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Abstract
Fluorescent calcium indicators are a popular means for observing the spiking activity of large neuronal
populations, but extracting the activity of each neuron from raw fluorescence calcium imaging data is
a nontrivial problem. We present a fast online active set method to solve this sparse non-negative de-
convolution problem. Importantly, the algorithm progresses through each time series sequentially from
beginning to end, thus enabling real-time online estimation of neural activity during the imaging session.
Our algorithm is a generalization of the pool adjacent violators algorithm (PAVA) for isotonic regres-
sion and inherits its linear-time computational complexity. We gain remarkable increases in processing
speed: more than one order of magnitude compared to currently employed state of the art convex solvers
relying on interior point methods. Our method can exploit warm starts; therefore optimizing model
hyperparameters only requires a handful of passes through the data. A minor modification can further
improve the quality of activity inference by imposing a constraint on the minimum spike size. The al-
gorithm enables real-time simultaneous deconvolution of O(105) traces of whole-brain larval zebrafish
imaging data on a laptop.

Problem formulation. Calcium imaging methods enable simultaneous measurement of the activity of
thousands of neighboring neurons, but come with major caveats: the slow decay of the fluorescence signal
compared to the time course of the underlying neural activity, limitations in signal quality, and the large
scale of the data all complicate the goal of efficiently extracting accurate estimates of neural activity from
the observed video data. Further, current activity extraction methods are typically applied to imaging data
after the experiment is complete. However, in many cases we would prefer to run closed-loop experiments
- analyzing data on-the-fly to guide the next experimental steps or to control feedback - and this requires
new methods for accurate real-time processing.
Approach. Here we address the pressing need for scalable online spike inference methods. Building on
previous work, we approximate the calcium dynamics c as autoregressive (AR) process of order p and frame
the estimation problem as a sparse non-negative deconvolution [1] that can be interpreted as MAP estimate
of a generative model.
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Figure 1: Generative AR model for calcium dynamics. Spike train
s gets filtered to produce calcium trace c; here we used an AR(2)
process. Added noise yields the observed fluorescence y.

minimize
c

1
2
‖c− y‖2 + λ‖s‖1

subject to s = Gc ≥ 0
(1)

with G =
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This approach has already been taken up widely in various experimental labs and has thus been well val-
idated in practice. However, current algorithms employ interior point methods to solve the ensuing opti-
mization problem that can not handle larger data sets such as whole-brain zebrafish imaging in real time.
Furthermore, these interior point methods do not run online.

We noted a close connection between the MAP problem and isotonic regression, which fits data by a
monotone piecewise constant function (ct+1 ≥ ct), whereas our constraint ct+1 ≥ γct (considering AR1
for briefness) bounds the rate of decay instead of enforcing monotonicity. A classic algorithm for isotonic
regression is the pool adjacent violators algorithm (PAVA) [2], which can be understood as an online active-
set optimization method. We generalized PAVA to derive an Online Active Set method to Infer Spikes
(OASIS); it sweeps through the data looking for violations of the constraint ct+1 ≥ γct, cf. Fig. 2. When
it finds one, it backtracks to the most recent spike and adjusts the estimate to the best possible fit with
constraints, which amounts to pooling the data points where no spike happened. During the sweep adjacent
pools that violate the constraints are merged. Importantly, OASIS operates in an online fashion, progressing
through the fluorescence time series sequentially from beginning to end. Further, OASIS can be warm-
started, which is useful in the inner loop of CNMF [3], and also when adjusting model hyperparameters.
The hyperparamter λ can be set by inclusion of the residual sum of squares (RSS) as a hard constraint [3].

minimize
c

‖s‖1 subject to s = Gc ≥ 0 and ‖c− y‖2 ≤ σ2T. (2)
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Figure 2: Illustration of OASIS for an AR(1) process (see supplementary video). Red lines depict true spike
times. The shaded background shows how the time points are gathered in pools. The pool currently under
consideration is indicated by the blue crosses. The algorithm proceeds moving forward (A-C) until the next
violation occurs (C) and triggers backtracking and merging (D-E) as long as constraints are violated. When
the most recent spike time has been reached (E) the algorithm proceeds forward again (F). The process
continues until the end of the series has been reached (G). The solution is obtained and pools span the
inter-spike-intervals.

0

2

F
lu

or
.

OASIS CVXPY Truth Data

0 25 50
0

1

A
ct

iv
it

y

A

OASIS ECOS MOSEK SCS GUROBI
Solver

0

0.5

1.0

T
im

e
[s

]

O. E. M. S. G.

0.01

0.1

1B

OASIS ECOS MOSEK SCS GUROBI
Solver

0

1

2

T
im

e
[s

]

O. E. M. S. G.
0.01

0.1

1
C

Figure 3: OASIS produces the same results as convex solvers at least an order of magnitude faster. (A) Raw
and inferred traces. (B) Computation time for AR(1) data with given λ (blue circles, Eq. 1) or inference with
hard noise constraint (green x, Eq. 2). GUROBI failed on the noise constrained problem. (C) Computation
time for AR(2) data.

Results. Our suggested (dual) active set method yields the same results as other convex solvers and extracts
spikes well (Fig. 3A). We compared the run time of our algorithm on a standard laptop to a variety of state
of the art convex solvers that can all be conveniently called from the convex optimization toolbox CVXPY
[4]: embedded conic solver (ECOS), MOSEK, splitting conic solver (SCS) and GUROBI. OASIS is about
one to two magnitudes faster than any other method (Fig. 3B,C). We also ran the algorithms on longer traces
up to T = 300,000 frames, confirming that OASIS scales linearly with T . Running OASIS on a total of
91,478 neurons from a whole-brain zebrafish imaging dataset from the M. Ahrens lab took 745 s for OASIS,
less than the 1,500 s recording duration, and over 25,780 s for ECOS and other candidates.

We solved the noise constraint problem (Eq. 2) by increasing λ in the dual formulation until the noise
constraint is tight. Thus far the AR coeffient γ was either known or estimated based on the autocorrelation
in the above analyses, which often yields a crude estimate. We improved upon these results by not only
optimizing the sparsity parameter λ, but also the AR coeffient γ. Further, we can include and optimize an
explicit fluorescence baseline b to increase the accuracy of spike inference, always exploiting warm starts.

OASIS solves a LASSO problem resulting in soft shrinkage. We ran a slightly modified version of the
algorithm that replaces the sparsity penalty by a constraint on the minimal spike size smin, thus performing
hard thresholding and yielding sparser solutions but rendering the problem non-convex. Although we are
not guaranteed to find the global minimum, we obtained improved results.

We were interested in how the method performs if backtracking is limited to just a few frames. We
varied the lag in the online estimator, i.e. the number of future samples observed before assigning a spike at
time zero, for different signal-to-noise ratios (SNR). For realistic SNR and sample rates, lags of merely 2-5
yielded virtually the same results as offline estimation. The exact number depends on the noise; however,
the main effect of noise was to reduce the optimal performance attainable even with batch processing.

Conclusion. OASIS’ advances in speed paired with its online fashion enable true real-time online spike
inference during the imaging session, with the potential to significantly impact experimental paradigms.
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https://www.dropbox.com/s/4o77sf9l6aanuj9/video.mp4

