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Abstract

In the paper, we consider the density functions of random variables that can
be written as integrals of exponential functions of Gaussian random fields. In
particular, we provide closed form asymptotic bounds for the density functions
and under smoothness conditions we derive exact tail approximations of the

density functions.
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1. Introduction

Consider a Gaussian random field f(t) living on a d-dimensional compact set 7T
We say that f(t) is a Gaussian random field if for any finite subset {¢1,...,¢,} C T,

(f(t1), ..., f(tn)) follows a multivariate Gaussian distribution. In this paper, we consider

log ( /T e"(t)f(t)dﬁ(t)> (1)

for some positive function o(¢) and a finite measure . Of interest is the tail behavior

the random variable

of the density function of (1).

The integral of exponential functions of Gaussian random fields plays an important
role in both applied probability and statistics. We present a few of them. In spatial
point process modeling, let A(¢) be the intensity of a Poisson point process on T,
denoted by {N(A) : A C T}. In order to build in spatial dependence structure, the log-
intensity is typically modeled as a Gaussian process, that is, log A(t) = f(¢)+ py(t) and
then E(N(A)A(-)) = [, el OF1r W dt, where py(t) is the deterministic mean function
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and f(t) is a zero-mean Gaussian process. For instance, [18] considers the time series
setting in which T is a one dimensional interval, ps(t) is modeled as the observed
covariate process and f(t) is an autoregressive process. See [21, 17, 43, 19, 20] for
more examples of such kinds. Under this setting, one can show that P(N(T) > b) ~
P([;efOFr®dt > b) as b — oo (see [30]).

In portfolio risk analysis, consider a portfolio of n assets Si,...,5,. The asset prices
are usually molded as log-normal random variables. That is, let X; = log S; and further
(X1, ..., Xp) follow a multivariate normal distribution. The total portfolio value S =
>r . Si is the sum of dependent log-normal random variables (see [23, 6, 10, 26, 22]).
[7] derives the tail asymptotics of S when n is a fixed number. This asymptotic
approximation can also be obtained by a more general result in [25]. If one can represent
each asset price by a Gaussian random field at one location, that is, X; = f(¢;), then as
the portfolio size becomes large and the asset prices become more correlated, the unit
share price of the portfolio admits the limit lim, . S/n = [ef®di(t). See [13, 30]
for detailed discussions on the random field representations of large portfolios.

In option pricing, the asset price (as a function of time) is typically modeled as a
geometric Brownian motion ([12, 32]), that is, S(t) = ") where W (t) is a Brownian
motion. Then the payoff of an Asian call option with strike price K is max( fOT eV —
K,0).

The literature of extreme behavior of Gaussian random fields focuses mostly on the
tail probabilities of sups f(t). The results contain general bounds as well as sharp
asymptotic approximations as b — co. A partial literature contains [27, 31, 34, 15, 16,
28, 37, 11, 4]. Several methods have been introduced to obtain bounds and asymptotic
approximations, each of which imposes different regularity conditions on the random
fields. A general upper bound for the tail of sup f(x) is developed in [15, 40], which is
known as the Borel-TIS lemma. For asymptotic results, there are several methods. The
double sum method ([33]) requires an expansion of the covariance function around the
global maximum of the variance and the mean functions and also locally stationary
structures. The Euler—Poincaré Characteristics of the excursion set approximation
(denoted by x(Ap), where A; is the excursion set) uses the fact P(sup f(z) > b) =
E(x(Ap)) and requires the random field to be at least twice differentiable ([1, 38,
5, 39]). The tube method ([36]) uses the Karhunen-Loéve expansion and imposes
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differentiability assumptions on the covariance function (fast decaying eigenvalues)
and regularity conditions on the random field. The Rice method ([8, 9]) represents
the distribution of sup f(¢) (density function) in an implicit form. Recently, [3] studies
the geometric properties of high level excursion set for infinitely divisible non-Gaussian
fields as well as the conditional distributions of such properties given the high excursion.
Bounds of density functions of sup f(¢) have been studied in [41] and [14].

The distribution of the random variable in (1) is studied in the literature when f(t) is
a Brownian motion ([42, 24]). Recently, [29] derives the asymptotic approximations of
P(f, e () dt > b) as b — oo for three times differentiable and homogeneous Gaussian
random fields. [30] further extends the results to the case when the process has a
varying mean function. The density function of (1) for a general Gaussian random
field is still unexplored, which is the main target of this paper. The results derived
in this paper lead immediately to bounds and approximations of the tail probabilities
P([, e"®f®ay(t) > b) by integrating the density on [b, 00). In addition, such a kind
of local results provides technical supports of the theoretical analysis of simulation
studies, in which one typically needs to simulate a discrete process to approximate
the continuous process. As shown in the technical development in [2] (focusing on
the simulation of the tail probabilities of sup; f(t)), to provide bounds on the bias
caused by the discretization, one needs local results (bounds of the density functions)
of supy f(t).

The contribution of this paper is to develop asymptotic bounds and approximations
of the density functions of (1). Our results consist of several theorems. Asymptotic
upper bounds are given in Theorems 1 and 2 under different conditions. An exact
approximation of the density is given in Theorem 3 when f(t) is three times differen-
tiable. In addition, during the proof of the theorems, a bound of F’(a) for all a € R is
derived (the results in Section 3.1.3).

The basic technique is to use the Karhunen-Loéve expansion f(t) = Y o, 2;¢;(t)
by developing bounds for fxy(t) = Zf;l x;¢;(t) and sending N to infinity. For fx(t),
we consider it as a function of (z1,...,zx) and develop bounds of the integral on the
surface {(71,...,zn) : log [e?@INBdp(t) = a} (endowed with a standard Gaussian
measure). Part of the analysis technique is inspired by [41] who presents a bound of

the density of supp f(t). The current analysis is more complicated in that Hj is not a
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sublinear function of f, which is a crucial condition in the proof of [41]. [36] also uses
this representation to derive an approximation of the tail probability of sup; f(¢). In
addition, a change of measure technique is used to derive explicit forms of the bounds
and the asymptotic approximations.

The organization of the rest of this paper is as follows. In Section 2, we present the
main results. Proofs of the theorems are given in Section 3. An appendix is added

containing the technical proofs of lemmas.

2. Main results

Consider a Gaussian random field, f(t), living on a d-dimensional compact domain
T C R%. For a finite measure ¥ on T and a function o(t) € (0,00) satisfying op =

sup,cp o(t) < oo, let

H; 2 log ( /T e"(t)f(t)dﬁ(t)> ,  F(a) 2 P(H; <a). (2)

Of interest is the probability density function F’(a). To facilitate the discussion, we

present a list of conditions that we will refer to in later discussions.

C1 The index domain 7T is a d-dimensional Borel measurable compact subset of R?

with piecewise smooth boundary. The measure ¥ is positive and ¥(T") = 1.

C2 The process f(t) is almost surely continuous with zero mean and unit variance.

Furthermore, we impose two types of structures on the covariance function, under

each of which we derive more precise bounds or approximations of F’(a).

C3 The variance is constant, i.e., o(t) = o. The measure ¥ has a positive and
continuous density function with respect to the Lebesgue measure. The process
f(t) is homogeneous. The covariance function is C(t) = E(f(s)f(s +t)), which

satisfies the following two conditions:

C3a C(t) satisfies the expansion
C(t) =C(0) — |t|* +o(|t|]*) ast — 0, for o € (0,2].

C3b For each t € R, C()\t) is a monotone decreasing function of A € R*.
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C4 The process f(t) is almost surely at least three times continuously differentiable
with respect to ¢t. The Hessian matrix of C(¢) at the origin is —I, where I is the
d x d identity matrix.

Theorem 1. Suppose that Conditions C1 and C2 are satisfied. Then, F'(a) exists
almost everywhere and
2

. _1 3em
limsup o%a~te* T F'(a) < 1,
a— o0

where o = sup,cr o(t) < 00.

Remark 1. Under conditions C1 and C2 (very weak conditions), Theorem 1 estab-
lishes the existence and an asymptotic bound of F'(a). The following simple example
implies that without additional assumptions, the bound in Theorem 1 is efficient up
to a polynomial term of a. Consider a constant field f(¢t) = Z where Z ~ N(0,1). Let
o(t) take a constant value o. Then, F'(a) = exp(—a?/(20?))/(v/270).

Under more regularity conditions, we further improve the bound.

Theorem 2. Suppose that Conditions C1-3 are satisfied. We write

ets (t)

) = gzt

(3)

for some continuous function ps(t) onT. For each € and a, let uc (as a function of a)

be the solution to the equation

e Ueqdemd/20 e“/ et Ot (4)
T
Then, for any € € (0, 5=)
de—%—l Lf ’
Ue e2 F'(a) —» 0, as a — oc. (5)

Remark 2. Note that when a is large, the above equation (4) generally has two
solutions. One is on the order of a/o; the other one is close to zero. We choose
the larger solution as our u..

In equation (4), if we replace the integral [ e#s()dt by 1 (or any other constant),
then u. will be shifted by approximately a constant. Denote the corresponding solution
by .. Note that the results hold for all e sufficiently small. For u. large enough, we
have i, < u./o. Thus, the bound in (5) holds by replacing u. with ..
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The exact asymptotic approximation of F”(a) can be derived when f is homogenous
and three times differentiable (condition C4). The statement of the theorem needs the
following notations. Let “9” denote the gradient and “A” denote the Hessian matrix
with respect to ¢t. The notation “0%” is used to denote the vector of second derivatives
with respect to ¢, i.e., 9 f(t) is a d(d+1)/2 dimensional vector. The difference between
02 f(t) and Af(t) is that Af(t) is a d x d symmetric matrix whose diagonal and upper
triangle consist of elements of 92 f(t).

It is well known that, for each given ¢ € T, (f(t), 0 f(t)) is a multivariate Gaussian

random vector with mean zero and covariance matrix

1 20
r= ' (6)

Ho2 22
where pog is the vector containing the spectral moments of order two and pusos is the
matrix containing the spectral moments of order four. Both psg and g2 are arranged

in an appropriate order according to the order of 9?f(t). See standard textbook, for

instance, Chapter 5.5 of [5], for more details of 2o and pigs.

Theorem 3. Suppose that Conditions C1-4 are satisfied (with the expansion in C3a
replaced by C4). Let ¥ be defined as in (3) and ps(t) is three times differentiable. Then

the following approximation holds as a — oo
~ 2
@)= (4ol [ ew {W} (g, o, )it
T

where @ (as a function of a) is the solution to

d
(27r) i i 7e7 = o / et Ot
o T

the function Cy is defined as

CH(Nf? o,t)
_ IT| = o { 17 921 + 37, 95,,C(0) L4 py(8) + Tr(Apgs(t)) n |0y (8)[? }
(27{_) (d+1)4(d+2) 80-2 20-2 0-2

1/2, |2
_ 1
12, _ P

dz
22 20 ’

1 -1_2
o / expd — L |N20M22_21 | +
zE€RA(d+1)/2 21— H20f29 H02

120, Ho2, Haz, and T are defined in (6), and
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Remark 3. For Condition C1, if 9(T) # 1, we can always perform the following

transformation

log/ e?f O dy(t) = log i/ DO q9(t) b + log ¥(T)
T AT) Jr

and let 9'(-) = 9(-)/HT).
Condition C2 assumes the zero expectation function. For any continuous function

p(t),

log/ eU(t)f(t)JrM(t)dg(t) zlog/ ea(t)f(t)dlg’(t)’
T T

where dv'(t) = e*Mdi(t). Therefore, this problem setting includes the situation when
the mean is not a constant.

Condition C4 implies that C(t) is at least 6 times differentiable and the first, third,
and fifth derivatives at the origin are all zero. The assumption that the Hessian matrix
is identity is introduced to simplify the notations. For any Gaussian process g(t) with
covariance function Cy(t) and AC,(0) = —X and det(X) > 0, this assumption can be
obtained by an affine transformation by letting g(t) = f(X'/?t) and

log/ 79T (1) gt = Jog det(Z~/2) + 10g/ eaf(s)+uf(2*1/2s)ds,
T {s:2-1/25€T}

where for each positive semi-definite matrix ¥ we let /2 be a symmetric matrix such

that 21/2x91/2 = 3.

3. Proof

In this section, we present the proofs of the theorems. We organize the proofs as
follows. In Section 3.1, we develop a proposition that is central to the proofs of all the
three theorems. The theorems are proved in Section 3.2 based on the results in Section
3.1. To smooth the discussion, we present the statements of lemmas where they are
applied and leave their proofs in the appendix.

Throughout the discussion we use the following notations for the asymptotic behav-
iors. We say that 0 < g(a) = O(h(a)) if g(a) < ch(a) for some constant ¢ € (0,00) and

all @ > ag > 0; similarly, g(a) = o(h(a)) if g(a)/h(a) — 0 as a — oco.
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3.1. A general bound for F'(a)

Proposition 1. Under the conditions of Theorem 1, F'(a) exists almost everywhere.
Choose b < a (depending on a) in a way that a —b — 0 and a(a — b) — oo when we

send a to infinity. Then,

lim sup v 27or exp

a— o0

where o = sup,epo(t), t, = ®YHEF(b), and ®(-) is the cumulative distribution

function of the standard Gaussian distribution.

We spend the rest of this subsection to prove this proposition. According to the
Karhunen-Loeve representation theorem (see Chapter 3 in [5]), f(¢) has the following

expression
f(t) = Z zipi(t), (8)
i=1

where {z;,i € N} are i.i.d. standard Gaussian random variables and ), ¢;(¢)? = 1.
For any positive integer N, let fy(t) be the partial sum of the first N terms. Note

that fi(t) can be viewed as a function of (z1,...,xy). We slightly abuse the notations

and write
N
faa,t) = midi(t) (9)
i=1
where * = (21,---,2y). When writing fy(t) we consider it as a random function;

when writing fx(z,t) or fy(z,-) we emphasize that it is a function of  mapping from

RY to C(T). Similarly, we redefine function Hy, : RN — R as

Hfy () :x— Hyy(z) = log { / e”(t)fN(””’t)dﬁ(t)] .
T

Let pn be the standard Gaussian measure on the probability space (RYN, B(RN), un)

with density function

1
p(@) = (2m) N exp (‘M) ! (10)
that is, un(A) = [, ¢n(z)dz, where | - | is the Euclidean distance.
We first establish a bound for the density of fxn(t) and then send N to infinity. On
the probability space (R, B(RY), uy), define the following sets

Va2 {z€RY :Hyy(z)<a} , Wy, = {x € RN :sup{o(t)fn(z,t)} < a} . (11)
teT
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and distribution functions

Fy(a) = P(Hypy <a) = pn(Vn.a),

G (@) £ P (sup{o(0)5 (0} = ) = jx (W), (12)

We prove Proposition 1 in four steps. In Steps 1 and 2, we derive a “not-so-friendly”
bound for Fy(a). In Step 3, we send N to infinity and develop the corresponding
bound for F’(a). Finally inequality (7) is proved in Step 4 based on the results in Step
3.

3.1.1. Step 1. Let V Hy, (x) be the gradient field of Hy, (z) with respect to « and

denote
_ 1
|V Hpy (2)]

Further let S, be the surface on which Hy, (z) = a, i.e.,

I =

Se ={z:Hsy(x) =a}.
We write
fn(z,t) =a(t) - fa(z,t).
For a € R, the density function Fj (a) can be written as a surface integral as follows:

. (a) = lim En(a+e) = Fy(a) _ o in(Vared) = pn(Va)

e—0 € e—0 €

:/ lopn(2)dSe(z),
Sq (13)
where ¢y is defined as in (10) and dS,(z) denotes the surface integral element on
S, C RN,
The next lemma gives a basic inequality that bounds the surface integral by an

integral on the set Vi 4. Its proof follows a similar derivation in [41].

Lemma 1. Consider the probability space (RN, B(RY), un). Under the conditions in

Theorem 1, we have the following bound

[ ton@dsu@) < [ by (e + 1) dunt) (14)
Sa Vi
where Vi , = RN\ Vy., h(z) = argmin,cg, |z — z| is the projection of x onto the
surface Sy,

cr = (z,1n,), ¢ = max{c,,0},



10 Liu and Xu

(+,-) is the inner product, and n, is the unit vector orthogonal to the surface S, pointing

towards the side where Hy, (x) has larger values.

3.1.2. Step 2. We start with deriving bounds for I,y and ¢ (,), where h(x) is defined

as in Lemma 1. Note that

O.H; (h()) = e / o ()5 (£) e @D gy (1)

T
and since h(z) € S,

Lty = (P(x), VHyy (h(2)))
= / fN fN (h(z), t)d19( t)

< sup{fw(h(z),1)} - e /T e (h(2).0) gy )

teT
= sup{fn(h(x),1)}. (15)
teT
This implies that

5 +
i < oy (supiv(nla).0}) (16)

The following two lemmas provide a bound for lj,().
Lemma 2. Vy 4 is a conver set and Hy, : RN — R is a convex function.
Lemma 3. For eachb<a andz € S,

_ z, VN,
le = (VH, () < 22 V00)

where Vi, = {z € RN : Hy (z) < b} and p(x,Viyp) = inf.cvy, |z — 2|.

According to (16) and Lemma 3, for each x € Vi ,, the integrant in (14) is bounded
by

a—b a—1b teT

which implies that

FJ/V(G) < -/VC lh(:c) (C;(z) + 1) d,uN(m)
.
< /N p(h(::)_v‘;vN,b) (ﬂ(h(;);‘bfzv,b) (ig‘%ﬁ fN(h(x),t)> +1> dpn (@),
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/ Vls,a,l \

c c
VN,a,Z VN,a,Z

O VN,a O WN,Ma O WN,a

et Vb . Wap

FI1GURE 1: This graph illustrates the relative positions of different sets used in the proof. The

legends indicate the boundary of each set.

By the fact that for any x
log [ / efwv”dﬁ(t)} < sup f (2. 1)
teT teT
we obtain Wy, C Vi, for all a, where Wy, is defined as in (11). Now for some

constant M > 1, partition Vy , = RN\Vn,, into two parts:

Vlﬁ,a = Vﬁ,a,l U VJS’,G.,27 (19)
where
VNa1 =1z +An, : A > 0,2 € S,, and sup{fn(z,t)} < M -a}
teT
and

VNaz =1z +An, : A > 0,2 € S,, and sup{fn(z,t)} > M - a}
teT

with n, defined as in Lemma 1. Figure 1 illustrates the relative geometric positions of

all the relevant sets.
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We split the integral (18) into

.
o) < [ o) (”W””)’VNJ’) (sup F(h(e).)) +1> dpn ()

a—2b a—2b

N,a,1 teT
+
+/V§M p(h(f)_,‘bfzv,b) (P(h(;)_,‘;N,b) (igr)fN(h(x),tO +1> dun ()

I + L.

We consider the integrals I; and I separately. When Gy (a) = P(sup,er fn(t) <

a) < 1/2, we take M = 1. Note that in this case, by the fact that Wy , C V4, the
first term on the right-hand-side of the above display vanishes and we only need to
consider the second integral. Then for the first integral we only consider the case that

Gn(a) > 1/2 (note that Gn(a) > 1/2 implies a > 0).

A bound for I;. By the definition of VY , 1, x € V , ; implies that sup,c fn(h(z),t) <

M - a and therefore we have for a > 0

I S/ p(h(z), Vi p) (p(h(m),VN’b)
Vi

p—" p—" Ma+1) dun (). (20)

,a,l

The following lemma provides a bound for I.

Lemma 4. For any a > b with Gn(b) > 1/2 and increasing function J(-), we have

the following inequality:

[ st < | J(— ty)db(w),
VN,a1 TM,a,b+tNb
where
tno = (un (Vivs)) _azbfazb )y
N,b = UN\VNWD)), TM,ab = Ma Ma N,b
with

thy =0 ' (P(H; <b, fgjng(t) < Ma)).

According to Lemma 4, for any b < a such that Gy (b) > 1/2, the right-hand-side
of (20) satisfies the following inequality

/ p(h(z), Vi) (P(h(x)v Vnb)

Ma + 1) dp ()

: a—b a—b
N,a,1
o] — 1 -1
- / u—1INp <(u N’b)Ma + 1> dd(u). (21)
I b a—>b
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This integral can be further bounded by the following inequality whose proof is given

in [41].
Lemma 5. For the standard normal distribution, we have the following inequality

oo k 1
/Hr(u—t)kdq)(u) < (1—®(t+r))rkk!-§mforkEN,r>O.

(22)
Apply Lemma 5 to (21) and obtain that
I < (1—®(7arap +tnp)) Crla, b, Taran)

where

2Matpap+a—0 . 2Ma
(a —b)2 " a—b  (a—b)*(Tarap+tny)  (a—D0)*(Tarap+tnp)?

A bound for I,. Choose another constant b < a. Given the fact that Wy € Vyis

we have

e[ P Wiy) (”(I’Wi”’) (supr<h<x>,t>)++1> dun(@).  (23)
V.

o a—2b a—2b teT

We use the following lemma to further bound Is.

Lemma 6. Consider the probability space (RN, B(RY),un) and a positive measure

set B, we have for any increasing function J on R* and r > 0

o0

Toler, B (@) < [ u— ta)dd(w)

B;‘ tp+r

where B¢ = RN\B,. = {x : p(x, B) > r}, and tg = &' (un(B)).

In order to use Lemma 6 with B = W, ;, we need to derive a lower bound for p(x, Wy ;)
for x € Vi, 5 (so that each x € V§ , , is reasonably far away from Wy j and V§ ,, C

B¢) and furthermore an upper bound for sup;cr fn (h(z),t), h(z) € S,.
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Let ¢V (t) = (¢1(t), -+ ,én(t)). For any z € Wy 5 any unit-length vector v and

scalar A,
sup fnv(z+Av,t) = sup {o@®) (z+ Av,o" (1))}
< sup {o@®)(z,o" (1))} + sup {o(t) (Av, 0" (1))}
< b+ Aor. (24)

Let A < (Ma — b)/or and we have that for any unit-length vector v,

teT ar

. Ma—b
sup fn <z+ a4 v,t><Ma.

Thus for any point z € RV, if p(z, Wy, ) < MULT_E, then sup, fx(z,t) < Ma. Therefore

for any = € Vi , ,, we have that p(h(z), Wy ;) > 2=t Given that Wy ; C Vi, and

or

that Vivq is a convex set, we obtain that (h(z) — y,np()) > 0 for all y € Wy 5. Thus,

we obtain that

Ma—b
p(x, Wy g) = p(h(z), Wy 5) = p— (25)

Thus, we derived a lower bound of p(z, Wy ;) for z € Vg ,,. See Figure 1 for the
illustration.

For x € V§ , and h(z) € Sq, let z, = arginf.cw, ; p(h(z), 2) and 0, . = (h(z) —
2z)/|h(z) — 2, (see Figure 1). We have an upper bound for sup,c fn(h(z),t) by the
following inequality,

sup fN(h(‘T)7t) = sup f~N (Zz + p(h(:c), Wé)ﬁrzat) < p(x7 WB)UT + Ba
teT teT

where the last step follows exactly the same argument as in (24). Thus, plugging the
above bound for sup,cp f(h(z),t) into (23), we have

/C Ih(z) (CZ(I) + 1) dun (z)

2
p(I7W ~) = p(I7W ~)
(S )25

<)
VE a—1b a—

N,a,2



On the Density Functions of Integrals of Gaussian Random Fields 15

Then, by Lemma 6 (B = Wy 5 and Vg , , C BS,, ;). the following inequality holds:

or
2
p(l‘,W ~) = p(m,W ~)
/ (“) (bl Wy o + 57 ) + =222 | dpuy ()
VE aa a—>b a—
o0 u—t N2 - u—t _
< / (Wf\”’> ((u —tw,;)or + b+) + 2 W d®(u),
Paras Wy a—>b ' a—>b
where _
Ma —b

=@ 1 (Gn(b) and 7y, , 5 = :

tw
N or

\b

By Lemma 5 the above integral is bounded by

(1 — q)(TJVI,a,l; + tWN,E))OQ(av B’ rM,a,5)7

where

A TM,a,l; + 1 + l~7+ 2 TJQW,(L,I;Z!
a=b  (a- B)(tWN,b +Taap) (@ —D)? (2= i)!rj\/f,a,l")(thv,ﬂ +7r08)"
3 r3 3l
o b
I Z Mk . (26)

i=0 (3 - Z)!Tﬁw,a,i;(tww,a + TM,a,E)i
Combining (23) and (26) together, we have for a such that Gy (a) > Gy (b) > 1/2 and

b<a

M>1

Fy(a) < min{ (1 —®(Tar,a0 +tnp)) Cr(a, b, Tarap)

+ (1 — <I>(TM7M~, + tWN’g))CQ(a,, b, rM7a75)}. (27)

and for a satisfying G (a) < 1/2, by taking M = 1, we have for constant b<a

h(z),Vy: h(z),Vy: ~ +
Fow < [ M) <p< @) Vi) (sup o)) +1> Qi (@)

S a2 a—>b teT

< (1- (r, 5+ tWN’E))Cg(a,B, Tab)s
with Toh = (a— INJ)/UT-

3.1.3. Step 3: Extension to f(¢). From the above derivations, Fiy(a) are continu-
ously differentiable on R. Let
F — F
DT F};(a) = limsup n(ate) N(a).

e—0
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By Lemma 11 (presented in the appendix) the total variation of Fj on any interval
[a1, as] satisfies

az
\/F]'V < sup Fi(a)+2(az—ay)- sup DTF((a) <my+ma(az —ar),
ay

a€lay,az] a€lay,az]

for some constants mq,mg > 0. Therefore we have that F'};(a) is continuous on [aq, as]
except for a countable set. Also, Fy;(a) is bounded in L' norm on the interval [ay, as].
Then, by Helly’s Selection Theorem, there exists a subsequence {Fy;, }; such that it
converges almost everywhere (and also in the L' norm) to a function F’ of bounded
total variation on [a1,az]. Note that F(a) converges uniformly to F(a) on interval

[a1,a2] (Theorem 3.1.2 in [5]). Therefore,

as az
F(ay) — F(ay) = lim Fy, (a2) — F,(a1) = lim/ Fy (b)db = / F'(b)db,
i i . g a1
which implies F/ = F’ almost everywhere on [a1, as).
Therefore, by the convergence result, we obtain an upper bound of F’(a) by sending
N to infinity on both sides of (27), i.e., for G(a) > G(b) > 1/2 and b < a (where

G(a) = P(sup, f(t) < a)) we have
F'(a) < ﬁg}{ (1 —®(tar,ap + 1)) Ci(a, b, Tar,ap)

+ (1 — <I>(7’M’a’5 + tWE))Cg(a, b, T'M’a’l;)}, (28)
and for a such that G(a) <1/2 and b < a ,

F'(a) < (1- (r, 5+ tW’;))CQ(a,Z;7 Tab)s

where t, = @~ (F (b)), tw, = O HGD)), Ty 0s = M;T_b, T.p = ‘;—‘Ti’, and with a slight
abuse of notation Taz,ap = %72 (472 + 1) ¢}, with ¢, = @~ (P(Hy < b, sup,ep f(t) <
Ma)).

3.1.4. Step 4. Based on the result in (28), we now prove Proposition 1 in step 4. We
first present the Borel-TIS lemma that is proved by [15, 40].

Lemma 7. (Borel-TIS.) Let f(t), t € U (U is a parameter set), be a mean zero

Gaussian random field. f is almost surely bounded on U. Then,

E(sup f(t)) < oo,
u
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and r
2

- >bh)<e 2%
P(max f (t) — Elmax f (1)} 2 b) < e *u,

where

oy = max Var[f(t)).

Based on the Borel-TIS lemma, we have that

t t
liminf % > lim —2* = ort and ty, —opta = O(1).
a—o0 @ a—o0 @

Now choose b = b(a) < a such that, as a — 00, a — b — 0 and a(a — b) — oo and

MO’T(1+C>tb>1
a/) b

with a constant C' big enough (note that t, > tw, > b/or + O(1)). In addition, let b

be a fixed constant. Under the above settings, as a — oo, we simplify the functions

t?
Cu(a by arap) = (L+o(1)): 5
. B or(Ma — b)? _ M?a
Caola, b,y 05) = m -(14+0(1)) = = -(1+0(1)).

We now show that the second term in (28) is of a smaller order, that is,
(1= ®@(ryy o5+ tw;))Cala,b,ryy o 5) = 0(1) - (1= D(Tarap + ts)) C1(a, b, Tarap). (29)
By choosing b as a constant and sending a to infinity, for some A > 0, we have that

("Moap T+ tw,)* = (ty + Tara0)’
- 2
Ma—b+t B t+a—b a—b_‘_1 y 2
or Ws b Ma Ma b

Ma—b a—b (a—b ,
(2-1—0(1))(1( p +itw, —tp — a (Ma +1>tb>

Y

> (24 0(1))a (ZK: —tp + (tw; — opth) + 0(1))

> @2+ o(l)5-

a,

where the second inequality follows from the following argument. By the fact that

tw, <t} <tp, we have

ab(ab+1>t, B (1+ a—1b ) a—1>b p
Ma \ Ma b or(a+C)% ) or(a+C)e b
— (1 1o1)2=ly — o). (30)

orty



18 Liu and Xu

Therefore, we obtain (29) and the second term in (28) is ignorable. Furthermore, by

(30), we have that

2
(ty + Taap)® = (tb—i-(l—i— a-b t> a-b ttf,)
7’ JT(a+C)f JT(a-l-C)f

Y
¥
+
[\

Vv
S
_|_
[\
[N
_|_
=

where the last step follows from the fact that ¢, > tw, = o"b+ O(1).

Therefore

(]‘ - (I)(TM,a,b + tb)) Cl (av ba TM,a,b)

< (o). B L 1 th+ 205"
o(1)) - _— exp | ——
= Ma 27 Tarap + th P 2
1 t§+2(a;2b)b
< (140(1)) exp| —%— 1,

Y 2roT 2

where the last inequality follows from the fact that ¢ < t, < tp + Tarep and ¢, <

Ma/or = (a + C)tp/b. Thereby, we complete the proof of Proposition 1.

3.2. Proof of the theorems

In this section, we prove our theorems based on Proposition 1. We propose a change
of measure ) which is central to the proof of our theorems. Let P be the original
measure. The probability measure ) is defined such that P and @) are mutually

absolutely continuous with the Radon-Nikodym derivative being

dQ _ [ exp{—5(f(t) —w)?}

7Rl Moy iy ey (1), (31)

for some u € R. Note that @) depends on u. To simplify the notations, we omit
the index of u in @ when there is no ambiguity. One can verify that (35) is a valid
Radon-Nikodym derivative. We will provide further description in Section 3.2.2. See
also [30] who used this change of measure to derive asymptotic approximation of

P( [, exp(af(t)+ ps(t))dt > b) with ps(t) being a deterministic function.
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3.2.1. Proof of Theorem 1. In order to use Proposition 1, we first derive a lower

bound for t,. For each u, we rewrite

% = [ e (2“f “2) —u ) do(t). (32)

We have

P <log/ WO ay(t) > a>
T

dpP
- B, 1%, (1) £(t)
Q[dQ,og/Te di(t) > a
1

B P D | a@)F®) g9 (t
o |tz e [ a0 > ).

where Eq is the expectation under measure (). Note that

u?
2

e

log / MW ay(t) > a
T

implies that for a large enough

/ o f gyt > / OO gy ()
T Tn{f(t)=0}
> e 7/ e?DF® q9(t)
Tn{f(t)<0}
> e*—1.

Then by Jensen’s inequality, we have conditioning on log [,. e”WIMdY(t) > a with a

large enough,
/ O > oo —1]7n (33)
T

and therefore

P (log/ eI a9 (t) > a>
T

w2

1
= % . EBy|l—m- ] oM F ) g9(t
e? Q{fTe"f(t)dﬁ(t)’og/Te (t) >a

w2

< ez e — 1]_#

. u2 ua

= (1_6701)_071'62 or .

This bound holds for all u and exp (“72 — %) is minimized when u = a/o. Thus, for

a sufficiently large, the bound of the tail is

1-F(a)=P <log/Te”(t)f(t)d19(t) > a> < (1+o(1))exp (-i}) . (34)
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According to the above inequality, we have

a? a loga — lo C 1
ta>q)—1<1_exp<_%‘2)>:a—o-ngUT++0<)’
T T a a a

where C' satisfies \/% exp (—Q) = 1. Then by Proposition 1, take b = a — 1/4/a and

or

we have

] + 200
2

F'(a)

A
—
—
+
)
—~
—_
~—
~

IN

(1 ol1) G -exp (20) ,

T

which completes our proof.

3.2.2. Proof of Theorem 2. Under the assumptions of Theorem 2, o(t) = o and

k() g
d'lg(t) = j:e“if(t)zt. Then

P (log/ e"f(t)dﬁ(t) > a> =P (log/ eoT O+ gt > q + log/ e”f(t)dt> .
T T T

Similar to the proof of Theorem 1, we prove Theorem 2 by deriving an upper bound

P (log/ e?fO+ns () gy a) ,
T

which helps to get an lower bound for ¢, (then replace a by a + log [ e#s()dt).

for

Consider the change of measure:

dQ_ 1 [eeUl-wh, L[ (20—
dP mes(T)/T exp (—3£(1)2) dt = mes(T) /Te p< 5 )dt, (35)

where mes(T') is the Lebesgue measure of 7. It is more intuitive to describe the
measure @ from a simulation point of view ([30]). One can simulate f(t) under the

measure @ according to the following two steps:

1. Simulate a random variable 7 uniformly over T with respect to the Lebesgue

measure.

2. Given the realized 7, simulate the Gaussian process f(t) with mean uC(¢t — 7)

and covariance function C(¢).
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The second step is equivalent to first sampling f(7) from N(u,1) and then sampling
{f(t) : t # 7} from its original conditional distribution under the measure P given
f(r). Tt is not hard to verify that the above two-step procedure is consistent with
the Radon-Nikodym derivative in (35). Under @, a random variable 7 is first sampled
uniformly over T, then f(7) is simulated with a large mean at level u. This implies
that the high value of the integral fT e“fdt is mostly caused by the fact that the
field reaches a high level at one location t* and such a location t* is very close to 7.
Therefore, the random index 7 localizes the maximum of the field. We can write the

tail probability as

P (log/ P ARATAON TN a)
T

_ u?/2 1 . o f(t)+uy(t)
= mes(T)e" '“Eq [fT e“f(t)dt’IOg/Te dt > a

2 1
u®/2 . of(t)+pys(t)
= e / Eq {f 0) t,log/ e "Odt > CL’T:| dr. (36)

According to Step 2 of the simulation, conditional on 7 and under measure @, the

process
ft) = f(t) —uC(t —1)

follows the same law as f(t) under P.
Let u be the solution to e®~7Uy3a—47 = 1 with 0 < v < €, where € is chosen as
in the theorem statement. Choose § such that e~ SPrer #s()yd/2a+dy — ypeg(s € T :

|s| < u?). Keep in mind that 6 ~ 1/2a + 7. Let
L = {sup f(t) < a/?>"}.
teT
For any 7 satisfying 0 < n < ad — 1/2, by Jensen’s inequality, we have (36) on L€

P <log/ 7T O gp > g, EC)
T

2

s 1 o c
= mes(T)e? - Eq L[Te“f(t)dt;bg/;pe FOat > a—félg,uf(t) and L"]

w2  u(a—supgeq py(t)—logmes(T))
< ez"” =
xXQ (log/ e??dt > a — sup pus(t) and sup f(t) > a1/2+n)
T teT teT

= o(l)e %, (37)
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where the inequality is thanks to (33) and the last step follows from the Borel-TIS

Lemma (applied to f). Therefore we have that

P <log/ e?fOF+ns®gp > a)
T

u?/2 L of () _ ‘
< e /TEQ {fTe“f(t)dt’log/Te dt >a ?él?,u,f(t) and L|T|dr
2
+o(l)e” 7. (38)

In what follows, we derive an upper bound for the conditional expectation in (38).
We first consider the set {log [, e?"Vdt > a — sup,c ()} in (38). Let €, = u==to
(recall that & is some constant such that e~ SUPrer #s(Dyd/20tdy — meg(s € T : |s| <

u%)). We can write the integral log fT e?TMdt into two parts as below:
/ eTOdr = VT + 7T,
T

where

T — / o) gp — / (o T +ou(C(t-7)-0(0) gy
[t—T|<e€w [t—T7|<ewn

and

T, = / oo F 0 gy — / o O +ou(C(t-m)-C(0) gy
|t77-|25u |t*7‘|25u

Thus, log [ e?f®Mdt > a — sup,cq 4 (t) if and only if

Ty + Ty > e~ SWPrer by (8) g dy—d/2a (39)
For T, since C(0) — C(t —7) = |t — 7|* + R(t — 7) where R(t — 1) = o(|t — 7|%)

T, = / o F (D) +ou(C(t—)~C(0)) gt

[t—T|<ew

_ / eo’f(t)fo'u(|t77|”‘+R(t7‘r))dt
[t—T|<e€w

d

u = / le(T+u7és)fa\s|°‘7uaR(u7%s)ds. (40)
|s|<uf

For Ty, by the condition that sup,ez\ p;, C(t) < C(0) = 1 where N is a neighborhood

of 0, we have for u large enough,

T < e_"uéa/ e"f(t)dt,
T
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and on set £, we have

1/24n _ 40

Ty < mes(T)e’® “ (41)
For the term [, e*/(Mdt in (38), we have
/ e qt
[t—7|<ew
— e / u(FO+u(Ct=—m)-C(0) g
[t—T7|<ew
= et Rmes(l <) s [ Rt g
mes(|s| < u?) J|sj<us
(42)

By Jensen’s inequality and (39), on the set {log [ e?*®dt > a}, we have

~ 1 o 1
1 / eu(f(TJru as)—|s|*—uR(u as))ds
mes(|s| < u®) Jjsj<us

w/o
N 1 N 1
/ eaf(T+u as)—ol|s|*—ocuR(u as)ds
mes( | <ud Is|<us
d/och1 u/o
me | < u5
B d/aTl u/o
B —supyeq ps(t)q,d/2a+dy
> (1 eSUPteT Hf t)uﬁ—d’YTZ) u/o
u/o
P AT T

The first equality in the above display is due to (40); the second equality is due to the
definition of d; the second inequality is due to (39); the last step is due to (41). Now
combining the above results of (40),(41), (42), and (43), we get

1
- o f(t) _
Eq [f EVIOPTE log/ dt > a —sup puy(t) and ,C’T:|

teT
1

< EQ |: B B u/o;

euze— Sup; e ,uf(t)ufﬁ+d'y (1 _ mes(T)eSUptGT ,uf(t)uﬁ—d»yegal/%—n_auéa

da _ d 1/24n_ ., Sa
w?s "Ny > 1 — mes(T)es Prer 11y 55 —dveoa 7% and E]
da _ _ 2

< (14 o(1))esuPrer 1y 35 —dvemu”, (44)
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Note that u is the solution to e*~“%yu3s~% = 1. Then following (38) we can obtain

that

11.2

P (1og/ e?fWat > a) < (mes(T) + o(1))e™Prer IOME Sl P
T

which implies that

1—F(a) = P (bg/ e?F OO gy > a+1og/ e”f(t)dt>
T T
< (mes(T) + o(1))e*Peer uf(t)%%—dve—77
where u,, is the solution to
/ et s (@) gy . ea—auWui%—d’Y -1
T

Then,

’LL2
ty, > o°! (1 - mes(T)eS“prT“f(t)uﬁidwe_;>

— (o —dy+1)logu, log(v2rmes(T)e>Prer (1)) (1)
- T - +ol—).

U~ U~

Therefore, by Proposition 7, take b = a — 1/y/a and we have

d u?
F'(a) < (mes(T) + o(1))esPrer s (D) gLy Faa = =5

Then for any € € (0, 3-), take v such that v < € and we have

—_4d _q uf

22 e Fl(a) =0

. de
lim sup ue
a—r o0

which completes the proof of Theorem 2.
3.2.3. Proof of Theorem 3. We cite the following result (see Theorem 3.4 in [30])

that provides an approximation of F'(a) for three-time differentiable fields.

Lemma 8. Under the assumptions and notations of Theorem 3,

P (log / IO+ (0 gy a)
T

= (ot [ exp{—““‘”‘W}-cHw,o’t)dt,

where u is the solution to
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By Lemma 8 we have that for a three times differentiable Gaussian random field

satisfying the conditions in Theorem 3,

P <log/ e?TOTrsr g > o + log/ e“f(t)dt)
T T

(1+0(1))ﬁd_1Aexp{—W}'CH(vaa,t)dt, (45)

1—F(a)

where @ is the solution to

Therefore we can get

ta = @ <ﬂd_1/TeXp{_(ﬂ_Mf2(t)/U)2}'CH(MfMT,t)dt) +o<i)

which implies t,/a — o~!. Then by Proposition 1, let b = a — 1/y/a and we have
Fl(a) < (1+ 0(1))0_2a(1 — F(a)).

The right-hand-side of the above display is precisely the approximation in the Theorem.
In order to prove the theorem, we need to show that the right-hand-side of the
above equality is also an asymptotic lower bound of the density. According to the

approximation in (45), we have that

1—F(a) = /OO F'(z)de < (1+0(1)) /00 o 2zx(1 — F(x))dx
(I+0(1)(1 = F(a)). (46)

We prove the lower bound by reaching a contradiction to (46). If our conclusion
does not hold, there exists e > 0 and {a;,¢ > 1} such that lim; a; — oo such that

F'(a;)
072(11'(1 — F(az))

<l-—e

Then

a;

/oo [0=22(1 — F(z)) - F'(z)] de > (1+ 0(1))/ S ol - Fa)dr,  (47)

where

a; =inf { >a;:07%x(1 - F(z)) — F'(z) > ¢/2 -0 %a;(1 - F(a;))} .
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We have a lower bound for a; as

i > a; + €/2- 0 %a;(1 - F(a;))

- SupaZai D+F/(a’) + w&zai

Following the result in Lemma 11, we derive an upper bound for DT F’(a;) as in
the Steps 3 and 4 in last section. Under the conditions of this theorem, we have

M =o0(1+C/a)ts/a — 1; then for b=0a —1/+/a

DYF'(a) < (1—®(Tamap+t))Cs(a,b,rar,a,)

+<1 - q)(rM;Chb + th))C4(a7 ba TM7a,b>

= (140(1)(1—P(Tarap + b)) Cs(a, b, rarap)
= (1+ 0(1))074a2(1 — O(Tagap + tb))
= (1+0(1)o %1 - F(a)).
Therefore
6/2'0'_2ai(1 —F(al)) 6(72

a; > a; + (1+0(1)) =a; + (1 +0(1))

20~%a2(1 — F(a;)) da;’

Thus we have for the right side integral in (47)

ag

(o) [ 5o (- Fa)ds > (1+oln(i-F), (49

i

where 7. > 0 depends on € and o. Then (47) and (48) indicate that for all a;

/OO [0 2z(1— F(z)) — F'(z)] dz > (1 + o(1))ne(1 — F(a;)).

i

This contradicts the fact (implied by (46)) that

/Oo [0=22(1 — F(z)) - F'(z)] dz = o1 — F(a)).

Therefore we complete our proof.

4. Appendix: Lemmas in the proofs

In this section, we present the proofs of lemmas used in the previous section.

The following well-known isoperimetric inequality is due independently to [35, 15].
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Lemma 9. Let B is a measurable set of positive measure in RY and

Then, we have for every r > 0,
pn(Br) > ®(a+71),

where B, = B+1U ={z+ry:x € B,y € U}. and U is the unit ball in RV .
The following result follows from Theorem 1 in [27].

Lemma 10. For any convez set B in R™ and a half space H = {x € RN : (z,n) < a}

with some real number a and some unit vector n such that

we have for every r > 1,
N(rB) = pn(rH) = ®(ra),

where rB = {rx : x € B}.

We now start proving the lemmas.

Proof of Lemma 1. Lemma 1 follows from a similar argument as in [41]. For equa-

tion (13), the inequality

t2 e o] U2
exp (—2) < (ty + 1)/ exp <—2> du
t

implies that
/ Lo (2)dS, (x)
2_ 2 2
s N2 exp (—M> exp (_%) dS,(x)
s 2 2

2 _ 2 oo 2
/ I - ~N/2 exp <_|"T|2Cz> (Cj: + 1) / exp <—u2> dudS,(z)
S, Ce

a

= L.(ch+1) / on (x4 Ang)dAdS, ().
Sa

IN
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The last step is due to a change of variable u = ¢, + A and the fact that
|z 4+ Ang|* = |22 + A2 + 2)c,.
The above surface integral can be bounded by a volume integral,

/ I (e +1)/0<>0 on (T + Ang)dNdS, ()

N 1

// (et +1) T (1 + Mes(w)on (@ + Ang )dAdSa ()

=1

= [ (e + Dev o)z,

IN

where k;(x)’s are the principle curvatures of S, at . The above inequality results
from the fact that curvatures are nonnegative in that S, is the border of a convex set.

Therefore, we obtain that

F{(a) < /F ln(a) (c;(w) + 1) dun (z).

N,a

Proof of Lemma 2. For any two functions f and g, if log [ [ exp(f(¢))dd(t)] < a
and log [ [ exp(g(t))dd(t)] < a then,

o [ om0 (22490 a] < o et + L] <

Therefore Hy = log [ [, exp(f(t))dd(t)] is a convex function.

Proof of Lemma 3. By Taylor expansion, the norm of the gradient can be defined

as

HfN(x) - HfN (:L' + 61},)
[VHjy (z)] —‘S}llpﬁg%gr . :

For each b < a, Hyy (x) = a, and o* = arginf.cy, , [t — 2|, let v* = (2* — x)/|z* — z|.

Then,

|VH ( )‘> lim HfN(x)_HfN(x—’_EU*)
vl e—0+ e ’

By convexity of H (Lemma 2) and the fact that fy(x + ev*,-) is a linear function of
e, Hf, (x + ev*) is a convex function of € and therefore

HfN (&E) — HfN (:17 + E’U*)
e
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is a positive and decreasing function of e. We choose ¢ = |z* — z| = p(z, V), then

|Hyy (x) — Hpy (x + ev*)| = a — b. Thus, we obtain a bound

a—2b
p(x, Vb))

[VHy ()| 2

The proof of Lemma 4 needs Lemma 6. Therefore, we prove Lemma 6 first.

Proof of Lemma 6. Lemma 9 implies that the following inequality holds:
[ aota Byt < [ - ta)inw.
c tB
In view of this, we have

| ot B)dns (@)

r

< / Tplar, B)T(p(a, B) > ) + J()T(plar, B) < r)dp (2)
- / T (p(z, B) < r)dun ()
B,\B

< /00 Ju—tg)l(u—tg >r)+ J(r)[(u—tg <r)d®(u)— J(r) [un(Br) — un(B)].
(49)

tp

Note that

1—pn(B,) = /C I(p(x, B) > r)dun(z) < /OO Iu—tp >r)d®u)=1-d(tg +r).

tp
Then, un(B,) > ®(tp + r) and further un(B,) — un(B) > @(tp +r) — P(tp). Insert
this result back into (49) and notice that

/00 Jr)(u—tp <r)d®(u) = J(r)[®(ts +1)— P(tp)]-

tp

We then obtain that

J

Proof of Lemma 4. Let

o0

J(p(e, B))dun () < / J(u— t5)dD(u).

tp+r

c
™

-b
o =2"2p4 b, and Vy;, = {2z : Hfy(2) <band sup fy(z,t) < Ma}.

Ma teT
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Thanks to the convexity of Vi p, p(z, Vi) > p(h(z), V) for all z € V , ;. We want
to apply Lemma 6 by considering B = Vi and V.| C BTM . Thus, we only need
to show that for each & € S, N {sup fy(z,t) < Ma}

a—bad
(@, Vip) = Thrap = 0=ty
By Lemma 3 and inequality (15), we have
—-b
pla, Vg = (a=b)ly > S—c

Therefore we only need to show that
Cp 2>
For any 2 € Vy 4,

< a a —b
log/exp (fN <z-,t>)dt = log/exp( <z+z ,t))dt
T b T b

"—b
< log/exprzt dt+supr< a4 ,t>
T

teT

a/

< b+ bM a = a.

Thus, we have that py ({z . % 1z € VI([,b}) < Fy(a). Thanks to Lemma 10, we have

o(n D) e (oL e eme o

Consider an = € S, and its unit vector n, orthogonal to the tangent plane of S, at x,
denoted by T,. According to the convexity of Viy 4, the entire set of Vi 4 lies on one
side of T, which is the side opposite of the n,. The above statement is equivalent to

VNa C{2z: (z,n;) < ¢y} where ¢, = (z,n,). Thus,

Fn(a) = pn(VNa) < pv({z 0 (2,05) < c}) = (ca).

Combined with the above inequality with (50), we obtain that for each z € S, UV , |,
®(ty pa'/b) < Fy(a) < ®(c;) and thus ¢, > tya’/b. Therefore,

p($7VN,b) Z (a - b)lm Z a]\;a

which completes our proof by Lemma 6.
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The next lemma provides bound for the second derivative of F(a)

/ v
DV F}(a) £ limsup Fy(at 62 FN(Q). (51)

e—0

Lemma 11. Consider the probability space (RY,B(RN),un). Under the conditions
in Theorem 1, we have when Gy (a) > 1/2, forb < a and b < a such that Gy (b) > 1/2

DJFFJ/V (a) < %g{{ (1 — (I)(TM,a,b + tN,b))Cg(a, b, TM,a,b)

+(1 - (I)(TM,a,E + tWN,S))C4(a’ B’ TM,a,E)}
and for Gy(a) <1/2

DVtFy(a) < (1 — (I)(Taj, +tw, 5))6’4(@, b, Ta,E)’

=t}

where twy, = @ (GND)), Taap = M0, 105 = 450 Taran = G72 (472 + 1) thy

CS (a7 b7 7_M,a,b)

1 (10 i TH0.2! @l i Thra 4!
(a=0)> \ 3 =5 (2= )7y ap(tve + Taran)’ (@ =02 2 (4= D)7y b (En + Taran)' )

=0 =0

_ 10 22: "0 Py "ap!
Bla—0)2 g Q=) lwes +raap) (a—b)t g (A=), (wy, +7a00)
(a—b)* = (5— z)lrﬁu,a,é(tww,é + rMﬂJ;)l (a—b)* = (6 — Z)!Tﬁ\/f,a,é(tWN,l; + TM@,E)I

Proof of Lemma 11. Asin Step 1 in Section 3.1.1, we have a volume integral bound
for Fi(a)

10
D*Fy(a) < /V lr o) ((C:)Q‘f’ 3) dun ().
N

The proof the above bound follows an argument in [41] (in particular, pages 850-851
of that volume) and therefore is omitted.

Similarly to the proof in Section 3, consider the partition of Viy ,: V§ , = Vg ;U
V¥ .42 for M > 1 and we have
Drrv = [ B (€@ ) di@ s [ B (@24 ) daxto)
c 3 c 3

N,a,1 N,a,2

(52)
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Similarly as in the above derivation for (20), we have for a,b such that Gy(a) >
Gy (b) >1/2

/C | Ly ((CS;F)2 + 130) dun ()

< /V p(h((j’ggw) (P(h((:)a‘;;\;,b) (s (o) 0)? + 130> din(®)
o (u— tN,b)2 (u— tN,b)2 . 2 10
: /TM,a,bthN,b (a —b)? ( (a—b)2 (Ma)” + 3 ) dd(u)

= (]. — (I)(TM,a,b + tN’b))Cg(a, b, TM,a,b)~ (53)

Similarly as in the above derivation for (26), we have for b < a,

| e ((ej) 3 ) dux(a)

N a,2
Nb) p(h(x), Vy 5)2 2 10
< — su h(x),t — | d
B /V fS afb) ( (a —b)? (te%F)fN( (@).8)"+ 3 ()
> (u—twy, ;) [(u—tw,;)? -2 10
< / 22 (=t o +5)* + | de(u)
T a, b+tW N.p CL — b) (CL — b) ’ 3
S 1 (I)(r]\/f a, b + tWN b))C4(a b TMU, b) (54)
where ty . = d1(Gn (D)), "Mah = M%J’, and the last inequality follows from

Lemma 5. Note that when G (a) < 1/2 we take M =1 and our conclusion holds.
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