

zj�ðt � jÞ;

where �(t) is a binned representation of preceding spikes; that is, �(t)¼ 1 if a spike

occurred in the bin centred at t, and is 0 otherwise. Crucially, the prediction r̂ðtÞ

depends only on value of �(�) for � < t. When finding parameter values, or for

cross-validation, � is set to the actual spike train observed. When generating

predicted spike trains, it may be sampled from rates predicted in preceding time

bins. The term z may be estimated together with w and b from the data, by

incorporating the observed spike train into the stimulus array M as follows. If the

data array M is initially of size T�A�B, we define Mt,Aþj,Bþ1¼ �(t� j) for

j¼ 1, . . . , J. Estimation now proceeds as before. At convergence, the spike-response

term is given by zj¼wAþj � bBþ1. Thus, the spike history becomes part of the data

array and is treated as a ‘‘stimulus’’, although it is not mapped through an input

nonlinearity, unlike the true stimulus s(t) (cf. ‘‘Models with multiple stimulus

features’’). Note that the log-likelihood is generalized linear (and concave, for

suitable g) in each pair (w, z) and (b, z) simultaneously, and so it is straightforward

to estimate w and z together, given b, or conversely b and z, given w.

Experiments on model data

The first set of experiments was carried out with three model data sets. Each data set

was constructed as follows. A one-dimensional stimulus s(t) was generated as

Gaussian white noise with unit variance, and transformed into a rate P(t) by three

different functions, described below. Any negative values of P(t) were set to zero.

Five spike trains, corresponding to five repeated ‘‘trials’’ of the experiment, were

then generated from P(t). A small amount of uniform noise was added to P(t) to

reflect non-stimulus locked ‘‘internal processes’’, and the resultant signal taken to

give the probability of observing a spike in each time bin. The observed firing rate

r(t) was obtained by averaging these five spike trains. Thus, the variability of each

spike train around P(t) was Poisson-like with a slightly increased variance. The first

half of the spike rate and stimulus was used to train the various input nonlinearity

and full-rank models. These were then tested on the second half, with their

performance being quantified by their predictive power (Sahani and Linden 2003b).

This is a performance measure based on the squared error, which takes into account

trial-by-trial variability of the response. It has an expected value of 1 for a model that

captures all predictable fluctuations in the firing rate, and 0 for a model which

predicts only the mean. The duration of a trial varied between 300 and 100 000 time

points, so as to study how overfitting in the various models depended on the amount

of data available.

52 M. B. Ahrens et al.

D
ow

nl
oa

de
d

B
y:

 [C
ol

um
bi

a
U

ni
ve

rs
ity

] A
t:

22
:1

3
19

 J
un

e
20

08

The rates P(t) were generated according to the following three processes:

(I) One filter. PðtÞ ¼
P�max

�¼0 kð�Þsðt � �Þ2. That is, stimulus values were squared

and then linearly filtered by k(�). The weights k(�) were non-negative, so

that P(t) did not need to be rectified.

(II) Two filters. PðtÞ ¼
�P�max

�¼0 k1ð�Þsðt � �Þ þ
P�max

�¼0 k2ð�Þsðt � �Þ
2
�þ

. That is, the

firing rate is a sum of two linear temporal filtering operations, one acting on

the stimulus values, and one acting on their squares. Both filters had

non-negative weights, with peak values at different �. However, negative

stimulus values could lead to negative filter outputs, and so P(t) was

rectified, as indicated by the brackets [�]þ.

(III) Nonlinear feature selective process. Here, the spike rate depended on how

closely the recent stimulus approximated a ‘‘sweep’’ in stimulus space.

Defining a to be a vector with evenly spaced increasing values between

min(s) and max(s),

PðtÞ ¼ cþ d �
X
�

Iðjsðt � �Þ � að�Þj < eÞ;

with c and d chosen so that 0�P� 1, and e¼ 0.2 � (max(s)�min(s)); I is the

indicator function, equal to 1 when its argument is true and 0 otherwise.

The third process was included to investigate the behaviour of the bilinear and

full-rank models when they are fit to data they cannot entirely capture (other

processes that could generate such data include, for instance, multiplicative

combinations of two different stimulus features). With a bin size defined to be

15 ms, the average firing rate of processes I–III was about 33 Hz. We trained and

tested the above models on the following datasets, using minimal regularisation:

1. bilin(1). A one-term bilinear model (i.e., r̂ðtÞ ¼ cþ
P

� w�f ðsðt � �ÞÞ) fitted

through the ALS procedure.

2. bilin(2). A two-term bilinear model (r̂ðtÞ ¼ cþ
P

� w1
� f

1ðsðt � �ÞÞþ
�

w2
� f

2ðsðt � �ÞÞÞ, estimated by the method described in section ‘‘Rank-k

models’’. This model is also combined with a static output nonlinearity in

some cases.

3. Full-rank. A full-rank model (r̂ðtÞ ¼ cþ
P

� w�f�ðsðt � �ÞÞ).
4. Full-rank SVD. The leading SVD terms of a full-rank model. This has the

same structure of a multi-term input nonlinearity model, but the estimation

of the terms is suboptimal. An SVD term was included when its eigenvalue

was larger than 1/4 of the leading eigenvalue.

Figure 6 shows the singular values of the SVD of the full-rank models when

trained on each of the three spike rates I–III. The singular value spectrum is

informative about the nature and complexity of the underlying process: the single

temporal filter (I) causes one eigenvalue to dominate all others, while the nonlinear

feature selection process (III) results in a gently decreasing spectrum. The two-filter

process (II) can be identified in the spectrum by the two dominant singular values.

Note that one or a few isolated values are not necessarily the signature of a simple

underlying process: there can be complex processes that do not leave their print on

the singular value spectrum of a full-rank model. In that case their presence has to

be discovered through the predictive performance of the models.

Input nonlinearities in neural encoding models 53

D
ow

nl
oa

de
d

B
y:

 [C
ol

um
bi

a
U

ni
ve

rs
ity

] A
t:

22
:1

3
19

 J
un

e
20

08

What do the models look like? Figure 7 shows the models learnt for process II.

The bilinear model correctly picks out (noisy versions of) the two temporal filters

and input nonlinearities. The full-rank model also identifies these terms, but the two

leading terms of the SVD show some mixing of the linear and quadratic input

transforms, and the predictive power is lower than that of the bilinear model. Fitting

to process III (not shown) yields a full-rank model with a diagonal excitatory band

in the weight matrix. The bilinear model approximates ‘‘sweep selectivity’’ in a

similar way, by having biphasic parameter vectors whose outer product shows some

diagonal structure.

To compare the predictive performance of the various models, their predictive

powers are shown as a function of the length of the trial in Figure 8. These graphs

confirm our intuitions:

A. All of the models can capture the structure of dataset I. Thus, the

performance is governed by the degree of overfitting: the model with fewest

parameters, bilin(1), does best. For large data sets the performance of the

different models converges. Note that the SVD model performs worse than

the bilin(2) model (even when two or fewer SVD terms are used, as was

always the case for trial lengths longer than 30 s).

B. The bilin(1) model cannot capture dataset II, as it was generated from

a bilin(2) model. The models that are able to capture the data show a similar

ordering of performance as in A. The performance of the bilin(2) model can

be improved by an output nonlinearity (oNL), as this allows it to capture the

rectification in the generative process.

C. None of the models can capture the structure of data set III, but the full-rank

models come close. Here, the simpler models perform better at small data

volumes, as they overfit less, but the more complex models perform better as

more data become available.

Finally, we fitted an NLNP model, or a generalized bilinear model, to a spike

train, rather than the spike rate, using the point process likelihood. To generate the

spikes, we used a quadratic input nonlinearity f(s)¼ s2 and an exponential output

nonlinearity g(�)¼ exp(�), so the model for the underlying spike rate was

r(t)¼ exp(cþ
P
� w� s(t� �)2). With time bins of 15 ms, the duration of the spike

0

1

2

3

4

A. 1 filter

S
in

gu
la

r
va

lu
e

0

1

2

3

4

5

B. 2 filters
0

0.5

1

1.5

C. sweep selective

Figure 6. Singular values of the SVD decomposition of the full-rank model trained on model
data A–C. Only the first 15 eigenvalues are shown. Note that in these examples, the number
of significant singular values are indicative of the complexity of the spike generating process
(dashed lines show the threshold for inclusion in the Full-rank SVD model).

54 M. B. Ahrens et al.

D
ow

nl
oa

de
d

B
y:

 [C
ol

um
bi

a
U

ni
ve

rs
ity

] A
t:

22
:1

3
19

 J
un

e
20

08

Figure 7. Model fits to data generated from the two-filter process (II). (a): true temporal
filters w1 and w2 (left) and input nonlinearities f 1 and f 2 (right). (b): estimated bilinear
model with two terms. The error bars of one standard error (grey) are calculated by Gibbs
sampling. (c): first two SVD terms of the estimated full-rank model. (d): the true full-rank
model given by C ¼ w1b1T þw2b2T , shown as a surface (left) and as a matrix (right). (e): the
estimated full-rank model. Error bars of one standard error at the maximum and minimum
values of the receptive field are shown as lines on the top and bottom right of the surface plot,
and the average error in the middle right, and are obtained as in linear regression.

Input nonlinearities in neural encoding models 55

D
ow

nl
oa

de
d

B
y:

 [C
ol

um
bi

a
U

ni
ve

rs
ity

] A
t:

22
:1

3
19

 J
un

e
20

08

train was 150 s and the mean firing rate 0.7 Hz, with 106 spikes observed in the

simulation. Performing alternating gradient ascent on the objective function, which

included regularisation terms, resulted in the parameters shown in Figure 9; the fit is

reasonable considering little more than 100 spikes were used for it. Real data will

generally be noisier, and not generated by an NLNP system, so that 100 spikes are

unlikely to suffice for fitting the model to real systems. For comparison, this figure

also shows a fit of a bilinear model (using as its objective function the squared error

between the predicted firing rate and the observed binary spike train). The

parameters of this bilinear model are similar in shape to the true parameters, though

they appear to be biased. In this example, no spike-response current was used. The

next section includes an NLNP model fitted to real data.

Demonstration on real data

We estimated the full-rank model (using the velocity signal as the stimulus) and

a bilinear model (with two terms, position and velocity) using spike-rate data from

4.5 15 150 1500

0

0.5

1
(a) (b) (c)1 Filter

Trial size (sec)

P
re

di
ct

iv
e

po
w

er

Bilin(1)
Bilin(2)
Full rank
Full rank SVD

4.5 15 150 1500

0

0.5

1
2 Filters

Trial size (sec)

P
re

di
ct

iv
e

po
w

er

Bilin(1)
Bilin(2)
Full rank
Full rank SVD
Bilin(2) oNL

4.5 15 150 1500
−0.5

0

0.5

1
Sweep selective process

Trial size (sec)

P
re

di
ct

iv
e

po
w

er

Bilin(1)
Bilin(2)
Full rank
Full rank SVD

Figure 8. Performance of the models on datasets I–III, averaged over 10 instantiations of
the random stimulus. The models were fitted to the firing rate over five trials; thus, the
experiment length is five times the trial size. Details and interpretations of the plots can be
found in the main text.

0 10 20
−0.02

0

0.02

0.04

0.06

Time

N
or

m
al

iz
ed

 w
ei

gh
t

Real
sq loss
pp loss

min 0 max
−0.5

0

0.5

1

1.5

Stimulus value

N
or

m
al

iz
ed

 w
ei

gh
t

Figure 9. Point process model fits. Black: true filters. Blue: filters found through minimising
the squared error, with error bars in grey. Red: filters found by maximising the point-process
likelihood, using the exponential output nonlinearity. The normalised shapes of the filters are
similar, but the input nonlinearity under the squared error appears to be somewhat biased
towards a U-shape.

56 M. B. Ahrens et al.

D
ow

nl
oa

de
d

B
y:

 [C
ol

um
bi

a
U

ni
ve

rs
ity

] A
t:

22
:1

3
19

 J
un

e
20

08

a cell in rodent barrel cortex, stimulated by a white noise whisker displacement

stimulus. These models were fitted using a PSTH with 3000 time bins of 5 ms. We

also fitted an NLNP model to the spike times, using approximately 12 000 spikes

collected over about half an hour. The resulting models are shown in Figure 10.

They recover a direction invariant response to velocity. In the bilinear model, this

can be seen from the approximately symmetric shape of the input nonlinearities

(right panel). In the full-rank model, this is evident from the symmetry of the

receptive field about the zero velocity line. Also, the shapes of the temporal filters

of the bilinear model (left panel) indicate that this cell is more responsive to the

velocity than to the position of the whisker: since both input nonlinearities have been

normalized, the size and shape of the temporal filter of a certain feature (position or

velocity) is an indication of how much variance in the spike rate that feature

predicts. These observations are in agreement with previous results (Pinto et al.

2000; Arabzadeh et al. 2003, 2005). The NLNP model recovers similar filters as the

other models, and demonstrates the feasibility of estimating this model on spike

time data.

Although the models for the PSTH are structurally only a small departure from

the linear model, their predictions are far superior. The predictive power of a linear

model is 0.01 on training data and negative on cross-validation data, whereas the

predictive powers of the input nonlinearity and full-rank models are 0.6 and 0.54,

0 50 100

0

4

8
W

ei
gh

t (
sp

ik
es

 s
−1

)

Time (ms)

position
velocity

0

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 w
ei

gh
t

Normalized position / velocity Time (ms)

V
el

oc
ity

0 50 100

0

F
iri

ng
 r

at
e

(s
pi

ke
s

s−1
)

−5

0

5

10

0 50 100

0

0.5

1

Time (ms)

N
or

m
al

iz
ed

 w
ei

gh
t

min 0 max
0

0.5

1

Velocity

(a)

(c)

(b)

g(.)

Figure 10. Bilinear and full-rank models applied to responses from a rodent somatosensory
cortex neuron. (a): Input nonlinearity model. Left: temporal filters for position and velocity,
right: the corresponding input nonlinearities. The grey areas show one standard error,
obtained by Gibbs sampling. No output nonlinearity was used as this did not significantly
improve the predictions. (b): Full-rank model on velocity. The full-rank model shares most
features of the bilinear model, such as direction invariance. (c): The NLNP model, with
exponential output nonlinearity. Only the velocity feature of the stimulus was used for this
model. The filters have similar shapes to the velocity filters of the bilinear model.

Input nonlinearities in neural encoding models 57

D
ow

nl
oa

de
d

B
y:

 [C
ol

um
bi

a
U

ni
ve

rs
ity

] A
t:

22
:1

3
19

 J
un

e
20

08

respectively (on cross-validation data). Clearly, the reason for this is the parabolic

shape of the input nonlinearity. Note that, even though the full-rank model

yields a lower cross-validation predictive power, we cannot say how much its

performance suffers from over-fitting and therefore cannot be sure that the

underlying system is exactly bilinear. However, of the two sets of parameters

fitted to the limited data available, those of the bilinear model appear to be a closer

match to the true system.

Discussion

The bilinear model (also called the Hammerstein or NL cascade model) and

the full-rank model provide useful nonlinear approaches to describing a neuron’s

time-varying response to a stimulus. The estimation of parameters in these models is

relatively straightforward; the discussions of degeneracies and regularisation

methods presented in this article allow for a careful analysis of the model parameters

and their error bars. The small number of parameters in the bilinear and NLNP

models (dim(w)þdim(b) parameters) makes the data requirements modest, while

the full-rank model requires more data for estimation (it has dim(w)�dim(b)

parameters). The feasibility of fitting, and potential utility of, the models has been

demonstrated on model data and on data from rodent barrel cortex.

Relation to other methods

A successful nonlinear model of similar flexibility to the bilinear model is the

Linear-Nonlinear-Poisson model (LNP; e.g., Simoncelli et al. 2004). The LNP

model has several variants. For example, the output nonlinearity might be fixed and

the temporal filter estimated by gradient ascent on the point-process likelihood

(Paninski 2004). Such an LNP model is a special case of the NLNP model, in which

the input nonlinearity is the identity function. Other variants of the LNP model

incorporate non-parametric output nonlinearities, and may be estimated by

Spike-Triggered Covariance analysis (De Ruyter van Steveninck and Bialek 1988;

Schwartz et al. 2002), a powerful method for finding relevant directions (w vectors)

in stimulus space. This technique’s provable accuracy is limited to the case where

the stimulus is Gaussian (Paninski 2003) (though interesting and useful results have

been obtained using non-Gaussian stimuli; Touryan et al. 2005), and not very high

dimensional (as estimating the spike-triggered covariance involves identifying order

dim(w)2 parameters). STC analysis may automatically find multiple relevant

stimulus representations and can also be used to construct models with nonlinear

stimulus-stimulus interactions such as divisive normalisation. The special case of an

LNP model using just one STC vector is similar to the bilinear model, but with the

ordering of linear and nonlinear operations reversed. LNP models, bilinear models

and full-rank models are likely to have regions of overlap in terms of the types

of neurons that can be successfully modeled. Although each model has its own

benefits and disadvantages in terms of data requirements, ease of estimation, etc., in

the end, the neuron under investigation determines which model provides the most

appropriate description (as measured by the predictive performance on

cross-validation data).

58 M. B. Ahrens et al.

D
ow

nl
oa

de
d

B
y:

 [C
ol

um
bi

a
U

ni
ve

rs
ity

] A
t:

22
:1

3
19

 J
un

e
20

08

Another useful method is Wiener–Volterra systems identification, a classical

non-linear estimation method which has been in use in neuroscience for a long time

(e.g., Marmarelis and Naka, 1973). More recently it has found applications in, for

example, characterizing subthreshold dynamics in barrel cortex (Webber and

Stanley, 2004). Since in theory these expansions span all non-linear models, the

models introduced in this article can also be phrased as restricted Volterra–Wiener

expansions (e.g., the bilinear model would become r̂ðtÞ ¼ cþ
P

�j w�bj ½sðt � �Þ�
j , in

which the input nonlinearity is expressed as a power-series expansion, f(x)¼
P

j bj x
j).

In practice, this method is most suitable when an appropriate reduction in the

parameter space can be identified (e.g., Young and Calhoun 2005); otherwise, the

number of parameters tends to be too large for such models to be practical (see also

Juusola et al. 1995 for a comparison between Volterra series and cascade models).

Several estimation methods for Hammerstein cascades and related models have

been previously proposed. Narendra and Gallman (1966) use an algorithm similar

to alternating least squares, but with an approximation to a more general temporal

filtering component based on the pulse transfer function. Westwick and Kearney

(2001) use a gradient based method with a similar structure to alternating least

squares. Bai (1998) estimates a suboptimal bilinear model by taking the first SVD

component of the corresponding full-rank model. Correlation-based methods

(e.g., Spekreijse and Oosting 1970) rely on Bussgang’s theorem (Bussgang 1952)

and only provably work if the system really is a Hammerstein system, whereas

methods relying on an objective function – such as the squared error – do not make

such assumptions about the system and merely try to find the best-fitting

Hammerstein approximation. For small systems, with restrictions on the form

and number of basis functions, there also exists a method for finding a closed-form

solution for the parameters of a bilinear model (Korenberg, 1991). The above

methods generally do not incorporate regularisation techniques or probabilistic

interpretations of the models.

Probabilistic interpretations

The noise models that were assumed for the bilinear and full-rank models (Gaussian

or Poisson noise) gave them a probabilistic interpretation, allowing for principled

regularisation techniques and error bar estimation. Finding error bars for the

full-rank model requires a single operation (as for linear models); for the bilinear

model, error bars may be estimated through Gibbs sampling. Obtaining error bars

for the point-process model is slightly more computationally intensive (since we

need to employ a Metropolis-Hastings step (MacKay 2004) to sample from the

posterior distributions), but this is still tractable (Rigat et al. 2006; Cronin et al.

2006); in addition, bootstrap techniques are available, where error bars are derived

from repeated estimation of the models on datasets randomly reselected from the

available data (Effron and Tibshirani, 1993).

Bilinear model, full-rank model and SVD components

In the experiments on simulated data, the bilinear model outperformed the SVD

decomposition of the full-rank model. This was expected, as SVD minimizes the

distance between the SVD terms and the parameters of the full-rank model, while

Input nonlinearities in neural encoding models 59

D
ow

nl
oa

de
d

B
y:

 [C
ol

um
bi

a
U

ni
ve

rs
ity

] A
t:

22
:1

3
19

 J
un

e
20

08

the bilinear model directly minimizes distance between the real and predicted firing

rate. However, if it is not too computationally expensive to estimate the full-rank

model, the first SVD component can serve as a good initialization for the estimation

procedure of the bilinear model (or the first k SVD terms can initialize the ALS

estimation of a rank-k model). The full-rank model was shown to capture more

complex dynamics when there was enough data available for its estimation.

Extensions of the bilinear model

The dimension of lag time, called �, does not have to range over lag time only, but

can also range over other stimulus features. In audition, for example, it might range

over lag time and frequency; the input nonlinearity would then apply to sound level

(Ahrens et al. 2008). In vision, � could be used for time and space, and the input

nonlinearity for luminance. Another extension of the bilinear model is the multilinear

model (Ahrens et al. 2008). An example of a multilinear model is a trilinear model, in

which the first two components act as a bilinear model as presented in this article,

and the third component multiplicatively modulates the predicted firing rate as a

function of the stimulus. The extra components of multilinear models can be used to

capture further nonlinear phenomena such as short-term stimulus specific

adaptation effects, while maintaining a small and tractable number of parameters.

Other extensions of the bilinear model involve learning the basis functions, e.g., the

position of the nodes of a spline basis, by adding a nonlinear step to the

ALS estimation procedure (Westwick and Kearney, 2001). Finally, in this

article we assumed discrete basis functions in the � direction. Other basis sets may

also be used, in which case the bilinear model would become r̂ðtÞ ¼

cþ
P

ij bidj

P
� hjð�Þfiðsðt � �ÞÞ, with {hj} the basis functions in the � direction. This

model is still bilinear and therefore all previously presented estimation techniques go

through, noting that now the prior for d has the same form as the prior for b.

Acknowledgments

We thank Rasmus Petersen for the data used in the example of Figure 10 and for

interesting discussions, Zoubin Ghahramani for suggestions, and Quentin Huys for

comments on the manuscript. M.B.A. and M.S. were funded by the Gatsby

Charitable Foundation and L.P. was funded by NEI grant EY018003 and by a pilot

grant from the Gatsby Charitable Foundation.

Appendix

A. Piecewise linear and discrete bases

The piecewise linear basis ffiðxÞg
N
i¼1 consists of tent-shaped functions determined by

a set of nodes fxqg
N
q¼1:

fiðxÞ ¼

ðx� xi�1Þ=ðxi � xi�1Þ if i >1 and xi�1 � x < xi

ðxiþ1 � xÞ=ðxiþ1 � xiÞ if i < N and xi � x < xiþ1

0 otherwise:

8><
>:

60 M. B. Ahrens et al.

D
ow

nl
oa

de
d

B
y:

 [C
ol

um
bi

a
U

ni
ve

rs
ity

] A
t:

22
:1

3
19

 J
un

e
20

08

Piecewise linear basis functions have the advantage over polynomial basis functions

of being local. Polynomial basis functions are global and noise can cause large and

uncontrolled fluctuations in parts of the fitted function that are not tightly

constrained by the data. A reasonable alternative choice might have been a

polynomial spline basis (Hastie et al. 2001).

The discrete basis is also defined by a set of nodes fxqg
Nþ1
q¼1 , but now

fiðxÞ ¼
1 if xi � x < xiþ1

0 otherwise

�

If the stimulus takes on discrete values, then the basis can be simply defined as:

fi(x)¼ 1 if x takes on the i th stimulus value, and zero otherwise.

To compute error bars on the parameters of the models, it is necessary to remove

one basis function from the basis set in order to avoid degeneracies, as explained

in section ‘‘Degeneracies’’.

B. Alternative alternating least squares procedure

When dim(w) and dim(b) are small or the number of time points T is big

(specifically, when T > (dim(w)2
þdim(b)2)/2) then the estimation of the bilinear

model can be accelerated through the use of different arrays. Note that at each

iteration of the algorithm presented in the main text, the matrix Bt�¼
P

i bi Mt�i is

redefined and used to estimate w through w¼ (B>B)�1B>r. That is, it appears as

B>B and as B>r. Both of these terms include a sum over t and this may be expensive

(both in terms of computational load and memory storage) for long experiments.

Instead of performing the sum over t at every iteration, one can define alternative

data arrays Q and Y as follows: Q�i�0i0 ¼
P

t Mt�iMt�0i0 and Y�i¼
P

t Mt�ir(t). Then

½BTB���0 ¼
P

ii0 Q�i�0i0bibi0 and [B>r]�¼
P

i Y�i bi in the update for w, i.e., the sum

over t is now no longer required. The expressions for the b update are analogous:

½WTW�ii0 ¼
P

��0 Q�i�0i0w�w�0 and [W>r]i¼
P
� Y�i w�.

C. Regularisation of b in the input nonlinearity model

Note that the regularisation techniques explained below are applicable to all models

that use basis functions. Penalizing the first derivative of f(x)¼
P

i bi fi(x) can be

written as placing a prior covariance on the vector b, because adding a quadratic

term ð1=2ÞbTDbb to the objective function E is equivalent to placing a Gaussian prior

with inverse covariance Db on b. Thus, we compute Db so as to penalise the first

derivative of f :

�

Z
df ðxÞ

dx

� �2

dx ¼ �

Z X
i

bi
d fiðxÞ

dx

 !2

dx ¼
X

ij

bibjD
b
ij : ð6Þ

This equation holds if we define Db as

Db
ij ¼ �

Z
dfiðxÞ

dx

dfjðxÞ

dx
dx;

Input nonlinearities in neural encoding models 61

D
ow

nl
oa

de
d

B
y:

 [C
ol

um
bi

a
U

ni
ve

rs
ity

] A
t:

22
:1

3
19

 J
un

e
20

08

where fi(�) are basis functions. Note that this is an improper prior (does not integrate

to 1), since Db has a zero eigenvalue – but this penalization is nonetheless useful

because it corresponds to familiar features of f (the steepness). Instead of the first

derivative, the second derivative of f may be a more relevant property to control.

The piecewise linear basis was used for all examples in this article, hence we derive

an expression for Db tailored to this basis set. Note that the second derivative of

a piecewise linear function is ill-defined: here we define it (up to an arbitrary

constant multiplier) to be the difference between the slopes at either side of the

nodes. The piecewise linear basis consists of triangles, which start at 0 at a node

xq�1, rise linearly to 1 at the neighbouring node xq, and descend linearly to 0 at

the next node xqþ1; see Appendix A. Penalizing the curvature now involves only the

nodes, because in between the nodes, f is linear and has zero curvature. Using the

notation xþq and x�q for values just above and below xq (e.g., x�q ¼ xq � �, for � very

small), we penalize

�

Z
d2f

dx2

� �2

dx ¼ �
X

q

� df

dx

			
x�q

�
df

dx

			
xþq

2

¼
X

ij

bibjD
b
ij

where Db
ij ¼ �

R
f 00i ðxÞf

00
j ðxÞdx is, for a piecewise linear basis set,

Db
ij ¼ �

X
q

f 0i ðx
�
q Þf
0
j ðx
�
q Þ � f 0i ðx

�
q Þf
0
j ðx
þ
q Þ � f 0i ðx

þ
q Þf
0
j ðx
�
q Þ þ f 0i ðx

þ
q Þf
0
j ðx
þ
q Þ:

Note that the only nonzero terms in this sum are those for which jq� ij � 1

and jq� jj � 1 because piecewise linear basis functions are nonzero only across

three nodes.

Other regularising priors, for example penalizing higher derivatives (or the

Laplacian in higher dimensions; see also Poggio et al. 1985), can be derived in

a similar way. Replace d=dx in Equation 6 by a different linear operation and find

the corresponding Db.

D. Regularisation of C in the full-rank model

Again using the symbol x for the stimulus value, and writing the effective

response as a(�,x)¼
P

i C�i fi(x), the penalty term is defined to beP
�

R
x
	ðda=d�Þ2 þ
 d2a=dx2Þ

2
�

, penalizing high derivatives in the � direction and

high second derivatives in the x direction. To write this as a quadratic form in C,

note that da=d� ¼
P

i C�i � C��1;i

� �
fiðxÞ and d2a=dx2 ¼

P
i w�iðd

2fi=dx2Þ. The

expression for the penalty term is then

X
�

Z
x

	
da

d�

� �2

þ

d2a

dx2

� �2

¼
X
��0ij

C�iC�0 jD
C
�i�0i0

where DC is the inverse prior covariance of C,

DC
�i�0i0 ¼ 	D1

�i�0i0 þ
D2
�i�0i0

¼ 	ð2��;�0 � ��þ1;�0 � ��;�0þ1Þ

Z
x

fiðxÞfi0 ðxÞ þ
��;�0

Z
x

f 00i ðxÞf
00
i0 ðxÞ:

62 M. B. Ahrens et al.

D
ow

nl
oa

de
d

B
y:

 [C
ol

um
bi

a
U

ni
ve

rs
ity

] A
t:

22
:1

3
19

 J
un

e
20

08

Finally, because we are using a small but discrete resolution �x for x, we replace

the integrals by sums:Z
x

fiðxÞfi0 ðxÞ ¼ �x

X
n

fiðxnÞfi0 ðxnÞ;Z
x

f 00i ðxÞf
00
i0 ðxÞ ¼

1

�x

X
q

f 0i ðx
þ
q Þ � f 0i ðx

�
q Þ

h i
f 0i0 ðx

þ
q Þ � f 0i0 ðx

�
q Þ

h i
:

Here xn are the points in the discretised space of stimulus value (such that

xnþ1¼ xnþ�x) and xq are the nodes of the piecewise linear basis functions. DC is

re-shaped into DC
mm0 when using it in linear regression by vectorising (�, i): the index

m replaces (�, i) and m0 replaces (�0, i0). The resolution �x appears in the definition

of the prior as 	 � �x and as
/�x; the prior should not depend on the resolution, but

this can be countered by absorbing �x into 	 and
, i.e. ignoring �x and tuning 	 and

 by cross validation or automatically as in Appendix F.

E. Gibbs sampling in the bilinear model

Gibbs sampling involves fixing b to b1, drawing w1 from a probability distribution

dependent on this value, and then fixing w to w1, and drawing b2 from

a distribution dependent on w1, and so on (MacKay 2004). In this way, {wn,bn}

will (as n grows) converge to a set of samples from Pðw;bjr;M;Dw;Db; �̂
2
Þ.

The conditional probability distributions of w and b are Gaussians, with means and

covariances obtained from the conditionally-linear regression problems (cf. the

linear regression example in ‘‘Error bars through Gibbs sampling’’):

Pðwjb; r;M; �̂2Þ ¼ N
�
ðBTBþ �̂2Db

Þ
�1BTr; �̂2ðBTBþ �̂2Db

Þ
�1
�

and

Pðbjw; r;M; �̂2Þ ¼ N
�
ðWTWþ �̂2Dw

Þ
�1WTr; �̂2ðWTWþ �̂2Dw

Þ
�1
�

where Bt�¼
P

i bi Mt�i and Wti¼
P
� w�Mt�i; since sampling from a multivariate

Gaussian distribution requires only the computation of a matrix square root, Gibbs

sampling here is quite computationally efficient. The noise parameter �̂2 is normally

set to the squared error between the real and predicted firing rates, using the

parameters wMAP and bMAP obtained by the ALS procedure (though we may easily

sample from the posterior distribution of �2 as well). These MAP parameters also

provide good starting points for Gibbs sampling.

F. Adaptive regularisation of bilinear models

In the main text, we described an alternating least squares procedure to estimate the

parameter vectors of an input-nonlinearity model. The algorithm made it easy to

incorporate prior covariance matrices for the parameter vectors. In many cases,

however, it is not clear what a good prior should be – e.g., how much smoothing is

Input nonlinearities in neural encoding models 63

D
ow

nl
oa

de
d

B
y:

 [C
ol

um
bi

a
U

ni
ve

rs
ity

] A
t:

22
:1

3
19

 J
un

e
20

08

needed to get sensible results from data with variable noise? Ideally, one should

incorporate some flexibility by making the prior matrices depend on one or more

hyperparameters � (e.g., �, 	 and
 in Appendices C and D). Whilst these

parameters may be set by intuitive expectation, or by cross-validation, we have also

developed an empirical Bayesian approach that employs a Variational Bayes EM

algorithm (Dempster et al. 1977; Beal 2003) to fit this hierarchical model, treating

�, 	 and
 as hyperparameters and approximately integrating over the parameters

b and w. While the ALS procedure only keeps track of the mean of the parameter

vectors, the Bayesian approach also keeps track of their covariances; while

previously, a new estimate of one parameter was dependent only on the previous

estimate of the other parameters, it now also depends on the uncertainty about the

other parameters. Here we only present the resulting algorithm. The derivations and

variations will be discussed elsewhere.

The algorithm contains several variables which are updated inside a loop. The

terms uw,b and w,b represent estimates of the posterior means and covariance

matrices of the parameter vectors w and b, respectively. Sw(�w) and Sb(�b) are the

prior covariance matrices that are responsible for regularising the estimates, and

depend on (possibly multidimensional) parameters �w,b, which must be learnt. The

parameter �̂2 is an estimate of the scale of the Gaussian noise of the spike rate; this

estimate is also updated at every iteration of the algorithm. Finally, the function F is

the portion of the free energy, a lower bound on the log-likelihood, that depends on

the �s.
The algorithm is initialised with guesses for uw and ub (e.g., wMAP and bMAP); the

posterior covariance matrices w,b can be initialised as a multiple of the identity

matrix. The variance �̂2 can be initialized by e.g., the squared error coming from the

ALS procedure, or by the variance of r(t).

The algorithm is then:

1. Define

. Cw

w
þuw[uw]>

. Qw
ij

P
tkl Cw

klMtikMtjl

. [vw]i
P

tk [ub]k Mtikr(t).

2. Update w and uw according to

w Sw QwSw

�̂2
þ I

� ��1

uw w vw

�̂2

3. Perform the analogous operations of steps 1 and 2 for b and ub.

4. Update �̂2 according to

�̂2
1

T
rTr� 2

X
tik

½uw�i½u
b�krðtÞMtik þ

X
tijkl

Cw
ij C

b
klMtikMtjl

 !

where T¼ length(r), Cw
¼uw[uw]>þ w and Cb

¼ub[ub]>þ b.

64 M. B. Ahrens et al.

D
ow

nl
oa

de
d

B
y:

 [C
ol

um
bi

a
U

ni
ve

rs
ity

] A
t:

22
:1

3
19

 J
un

e
20

08

5. Do gradient ascent on the function

F ¼ �
1

2
log jSw

j �
1

2
log jSb

j �
1

2
trace Cw

½Sw
�
�1
þ Cb
½Sb
�
�1

�

with respect to �w and �b (which may be multidimensional). The gradients

are (written both in terms of the prior covariance Sw and the inverse prior

covariance Dw
¼ [Sw]�1, so that the algorithm can be implemented using

either form of regularization),

@

@�w
F ¼

1

2
trace Cw

½Sw
�
�1
� I

� � @Sw

@�w
½Sw
�
�1

� �

¼
1

2
trace I� CwDw

ð Þ½Dw
�
�1 @D

w

@�w

� �

with an analogous expression for the gradient in the �b direction. One can

either take one or a few gradient steps, or continue the gradient ascent until

convergence.

6. Continue this loop, i.e. go to step 1, until uw, ub and the ’s converge.

Note that step 1 of this algorithm reduces to a step in the ALS procedure if the ’s

are set to zero.

The prior for the full-rank model can also be adaptively tuned, e.g., by using

evidence optimization techniques described in MacKay (1994) and Sahani and

Linden (2003a). The latter paper also presents further formulations for tunable

prior covariance matrices S(�).

References

Ahrens MB, Linden JF, Sahani M. 2008. Nonlinearities and contextual influences in auditory cortical

responses modeled with multilinear spectrotemporal methods. Journal of Neuroscience

28(8):1929–1942.

Arabzadeh E, Petersen RS, Diamond ME. 2003. Encoding of whisker vibration by rat barrel cortex

neurons: implications for texture discrimination. Journal of Neuroscience 23:9146–9154.

Arabzadeh E, Zorzin E, Diamond ME. 2005. Neuronal encoding of texture in the whisker sensory

pathway. PLOS Biology 3:155–165.

Bai EW. 1998. An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear

systems. Automatica 34:333–338.

Beal MJ. 2003. Variational Algorithms for Approximate Bayesian Inference. PhD Thesis, Gatsby

Computational Neuroscience Unit : University College London.

Berman M, Turner TR. 1992. Approximating Point Process Likelihoods with GLIM. Applied Statistics

41:31–38.

Breiman L, Friedman JH. 1985. Estimating optimal transformations for multiple regression and

correlation. Journal of the American Statistical Association 80(391):580–598.

Brenner N, Bialek W, de Ruyter van Steveninck R. 2000. Adaptive rescaling maximizes information

transmission. Neuron 26:695–702.

Bussgang JJ. 1952. Crosscorrelation functions of amplitude-distorted Gaussian signals : Technical

Report No. 216. Research Laboratory of Electronics MIT.

Chichilnisky EJ. 2001. A simple white noise analysis of neuronal light responses. Network: Computation

in Neural Systems 12:199–213.

Christianson GB, Sahani M, Linden JF. 2008. The Consequences of Response Nonlinearities for

Interpretation of Spectrotemporal Receptive Fields. Journal of Neuroscience 28(2):446–455.

Input nonlinearities in neural encoding models 65

D
ow

nl
oa

de
d

B
y:

 [C
ol

um
bi

a
U

ni
ve

rs
ity

] A
t:

22
:1

3
19

 J
un

e
20

08

Cronin B, Schummers J, Koerding K, Sur M. 2006. Bayesian sampling methods for the analysis of

reverse correlation data. Society for Neuroscience abstract 545.3/T5, San Diego.

de Ruyter van Steveninck R, Bialek W. 1988. Real-time performance of a movement-sensitive neuron in

the blowfly visual system: Coding and information transmission in short spike sequences. Proceedings

of the Royal Society of London Series B 234:379–414.

DeAngelis GC, Ohzawa I, Freeman RD. 1995. Receptive-field dynamics in the central visual pathways.

Trends in Neuroscience 18:451–458.

Dempster AP, Laird NM, Rubin DB. 1977. Maximum likelihood from incomplete data via the EM

algorithm. Journal of the Royal Statistical Society B 39:1–38.

Depireux DA, Simon JZ, Klein DJ, Shamma SA. 2001. Spectro-temporal response field characterization

with dynamic ripples in ferret primary auditory cortex. Journal of Neurophysiology 85:1220–1234.

Effron B, Tibshirani RJ. 1993. An introduction to the bootstrap. New York: Chapman & Hall.

Hastie T, Tibshirani R, Friedman J. 2001. The elements of statistical learning: data mining, inference

and prediction. New York: Springer-Verlag.

Hastie TJ, Tibshirani RJ. 1999. Generalized additive models. Monographs on Statistics and Applied

Probability. Vol. 43. New York: Chapman & Hall/CRC.

Hunter IW, Korenberg MJ. 1986. The Identification of Nonlinear Biological Systems: Wiener and

Hammerstein Cascade Models. Biological Cybernetics 55:135–144.

Juusola M, Weckström M, Uusitalo RO, Korenberg MJ, French AS. 1995. Nonlinear models of the first

synapse in the light-adapted fly retina. Journal of Neurophysiology 74:2538–2547.

Korenberg MJ. 1991. Recent advances in the identification of nonlinear systems: Minimum-variance

approximation by Hammerstein models. Annals of the International Conference of IEEE Engineering

in Medicine and Biology Society 13:2258–2259.

Linden JF, Liu RC, Sahani M, Schreiner CE, Merzenich MM. 2003. Spectrotemporal structure of

receptive fields in areas AI and AAF of mouse auditory cortex. Journal of Neurophysiology

90:2660–2675.

Luczak A, Hackett TA, Kajikawa Y, Laubach M. 2004. Multivariate receptive field mapping in marmoset

auditory cortex. Journal of Neuroscience Methods 136:77–85.

Machens CK, Wehr MS, Zador AM. 2004. Linearity of cortical receptive fields measured with natural

sounds. Journal of Neuroscience 24:1089–1100.

MacKay DJC. 1994. Bayesian non-linear modelling for the prediction competition. ASHRAE

Transactions V. 100 Pt.2 Atlanta Georgia: ASHRAE, pp. 1053–1062.

MacKay DJC. 2004. Information Theory, Inference, and Learning Algorithms : Cambridge University

Press.

Marmarelis PZ, Naka KI. 1973. Nonlinear analysis and synthesis of receptive-field responses

in the catfish retina. I. Horizontal cell leads to ganglion cell chain. Journal of Neurophysiology

36:605–618.

McCullagh P, Nelder J. 1989. Generalized linear models. New York: Chapman & Hall.

Narendra KS, Gallman PG. 1966. An Iterative Method for the Identification of Nonlinear Systems

Using a Hammerstein Model. IEEE Transactions on Automatic Control AC-11:546–550.

Paninski L. 2003. Convergence properties of three spike-triggered analysis techniques. Network:

Computation in Neural Systems 14:877–883.

Paninski L. 2004. Maximum likelihood estimation of cascade point-process neural encoding models.

Network: Computation in Neural Systems 15:243–262.

Pillow JW, Paninski J, Uzzell VJ, Simoncelli EP, Chichilnisky EJ. 2005. Prediction and decoding of

retinal ganglion cell responses with a probabilistic spiking model. Journal of Neuroscience

25:11003–11013.

Pillow JW, Simoncelli EP. 2006. Dimensionality reduction in neural models: an information-

theoretic generalization of spike-triggered average and covariance analysis. Journal of Vision

6:414–428.

Pinto DJ, Brumberg JC, Simons DJ. 2000. Circuit dynamics and coding strategies in rodent

somatosensory cortex. Journal of Neurophysiology 83:1158–1166.

Poggio T, Torre V, Koch C. 1985. Computational vision and regularization theory. Nature

317:314–319.

Rigat F, de Gunst M, van Pelt J. 2006. Bayesian modelling and analysis of spatio-temporal neuronal

networks (in press).

Sahani M, Linden JF. 2003a. Evidence optimization techniques for estimating stimulus-response

functions. In: Becker S, Thrun S, Obermayer K, editors. Advances in Neural Information Processing

66 M. B. Ahrens et al.

D
ow

nl
oa

de
d

B
y:

 [C
ol

um
bi

a
U

ni
ve

rs
ity

] A
t:

22
:1

3
19

 J
un

e
20

08

Systems 15. Cambridge, MA: MIT Press. Vol. 15. pp 109–116. Available online via http://

books.nips.cc.

Sahani M, Linden JF. 2003b. How linear are auditory cortical responses?. In: Becker S, Thrun S,

Obermayer K, editors. Advances in Neural Information Processing Systems 15. Cambridge, MA:

MIT Press. pp 109–116. Available online via http://books.nips.cc.

Schwartz O, Chichilnisky EJ, Simoncelli EP. 2002. Characterizing neural gain control using

spike-triggered covariance. In: Dietterich TG, Becker S, Gharamani Z, editors. Advances Neural

Information Processing Systems. Cambridge, MA: MIT Press Vol. 14. pp 269–276. Available

online via http://books.nips.cc.

Sharpee T, Rust NC, Bialek W. 2004. Analyzing neural responses to natural signals: Maximally

informative dimensions. Neural Computation 16:223–250.

Simoncelli EP, Pillow J, Paninski L, Schwartz O. 2004. Characterization of neural responses

with stochastic stimuli. In: Gazzaniga M, editor. The Cognitive Neurosciences. 3rd ed..

Cambridge, MA: MIT Press. pp 327–338.

Spekreijse H, Oosting H. 1970. A method for analysing and synthesizing nonlinear systems. Kybernetik

7:23–31.

Strang G. 1988. Linear Algebra and its Applications. 3rd ed. Brooks Cole: Boston, MA.

Suits DB, Mason A, Chan L. 1978. Spline functions fitted by standard regression methods. The Review

of Economics and Statistics 60:132–139.

Touryan J, Felsen G, Dan Y. 2005. Spatial structure of complex cell receptive fields measured with

natural images. Neuron 45:781–791.

Truccolo W, Eden UT, Fellows MR, Donoghue JP, Brown EN. 2005. A point process framework for

relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects.

Journal of Neurophysiology 93:1074–1089.

Webber RM, Stanley GB. 2004. Nonlinear encoding of tactile patterns in the barrel cortex. Journal of

Neurophysiology 91:2010–2022.

Westwick WT, Kearney RE. 2001. Separable least squares identification of nonlinear Hammerstein

models: application to stretch reflex dynamics. Annals of Biomedical Engineering 29:707–718.

Young ED, Calhoun BM. 2005. Nonlinear modeling of auditory-nerve rate responses to wideband

stimuli. Journal of Neurophysiology 94:4441–4454.

Young FW, de Leeuw J, Takane Y. 1976. Regression with qualitative and quantitative variables:

An alternating least squares method with optimal scaling features. Psychometrika 41:505–529.

Input nonlinearities in neural encoding models 67

