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Abstract

Estimating prevalence rates with small weighted sam-
ples, especially for rare diseases is a challenging task.
We encountered such a situation in the recent Na-
tional Latino and Asian American Study (NLAAS)
on mental health. Due to small sizes of the weighted
samples in various age groups, the standard designed-
based estimators are highly variable. Bayesian hier-
archical modeling offers a more workable approach
by incorporating our knowledge on the smoothness
of the prevalence rates as a function of age. The
non-linear nature of this function, however, presents
some intricate modeling issues such as the sensitivity
to the link function (for converting a rate parameter
onto the real line). In this paper we report our find-
ings and some strategies we adopted to combat such
problems.

1 Background and NLAAS

In the last four decades, the United States has expe-
rienced an unprecedented wave of immigration, pri-
marily from Latin America and Asia, which presents
considerable challenges for health care delivery sys-
tems. Unfortunately, the problems in health-care de-
livery for immigrants are compounded by incomplete
data on these populations. National prevalence esti-
mates of psychiatric disorders for the 41 million peo-
ple of Latino ancestry living in the United States re-
main elusive because studies fail to disaggregate them
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by national origin or nativity groups or to consider
the heterogeneity between and within Latino groups.

The National Latino and Asian Study (NLAAS) is
a nationally representative survey of household resi-
dents (ages 18 and older) in the non-institutionalized
population of the coterminous United States. Data
were collected between May 2002 and November
2003. A total of 4864 individuals, including Latinos,
Asians, and whites, were interviewed. Among them,
a total of 2554 English and Spanish-speaking Lati-
nos, divided into four strata (Puerto Rican, Cuban,
Mexican, and all Other Latinos), comprised the final
Latino sample with a response rate of 75.5%. The
sample includes an NLAAS Core, designed to be na-
tionally representative of all Latino origin groups re-
gardless of geographic patterns; and NLAAS-HD sup-
plements, designed to oversample geographic areas
with moderate to high density (HD) of Latino house-
holds. Weighting reflecting the joint probability of
selection from the pooled Core and HD samples pro-
vides sample-based coverage of the national Latino
population.

The NLAAS weighted sample is similar to the 2000
Census in gender, age, education, marital status and
geographical distribution, but different in nativity
and household income, with more U.S. immigrants
and lower income respondents in the NLAAS sam-
ple. This discrepancy may be due to, among others,
Census undercounting of immigrants, non-inclusion
of undocumented workers, lack of fully bilingual in-
terviewers of Latino ethnicity conducting Census in-
terviews, or sample recruitment differences of partic-
ipants.



2 Goal of Study

In order to compare the prevalence of psychiatric dis-
orders across different ethnic groups, one of the most
important variables to control for is age. A conven-
tional way is to estimate the prevalence rate for each
age group, and average them according to the census
age proportion, that is, to compare the prevalence
rate as if all ethnic groups have the same age distri-
bution as the whole population in the country. While
a more ideal and informative comparison would be
by age groups, in this paper we focus on the age-
aggregated comparison mostly because of its common
use in current psychiatric literature. The Bayesian
method we adopted is particularly useful for making
the more detailed comparisons by age groups, pre-
cisely because they provide more reliable estimates
of age-specific prevalence rates than traditional sur-
vey methods can, for reasons we discuss below.

To reliably estimate prevalence rate within each age
group, we need to deal with the serious problem
of small sample sizes, compounded by the problem
of very variable survey weights, which lead to even
smaller “effective sample size.” That is, often we need
to deal with age-groups in which sample sizes vary
anywhere from zero to twenty. Standard survey esti-
mators, such as weighted means with jackknife vari-
ance estimates, are known to yield very noisy point
and interval estimates (or there is no valid estimate
if there is no sample in an age-group). For example,
Figure 1 shows the observed rates for Cuban male.
The rate for adjacent groups jumped up from 9.5%
(age 30-34) to 24% (age 35-39), and then fall down
to 0% (age 40-44). While underlying rates do vary
with age, it is difficult to explain such large fluctua-
tions other than that they are due to sampling errors
resulting from small samples and weights with large
variations.

In our simulation studies to check the reliability of the
traditional methods, we found that such methods not
only lead to estimates with very large variance (as it
should be given the size of the data) but also un-
acceptable confidence coverage for resulting interval
estimators. The problem is particularly serious for
those psychiatric disorders with low prevalence rates

(e.g., less than 5%), where we found that a nominal
95% confidence interval may actually have as low as
about 50% actual coverages (see Section 5), especially
when the rates are very low, say 2%. This is mainly
because of the serious skewness in the distribution
of the estimator, which makes the large-sample nor-
mal approximations underlying the standard meth-
ods completely inadequate. Further evidences of the
inadequacy of standard estimators for NLAAS stud-
ies can be found in Section 5 and Alegria et. al.
(2004).
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Figure 1: Major Depression for Cuban Male

3 Bayesian Modeling

3.1 A Binomial-like Likelihood Ap-
proximation

To combat such a problem, we adopt a nonlinear hi-
erarchical modeling approach (e.g., Gelman et. al.,
2002; Gelman and Meng, 2004), a method for dealing
with small-sample estimation. The method allows us



to impose reliable prior knowledge to compensate for
the large survey variability due to small size and sur-
vey conditions (e.g., large variable weights and non-
response). In our current study, we assume that the
logit of the prevalence rate is a quadratic curve as a
function of age, based on common observations that
the rates tend to increase with age but then “die off”
for high age groups. A known interpretation for this
“die off” phenomenon is that psychiatric disorders
(e.g., major depressions) are often very good predic-
tors for mortality.

In particular, we divide the sample into 8 groups us-
ing the census categories, by age 18-24, 25-29, 30-34,
35-39, 40-44, 45-54, 55-64, and above 65 (including
65). For each group, we calculated the weighted mean
of the responses, denoted by ȳi, where i = 1, . . . , 8.
Let µi denote the true prevalence rate of group i .
To deal with the complex issue of weighting and sur-
vey design, we adopt an approximate likelihood mod-
elling for ȳi as

p(ȳi|µi) ∝ µñiȳi

i · (1− µi)ñi(1−ȳi), (1)

where ñi = (
∑

j wij)/
∑

j w2
ij approximates the ef-

fective sample size, and wij is the weight of the jth

sample in the ith group. Note that in the simple case
of independent equal probability sampling, all the
weights are identical, ñi will be the same as the real
sample size and ñiȳi follows exactly Binomial(ñi,µi),
such that, (1) will be exact for the special case.

Accepting the approximated likelihood (1) for µi, the
next step is to put a non-linear regression model to
link µi to the age variable. Our strategy is to first
transform µ onto the real line via a link function G, as
routinely done with GLM. We then model the trans-
formed rate, ξi = G(µi), to follow a normal model,
with the mean a quadratic curve of the age:

ξi|β ∼ N(β0 + β1ai + β2a
2
i , τ

2), (2)

where β = (β0, β1, β2)>, and ai is the average age of
the ith group. We emphasize that the use of aver-
aged age ai is rather an ad-hoc approach, which also
highlights the sensitivity of the results to our choices
of the age groups. Similar to our use of the approxi-
mated likelihood (1), we adopt this strategy primarily

for simplicity in modeling and for ease of interpreta-
tion to researchers in psychiatric and related studies,
where the notion of using Bayesian method is still a
new one.

Under independent prior on β and τ2, the resulting
posterior distribution is,

p(ξ, β, τ2|y) ∝ p(β)p(τ2)
1
τ

8∏

i=1

{
exp

{−1
2τ2

(ξi − β0 − β1ai − β2a
2
i )

2
}

µñiȳi

i · (1− µi)ñi(1−ȳi)

}
, (3)

where µi = G−1(ξ).

3.2 Choice of The Link Function

Unlike the common situations with GLM, where the
choices of the link function are often not crucial, for
our current application, our results are sensitive to
the choice of G both because of the small sample
sizes and the very low rates we face for some psy-
chiatric disorders. To illustrate this, Figure 2 plots
three common link functions: logit, complementary
log-log, and Normal inverse CDF (probit).

The primary reason why those link functions lead
to different estimate is the behavior of the func-
tions at low probability areas, since most of the
average prevalence rates are below 15%, which is
to the left of the vertical dashed line. Recall that
ξ = G(µ) ∼ Xβ + N(0, τ2). The smaller τ2 is, the
more ξ̂ is pooled towards the regression line Xβ. As
we can see, logit has the longest negative tail among
the three. More specifically, logit([0.005, .15]) =
[−5.3,−1.7], Φ−1([0.005, .15]) = [−2.6,−1.0] and
− log(− log([0.005, .15])) = [−1.7,−0.64]. This im-
plies that for the same τ2, the pooling is the most
significant for logit and the least for complementary
log-log (see Section 6.1 for a discussion on the pooling
effect of the Bayesian modeling).

A visually appealing way to investigate the effect of
pooling is to inspect the smoothness of the resulting
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Figure 2: Link Functions

Bayesian estimates as a function of the age. Figure 3
plots these curves under the three link functions for
Cuban male, which we have seen in Figure 1. Evi-
dently, the curve from the logit link is most smooth.
For this reason and for its easy interpretability and
common acceptance in psychiatric studies, our main
results are based on the logit link. But we emphasize
that the sensitivity to the choice of the link function
is an issue that should be recognized. One important
fact in our choice should be the amount of smooth-
ness we want to impose on our age curves.

3.3 Choice of Prior

It can be shown that with the likelihood constructed
above, the most popular noninformative prior, either
p(β) ∝ c or p(τ) ∝ 1

/
τ will lead to an improper pos-

terior distribution. Accordingly, we need to choose
a proper prior for both β and τ (or τ2). Our sim-
ulation study shows that the posterior distribution
is not very sensitive to the choice of p(τ2), as long
as it does not put too much mass at or near 0, so

20 30 40 50 60 70

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Major Depression of Cuban Male

Age

R
at

e

Observed
logit
probit
log−log

Figure 3: Major Depression Cuban Male

we just adopt a conjugate prior, the inverse of χ2

with three degree of freedom, which has expectation
1 and infinite variance. We emphasis that, however,
this insensitivity holds only for a given link function,
because, as we discussed in Section 3.2, the pooling
effects for different link functions are different with
the same value of τ2.

The prior of β we adopted is a tri-variate normal, such
that the prior expectation of µ =

∑8
i=1 piµi (where

pi is the proportion of the i age group according to
the 2000 Census) roughly matches our prior knowl-
edge of the overall prevalence rate, and that its prior
variance is relatively large. Figure 4 shows the prior
distributions of the average rates as a function of the
prior mean of β0 and a scale factor c (see below),
with the prior means of β1 and β2 always set to zero.
Plots in each column share the same c, and in each
row share the same β0.

Specifically, our choice of prior is as follows,

p(τ2) ∝ τ−5 exp{− 1
2τ2

}, (4)
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Figure 4: Prior Distribution of Average Rate
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β2


 ∼ N






−10
0
0


 , Σ


 , (5)

where Σ = (X>X)−1c2, X =




1, a1 a2
1

1, a2 a2
2

. . .
1, a8 a2

8


,

and

c =





10 for any depressive disorder,
any substance disorder
any anxiety disorder
and any psychiatric disorder,

15 for major depression
20 other disorders.

The choices of the scale c factor here are based on

the findings in Figure 4, so is the choice of β0 = −10.

4 Bayesian Computation

Because it is impossible to calculate statistics of the
posterior distribution analytically, we used a stan-
dard Gibbs sampler to sample from the posterior dis-
tribution by the following algorithm. Starting from
some arbitrary point (ξ(0), β(0), τ (0)), and given the
output from the tth iteration, (ξ(t), β(t), τ (t)), we per-
formed the following steps, at the (t + 1)th iteration,

1. Draw β(t + 1) from p(β|ξ(t), τ (t)), which is
N(ζ, Σ̃), where Σ̃ = (σ−1 + 1

[τ(t)]2
X>X)−1, and



ζ = Σ̃
[
Σ−1



−10
0
0


 + 1

[τ(t)]2
X>ξ(t)

]
;

2. Draw [τ (t+1)]2 from p(τ2|β(t+1), µ(t)), which is

[ξ(t)]>(1−X(X>X)−1X>)ξ(t) + 1
χ2

8

;

3. Use a Metropolis algorithm to update ξ, that is,
we propose ξ̃ from N(ξ(t), λI), and set

ξ(t+1) =





ξ̃, with p =
min(1, p(ξ̃,β(t+1),[τ(t+1)]2|y)

p(ξ(t),β(t+1),[τ(t+1)]2|y)
)

ξ(t), with 1− p .

We ran 5 chains which started from random positions
and use the Gelman-Rubin statistic R̂ to monitor the
convergence of the Markov chains. All R̂’s reached
1.1 after 50000 iterations (with the first 25000 sam-
ples discarded for burn-in). We also performed var-
ious graphical diagnostics to ensure the proper con-
vergence of our MCMC chains.

5 A Simulation Study

As a simple demonstration of the usefulness of the
Bayesian method, we performed a simulation study
to compare the Bayesian results with the standard
design-based estimates. To avoid any potential com-
plication with the choice of the design-based variance
estimates, we performed a simple random sampling
(SRS), treating the NLAAS sample as the popula-
tion. For our Bayes method, we used posterior means
as the point estimates and central 95% posterior in-
tervals as the interval estimates. We randomly se-
lected subsamples, by SRS, from the total Latino
sample, which is of size 2554. We applied both our
hierarchical model and SRS estimator to the sub-
sample. After subsampling many times, we compare
the bias, efficiency (variance estimate), 95% interval
length, and the actual frequentist’s coverage of the
interval estimators. Our simulation results are based
on 500 subsamplings and are shown in Table 1 and 2

for different disorders. We chose these four disorders
because they cover the range of typical rates we see
in practice, which vary from 1% to 30%. For large
subsample sizes, namely the subsample size is 500,
our estimators and SRS estimators produce similar
biases and interval coverage, but the Bayesian esti-
mates in general have slightly smaller variances and
hence shorter intervals, though the improvements are
minor.

For sample size 100, occasionally the Bayesian inte-
vals err on being slightly too short, in contrast to the
SRS intervals which err on being slightly too long.
The only exception is the bulimia for which both
methods have significant low coverage about 80%,
though the Bayes intervals are only about 65% on
average of the length compared to the SRS intervals.
When the sample size dropped down to 50, while the
performance of both methods deteriorates, the infer-
ence from the Bayesian method is still acceptable.
In contrast, for bulimia, the inaccurate SRS estima-
tion of variance leads to unacceptably low coverage
at about only 51%, yet at the same time the average
interval length is still about 40% longer than the one
from the Bayesian interval, which has almost 93%
coverage. This seemingly paradoxical phenomenon,
that is, longer intervals having less coverage, is due
to the grave inefficiency in the SRS estimators with
small sample sizes. This further demonstrates that
the Bayes approach is more reliable than the stan-
dard survey estimator for small sample sizes, which
is exactly the problem we face with NLAAS.

6 Empirical Findings

6.1 The Pooling Effect

A good way to visualize the pooling effect of the
Bayesian approach is to plot the Bayesian estimates
against both the raw data and the mean curve from
the posterior distribution of µi as well as the regres-
sion curve. We use the sample mean of logit−1(β0 +
β1ai + β2a

2
i ) from the posterior distribution, as the

estimated regression curve at age group i, where ai is
the average age in that group. This curve estimates
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Figure 5: Graphical Diagnostics for Major Depression Prevalence Rates

how the rate varies with the age if our model forces
the rate to be exactly as a quadratic function of the
age, that is, by forcing τ = 0. Our Bayesian model
is much more flexible than this “forced” regression
model by allowing the true rate to deviate from the
quadratic curve. In other words, the quadratic curve
is used to model a general trend as how the rate varies
with age.

As a result, the Bayesian estimate can be viewed
as an appropriately balanced “compromise” between
the observed rate, that is, the weighted sample
means, and the fitted value from the curve, as illus-
trated in Figure 5. Due to the small sample sizes and
large variation of the sampling weights, the observed
prevalence rates fluctuate very much as age changed.
The Bayes estimates (the triangle curve), pooled the
observed weighted mean (point curve) towards the re-

gression curve and stabilized the estimates. For age
groups where no sample is observed (Cuban Female
in Figure 5), Bayes estimates also gives estimates,
although it is close to the prior mean. Also, the es-
timated regression curve does seem to capture the
trend of how the rate changes with age.

Also from Figure 5, we see that the pooling down
of the higher rates are usually more than the pool-
ing up of the lower rates. This is partly because of
our binomial-like likelihood approximation, since the
sample variance is smaller at lower rates than higher
rates (but less than 50%); and partly because of the
concavity of link functions at the range of prevalence
rate (1% - 30%). The derivative, G′(µ) at lower
rates is always larger than at higher rates (when less
than 50%). From the identity dµ = dξ

G′(µ) , the same
amount of change in ξ will lead to smaller change in



µ when µ is small than when µ is large. This implies
the pooling is more significant in the original scale
for higher rates.

6.2 Sample Analysis Results

As an illustration of the results from our analysis,
Table 3 and 4 presents traditional and Bayesian life-
time prevalence estimates for a number of psychiatric
disorders, adjusted for age and gender. The results
in Table 3 and 4 shows that whenever subpopula-
tion sizes are large (e.g., for Mexican), the traditional
and Bayesian methods provide essentially identical
results. For small subgroups, the Bayesian prevalence
estimates are likely to be more reliable, as the vast
literatures on Bayesian small-area estimates demon-
strated (e.g. Ghosh et.al. 1998, Long 1999, Nandram
& Choi 2002).

Our results indicate that major depressive episode
disorder, social phobia, and alcohol abuse disorder
are the most prevalent lifetime psychiatric disorders
for all Latinos in the U.S. Overall, Mexicans, Cubans,
and Other Latinos did not differ in lifetime rates
of specific psychiatric disorders, except Cubans who
present lower prevalence estimates of lifetime sub-
stance disorder than the other groups. Puerto Ricans
had significantly higher lifetime prevalence estimates
than the other groups for post traumatic stress dis-
order, any anxiety disorder, and any psychiatric dis-
order but not for any depressive disorder. Further
studies, of course, are very much needed to check how
sensitive are these results to our Bayesian modeling
assumptions.
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Any Disorder: 30.70%(truth ) Major Depression: 15.66%(truth)
Sample Size 500 100 50 500 100 50

Bayes SRS Bayes SRS Bayes SRS Bayes SRS Bayes SRS Bayes SRS

Mean 30.51 30.55 30.01 30.20 30.14 30.32 15.54 15.60 14.98 15.26 14.95 15.27

MSE 0.04 0.04 0.21 0.19 0.43 0.39 0.02 0.02 0.13 0.12 0.28 0.26

VAR 0.04 0.03 0.20 0.19 0.43 0.39 0.02 0.02 0.12 0.12 0.27 0.26

Coverage 96.40 97.00 94.40 96.60 93.00 97.20 96.00 96.00 93.80 97.80 90.40 97.40

Interval Length 8.00 8.09 17.39 18.12 23.99 25.86 6.28 6.39 13.45 14.43 18.32 20.97

All the numbers are in 10−2 scale.

Table 1: Comparing point and interval estimates for Any Disorder and Major Depression

Social Phobia: 7.64%(truth ) Bulimia: 1.68%(truth)
Sample Size 500 100 50 500 100 50

Bayes SRS Bayes SRS Bayes SRS Bayes SRS Bayes SRS Bayes SRS

Mean 7.52 7.63 7.04 7.51 6.98 7.63 1.63 1.70 1.51 1.62 1.57 1.56

MSE 0.01 0.01 0.07 0.06 0.13 0.14 <0.01 <0.01 0.01 0.01 0.02 0.03

VAR 0.01 0.01 0.06 0.06 0.12 0.14 <0.01 <0.01 0.01 0.01 0.02 0.03

Coverage 97.20 97.00 93.20 98.00 90.00 95.80 95.00 97.00 82.60 80.00 92.80 51.00

Interval Length 4.56 4.71 9.40 11.00 12.58 16.64 2.14 2.41 4.06 6.11 5.36 7.50

All the numbers are in 10−2 scale.

Table 2: Comparing point and interval estimates for Social Phobia and Bulimia



Disorder Puerto Rican Cuban Mexican
Major Depressive Episode a 18.5 (14.7-22.9) 16.1 (13.4-19.2) 13.0 (11.6-14.5)

b 15.9 (12.8 -19.1 ) 17.5 (13.3 -22.1 ) 12.7 (10.4 -15 )
Dysthymia a 4.7 (3.4-6.4) 3.1 (1.7-5.7) 1.8 (1-3.1)

b 3.7 (2.2 -5.2 ) 3.8 (2.2 -5.5 ) 1.7 (0.9 -2.6 )
Any Depressive Disorder a 18.7 (14.8-23.4) 16.5 (13.7-19.8) 13.0 (11.6-14.5)

b 16.8 (13.7 -20 ) 18.6 (14.3 -23 ) 12.9 (10.6 -15.1 )
Agoraphobia without panic a 3.3 (1.5-7.3) 2.5 (1.1-5.7) 3.0 (1.9-4.8)

b 3.3 (1.8 -4.9 ) 2.4 (1 -3.9 ) 2.9 (1.8 -4 )
Panic Disorder a 4.9 (2.9-8.1) 1.8 (1.1-2.7) 2.7 (1.7-4.1)

b 4.9 (3 -6.8 ) 2.4 (1.2 -3.6 ) 2.6 (1.5 -3.8 )
GAD a 7.1 (4.5-11.1) 6.7 (4.7-9.5) 3.6 (2.4-5.2)

b 6.0 (4 -8.1 ) 5.8 (3.9 -8 ) 4.1 (2.9 -5.3 )
Social Phobia a 10.4 (6.8-15.8) 8.1 (5.4-12) 7.4 (5.6-9.9)

b 9.1 (6.7 -11.5 ) 8.4 (5.5 -11.3 ) 6.9 (5.3 -8.6 )
PTSD a 8.0 (5.2-12.1) 5.4 (3-9.7) 4.4 (3.2-5.9)

b 7.1 (4.8 -9.4 ) 4.7 (2.8 -6.8 ) 3.9 (2.6 -5.1 )
Any Anxiety Disorder a 21.6 (16.1-28.4) 16.1 (13.6-19) 15.0 (13-17.3)

b 20.8 (17.4 -24.5 ) 16.8 (13.2 -20.5 ) 15.1 (12.8 -17.5 )
Alcohol Dependence a 5.9 (3.7-9.3) 2.7 (1.4-5.2) 4.7 (3.5-6.2)

b 5.0 (3 -7 ) 2.8 (1.4 -4.5 ) 5.0 (3.5 -6.4 )
Alcohol Abuse a 8.7 (5.5-13.4) 3.4 (2-5.8) 6.1 (4.1-9)

b 7.0 (4.7 -9.6 ) 4.0 (2 -6.2 ) 5.6 (4.1 -7.3 )
Alcohol Dependence/Abuse a 14.6 (10.1-20.7) 6.2 (3.9-9.5) 10.8 (8.4-13.8)

b 11.8 (8.9 -14.7 ) 6.0 (3.9 -8.4 ) 10.6 (8.7 -12.7 )
Drug Dependence a 4.0 (2.2-7.3) 2.6 (1.3-5.2) 2.1 (1.3-3.6)

b 3.7 (2.1 -5.6 ) 2.2 (0.9 -3.7 ) 3.0 (1.8 -4.2 )
Drug Abuse a 4.6 (2.9-7.1) 0.8 (0.2-3.3) 3.7 (2.6-5.3)

b 4.2 (2.4 -6.1 ) 1.5 (0.2 -2.9 ) 3.7 (2.5 -5 )
Drug Dependence/Abuse a 8.6 (6-12.1) 3.4 (2.1-5.5) 5.9 (4.4-7.8)

b 7.6 (5.4 -10 ) 2.9 (1.4 -4.6 ) 6.2 (4.6 -7.9 )
Any Substance Disorder a 15.4 (10.9-21.4) 6.7 (4.7-9.5) 11.3 (8.4-15.1)

b 14.4 (11.2 -17.4 ) 8.1 (5.4 -11.1 ) 12.0 (9.8 -14.3 )
Bulimia a 2.4 (1.2-4.4) 2.2 (0.9-5.3) 1.3 (0.6-2.5)

b 2.3 (1 -3.8 ) 2.2 (1 -3.7 ) 1.7 (0.7 -2.7 )
Anorexia a 0.0 (.− .)†† 0.1 (0-0.6) 0.0 (.− .)††

b 0.7 (0.1 -1.7 ) 0.8 (0.1 -1.8 ) 0.5 (0 -1 )
Any Disorder a 39.2 (33.3-45.5) 31.1 (27.6-35) 29.2 (25.8-32.9)

b 36.0 (32 -40 ) 31.4 (26.7 -36.4 ) 29.5 (26.6 -32.6 )

Table 3: Lifetime Prevalence Rate for Latinos

a – Design-based estimates
b – Bayes estimates
† All the numbers are percentages.
†† Design-based method cannot provide estimates because the sample size is zero.



Disorders Other Latinos Total Latinos
Major Depressive Episode a 13.4 (11.4-15.8) 13.8 (12.6-15.1)

b 13.9 (11.1 -16.6 ) 13.6 (12.1 -15.1 )
Dysthymia a 2.2 (1.1-4.5) 2.3 (1.7-3)

b 2.1 (0.9 -3.4 ) 2.1 (1.5 -2.7 )
Any Depressive Disorder a 14.1 (11.7-16.9) 14.0 (12.8-15.4)

b 14.7 (12 -17.5 ) 14.1 (12.5 -15.6 )
Agoraphobia without panic a 1.5 (0.9-2.7) 2.6 (1.9-3.6)

b 2.0 (0.9 -3.2 ) 2.7 (1.9 -3.4 )
Panic Disorder a 2.4 (1.4-3.8) 2.8 (2.2-3.7)

b 2.7 (1.4 -4.1 ) 2.9 (2.1 -3.7 )
GAD a 4.3 (2.8-6.6) 4.2 (3.4-5.2)

b 3.5 (2.1 -4.9 ) 4.2 (3.4 -5 )
Social Phobia a 6.9 (4.6-10.1) 7.4 (6.1-9)

b 6.9 (4.9 -9 ) 7.2 (6.1 -8.4 )
PTSD a 3.3 (2.2-4.9) 4.4 (3.6-5.4)

b 3.6 (2.1 -5.2 ) 4.2 (3.3 -5.1 )
Any Anxiety Disorder a 14.0 (11.1-17.4) 15.3 (13.6-17.1)

b 14.5 (11.7 -17.4 ) 15.6 (13.9 -17.2 )
Alcohol Dependence a 3.6 (2.3-5.6) 4.4 (3.4-5.6)

b 3.7 (2.2 -5.5 ) 4.5 (3.5 -5.5 )
Alcohol Abuse a 6.2 (3.9-9.8) 6.3 (4.7-8.4)

b 5.8 (4 -7.8 ) 5.8 (4.7 -6.9 )
Alcohol Dependence/Abuse a 9.8 (6.8-14) 10.7 (8.5-13.2)

b 9.6 (7.2 -12 ) 10.2 (8.9 -11.6 )
Drug Dependence a 1.2 (0.5-2.7) 2.0 (1.5-2.8)

b 1.5 (0.5 -2.6 ) 2.6 (1.8 -3.4 )
Drug Abuse a 4.5 (2.8-7.2) 4.0 (3-5.3)

b 4.1 (2.5 -5.9 ) 3.8 (2.9 -4.7 )
Drug Dependence/Abuse a 5.7 (3.9-8.3) 6.0 (4.7-7.6)

b 5.2 (3.3 -7.2 ) 5.9 (4.8 -7 )
Any Substance Disorder a 10.3 (7.2-14.6) 11.2 (8.8-14.2)

b 11.0 (8.5 -13.6 ) 11.8 (10.3 -13.3 )
Bulimia a 2.1 (0.9-4.6) 1.7 (1.1-2.5)

b 2.3 (1.2 -3.5 ) 1.9 (1.2 -2.6 )
Anorexia a 0.2 (0-1.4) 0.1 (0-0.4)

b 0.7 (0.1 -1.4 ) 0.6 (0.2 -0.9 )
Any Disorder a 28.0 (23.2-33.3) 29.8 (26.9-32.9)

b 28.7 (24.9 -32.4 ) 30.0 (27.9 -32.1 )

Table 4: Confidence Interval Comparison for Major Depression (ctd)
a – Design-based estimates
b – Bayes estimates
† All the numbers are percentages.


