
Circuit 
• Eqs. (1-2) map onto a network with neural populations representing , , 

and  that are connected by synaptic weights , , - , , and - .  

• In case delay , recomputing the latent state throughout the delay  
period requires a biologically implausible circuit.  

💡Use direct state estimate updates based on delayed measurement,  
    . This affects performance only mildly. 

Learning 
• Gains  and  are usually each found by solving a Riccati equation,  

which requires matrix operations difficult to implement in biology. 

System identification and Kalman gain 

💡Update , , , and  online using steps that minimize .  

• The stochastic gradients are 
 

• A Hebbian rule for weights  🙂,  but non-local rules for ,  and  ☹. 

💡Replace  with : Corresponds to left-multiplication of the gradients        
    with a positive definite matrix, thus updates still decrease the objective. 

Control 

💡Learn  via policy gradient [8] 
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Neural network representation for OFC
Discrete time double integrator 
Bio-OFC converges to optimal values for given delay. 

Adapting to a force field [9] 
Bio-OFC captures the characteristics of human trajectories.

Experiments

System ID And State Prediction
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Optimal feedback control (OFC)
A prominent framework for how the brain plans and executes proper 

movements in the face of delayed and noisy sensory feedback [1]. 

• Integrates feedback and internal model predictions using Kalman Filter [2]. 

• Generates control actions that optimize behaviorally relevant criteria. 

• Open problem:  a biologically plausible neural circuit for OFC.

[3] [4] [5] [6] [7] Bio-OFC

delayed sensory feedback 7 7 7 7 7 3
control included 7 3 7 7 7 3

noise covariance agnostic 7 3 7 7 7 3
online system identification 7 3 7 3 37 3

local learning rules N/A 3 N/A 7 3 3
tractable latent size 7 3 7 3 3 3

absence of inner loop 3 7 3 3 7 3
single phase learning/execution N/A 7 N/A 3 3 3

Our contribution: Bio-OFC addresses limitations of previous proposals.

Kalman estimation and control 

• The Kalman filter is a recursive estimator that updates estimate  as 

         (1) 

• It minimizes mean-squared error . The Kalman gain matrix    
optimally combines the internal model with the noisy observations.  

• Delayed feedback: We estimate  before  has been observed. 

• The control law simplifies if the cost  is quadratic:              (2)                       

x̂t

x̂t+1 = Ax̂t + But + Let where et:= yt − Cx̂t .

𝔼[e⊤e] L

xt yt

J ut = − Kx̂t

dynamics: xt+1 = Axt + But + vt where   vt ∼ 𝒩(0; V)
observa2on: yt = Cxt + wt where  wt ∼ 𝒩(0; W)

expected cost: J = 𝔼 [∑T
t=0 c(xt, ut)] with instantaneous cost c

control: ut = k(x̂t) = arg min J

Problem formulation 

• Estimate  in order to design control  that minimizes expected cost .x̂ u J

• System identification: Parameters , , and  must be learned online.A B C
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