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Abstract

In the paper, we consider the density functions of random variables that can

be written as integrals of exponential functions of Gaussian random fields. In

particular, we provide closed form asymptotic bounds for the density functions

and under smoothness conditions we derive exact tail approximations of the

density functions.
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1. Introduction

Consider a Gaussian random field f(t) living on a d-dimensional compact set T .

We say that f(t) is a Gaussian random field if for any finite subset {t1, ..., tn} ⊂ T ,

(f(t1), ..., f(tn)) follows a multivariate Gaussian distribution. In this paper, we consider

the random variable

log

(∫
T

eσ(t)f(t)dϑ(t)

)
(1)

for some positive function σ(t) and a finite measure ϑ. Of interest is the tail behavior

of the density function of (1).

The integral of exponential functions of Gaussian random fields plays an important

role in both applied probability and statistics. We present a few of them. In spatial

point process modeling, let λ(t) be the intensity of a Poisson point process on T ,

denoted by {N(A) : A ⊂ T}. In order to build in spatial dependence structure, the log-

intensity is typically modeled as a Gaussian process, that is, log λ(t) = f(t)+µf (t) and

then E(N(A)|λ(·)) =
∫
A
ef(t)+µf (t)dt, where µf (t) is the deterministic mean function
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and f(t) is a zero-mean Gaussian process. For instance, [18] considers the time series

setting in which T is a one dimensional interval, µf (t) is modeled as the observed

covariate process and f(t) is an autoregressive process. See [21, 17, 43, 19, 20] for

more examples of such kinds. Under this setting, one can show that P (N(T ) > b) ∼

P (
∫
T
ef(t)+µf (t)dt > b) as b→∞ (see [30]).

In portfolio risk analysis, consider a portfolio of n assets S1,...,Sn. The asset prices

are usually molded as log-normal random variables. That is, let Xi = logSi and further

(X1, ..., Xn) follow a multivariate normal distribution. The total portfolio value S =∑n
i=1 Si is the sum of dependent log-normal random variables (see [23, 6, 10, 26, 22]).

[7] derives the tail asymptotics of S when n is a fixed number. This asymptotic

approximation can also be obtained by a more general result in [25]. If one can represent

each asset price by a Gaussian random field at one location, that is, Xi = f(ti), then as

the portfolio size becomes large and the asset prices become more correlated, the unit

share price of the portfolio admits the limit limn→∞ S/n =
∫
ef(t)dϑ(t). See [13, 30]

for detailed discussions on the random field representations of large portfolios.

In option pricing, the asset price (as a function of time) is typically modeled as a

geometric Brownian motion ([12, 32]), that is, S(t) = eW (t), where W (t) is a Brownian

motion. Then the payoff of an Asian call option with strike price K is max(
∫ T

0
eW (t)dt−

K, 0).

The literature of extreme behavior of Gaussian random fields focuses mostly on the

tail probabilities of supT f(t). The results contain general bounds as well as sharp

asymptotic approximations as b→∞. A partial literature contains [27, 31, 34, 15, 16,

28, 37, 11, 4]. Several methods have been introduced to obtain bounds and asymptotic

approximations, each of which imposes different regularity conditions on the random

fields. A general upper bound for the tail of sup f(x) is developed in [15, 40], which is

known as the Borel–TIS lemma. For asymptotic results, there are several methods. The

double sum method ([33]) requires an expansion of the covariance function around the

global maximum of the variance and the mean functions and also locally stationary

structures. The Euler–Poincaré Characteristics of the excursion set approximation

(denoted by χ(Ab), where Ab is the excursion set) uses the fact P (sup f(x) > b) ≈

E(χ(Ab)) and requires the random field to be at least twice differentiable ([1, 38,

5, 39]). The tube method ([36]) uses the Karhunen-Loève expansion and imposes
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differentiability assumptions on the covariance function (fast decaying eigenvalues)

and regularity conditions on the random field. The Rice method ([8, 9]) represents

the distribution of sup f(t) (density function) in an implicit form. Recently, [3] studies

the geometric properties of high level excursion set for infinitely divisible non-Gaussian

fields as well as the conditional distributions of such properties given the high excursion.

Bounds of density functions of sup f(t) have been studied in [41] and [14].

The distribution of the random variable in (1) is studied in the literature when f(t) is

a Brownian motion ([42, 24]). Recently, [29] derives the asymptotic approximations of

P (
∫
T
ef(t)dt > b) as b → ∞ for three times differentiable and homogeneous Gaussian

random fields. [30] further extends the results to the case when the process has a

varying mean function. The density function of (1) for a general Gaussian random

field is still unexplored, which is the main target of this paper. The results derived

in this paper lead immediately to bounds and approximations of the tail probabilities

P (
∫
T
eσ(t)f(t)dϑ(t) > b) by integrating the density on [b,∞). In addition, such a kind

of local results provides technical supports of the theoretical analysis of simulation

studies, in which one typically needs to simulate a discrete process to approximate

the continuous process. As shown in the technical development in [2] (focusing on

the simulation of the tail probabilities of supT f(t)), to provide bounds on the bias

caused by the discretization, one needs local results (bounds of the density functions)

of supT f(t).

The contribution of this paper is to develop asymptotic bounds and approximations

of the density functions of (1). Our results consist of several theorems. Asymptotic

upper bounds are given in Theorems 1 and 2 under different conditions. An exact

approximation of the density is given in Theorem 3 when f(t) is three times differen-

tiable. In addition, during the proof of the theorems, a bound of F ′(a) for all a ∈ R is

derived (the results in Section 3.1.3).

The basic technique is to use the Karhunen-Loève expansion f(t) =
∑∞
i=1 xiφi(t)

by developing bounds for fN (t) =
∑N
i=1 xiφi(t) and sending N to infinity. For fN (t),

we consider it as a function of (x1, ..., xN ) and develop bounds of the integral on the

surface {(x1, ..., xN ) : log
∫
eσ(t)fN (t)dϕ(t) = a} (endowed with a standard Gaussian

measure). Part of the analysis technique is inspired by [41] who presents a bound of

the density of supT f(t). The current analysis is more complicated in that Hf is not a
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sublinear function of f , which is a crucial condition in the proof of [41]. [36] also uses

this representation to derive an approximation of the tail probability of supT f(t). In

addition, a change of measure technique is used to derive explicit forms of the bounds

and the asymptotic approximations.

The organization of the rest of this paper is as follows. In Section 2, we present the

main results. Proofs of the theorems are given in Section 3. An appendix is added

containing the technical proofs of lemmas.

2. Main results

Consider a Gaussian random field, f(t), living on a d-dimensional compact domain

T ⊂ Rd. For a finite measure ϑ on T and a function σ(t) ∈ (0,∞) satisfying σT =

supt∈T σ(t) <∞, let

Hf , log

(∫
T

eσ(t)f(t)dϑ(t)

)
, F (a) , P (Hf ≤ a). (2)

Of interest is the probability density function F ′(a). To facilitate the discussion, we

present a list of conditions that we will refer to in later discussions.

C1 The index domain T is a d-dimensional Borel measurable compact subset of Rd

with piecewise smooth boundary. The measure ϑ is positive and ϑ(T ) = 1.

C2 The process f(t) is almost surely continuous with zero mean and unit variance.

Furthermore, we impose two types of structures on the covariance function, under

each of which we derive more precise bounds or approximations of F ′(a).

C3 The variance is constant, i.e., σ(t) ≡ σ. The measure ϑ has a positive and

continuous density function with respect to the Lebesgue measure. The process

f(t) is homogeneous. The covariance function is C(t) = E(f(s)f(s + t)), which

satisfies the following two conditions:

C3a C(t) satisfies the expansion

C(t) = C(0)− |t|α + o (|t|α) as t→ 0, for α ∈ (0, 2].

C3b For each t ∈ Rd, C(λt) is a monotone decreasing function of λ ∈ R+.
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C4 The process f(t) is almost surely at least three times continuously differentiable

with respect to t. The Hessian matrix of C(t) at the origin is −I, where I is the

d× d identity matrix.

Theorem 1. Suppose that Conditions C1 and C2 are satisfied. Then, F ′(a) exists

almost everywhere and

lim sup
a→∞

σ2
Ta
−1e

a2

2σ2
T F ′(a) ≤ 1,

where σT = supt∈T σ(t) <∞.

Remark 1. Under conditions C1 and C2 (very weak conditions), Theorem 1 estab-

lishes the existence and an asymptotic bound of F ′(a). The following simple example

implies that without additional assumptions, the bound in Theorem 1 is efficient up

to a polynomial term of a. Consider a constant field f(t) ≡ Z where Z ∼ N(0, 1). Let

σ(t) take a constant value σ. Then, F ′(a) = exp(−a2/(2σ2))/(
√

2πσ).

Under more regularity conditions, we further improve the bound.

Theorem 2. Suppose that Conditions C1-3 are satisfied. We write

dϑ(t) =
eµf (t)∫

T
eµf (s)ds

dt, (3)

for some continuous function µf (t) on T . For each ε and a, let uε (as a function of a)

be the solution to the equation

eσuεudε−d/2αε = ea
∫
T

eµf (t)dt. (4)

Then, for any ε ∈ (0, 1
2α )

u
dε− d

2α−1
ε e

u2ε
2 F ′(a)→ 0, as a→∞. (5)

Remark 2. Note that when a is large, the above equation (4) generally has two

solutions. One is on the order of a/σ; the other one is close to zero. We choose

the larger solution as our uε.

In equation (4), if we replace the integral
∫
eµf (t)dt by 1 (or any other constant),

then uε will be shifted by approximately a constant. Denote the corresponding solution

by ũε. Note that the results hold for all ε sufficiently small. For uε large enough, we

have ũε < uε/2. Thus, the bound in (5) holds by replacing uε with ũε.
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The exact asymptotic approximation of F ′(a) can be derived when f is homogenous

and three times differentiable (condition C4). The statement of the theorem needs the

following notations. Let “∂” denote the gradient and “∆” denote the Hessian matrix

with respect to t. The notation “∂2” is used to denote the vector of second derivatives

with respect to t, i.e., ∂2f(t) is a d(d+1)/2 dimensional vector. The difference between

∂2f(t) and ∆f(t) is that ∆f(t) is a d× d symmetric matrix whose diagonal and upper

triangle consist of elements of ∂2f(t).

It is well known that, for each given t ∈ T ,
(
f(t), ∂2f(t)

)
is a multivariate Gaussian

random vector with mean zero and covariance matrix

Γ =

 1 µ20

µ02 µ22

 (6)

where µ20 is the vector containing the spectral moments of order two and µ22 is the

matrix containing the spectral moments of order four. Both µ20 and µ22 are arranged

in an appropriate order according to the order of ∂2f(t). See standard textbook, for

instance, Chapter 5.5 of [5], for more details of µ20 and µ22.

Theorem 3. Suppose that Conditions C1-4 are satisfied (with the expansion in C3a

replaced by C4). Let ϑ be defined as in (3) and µf (t) is three times differentiable. Then

the following approximation holds as a→∞

F ′(a) = (1 + o(1))σ−1ũd
∫
T

exp

{
− (ũ− µf (t)/σ)2

2

}
· CH(µf , σ, t)dt,

where ũ (as a function of a) is the solution to(
2π

σ

) d
2

ũ−
d
2 eσũ = ea ·

∫
T

eµf (t)dt,

the function CH is defined as

CH(µf , σ, t)

=
|Γ|− 1

2

(2π)
(d+1)(d+2)

4

exp

{
1Tµ221 +

∑
i ∂

4
iiiiC(0)

8σ2
+
d · µf (t) + Tr(∆µf (t))

2σ2
+
|∂µf (t)|2

σ2

}

×
∫
z∈Rd(d+1)/2

exp

−1

2

 |µ20µ
−1
22 z|2

1− µ20µ
−1
22 µ02

+

∣∣∣∣∣µ−1/2
22 z − µ

1/2
22 1

2σ

∣∣∣∣∣
2
 dz,

µ20, µ02, µ22, and Γ are defined in (6), and

1 = (1, ..., 1︸ ︷︷ ︸
d

, 0, ..., 0︸ ︷︷ ︸
d(d−1)/2

)
>
.
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Remark 3. For Condition C1, if ϑ(T ) 6= 1, we can always perform the following

transformation

log

∫
T

eσf(t)dϑ(t) = log

{
1

ϑ(T )

∫
T

eσ(t)f(t)dϑ(t)

}
+ log ϑ(T )

and let ϑ′(·) = ϑ(·)/ϑ(T ).

Condition C2 assumes the zero expectation function. For any continuous function

µ(t),

log

∫
T

eσ(t)f(t)+µ(t)dϑ(t) = log

∫
T

eσ(t)f(t)dϑ′(t),

where dϑ′(t) = eµ(t)dϑ(t). Therefore, this problem setting includes the situation when

the mean is not a constant.

Condition C4 implies that C(t) is at least 6 times differentiable and the first, third,

and fifth derivatives at the origin are all zero. The assumption that the Hessian matrix

is identity is introduced to simplify the notations. For any Gaussian process g(t) with

covariance function Cg(t) and ∆Cg(0) = −Σ and det(Σ) > 0, this assumption can be

obtained by an affine transformation by letting g(t) = f(Σ1/2t) and

log

∫
T

eσg(t)+µf (t)dt = log det(Σ−1/2) + log

∫
{s:Σ−1/2s∈T}

eσf(s)+µf (Σ−1/2s)ds,

where for each positive semi-definite matrix Σ we let Σ1/2 be a symmetric matrix such

that Σ1/2Σ1/2 = Σ.

3. Proof

In this section, we present the proofs of the theorems. We organize the proofs as

follows. In Section 3.1, we develop a proposition that is central to the proofs of all the

three theorems. The theorems are proved in Section 3.2 based on the results in Section

3.1. To smooth the discussion, we present the statements of lemmas where they are

applied and leave their proofs in the appendix.

Throughout the discussion we use the following notations for the asymptotic behav-

iors. We say that 0 ≤ g(a) = O(h(a)) if g(a) ≤ ch(a) for some constant c ∈ (0,∞) and

all a ≥ a0 > 0; similarly, g(a) = o(h(a)) if g(a)/h(a)→ 0 as a→∞.
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3.1. A general bound for F ′(a)

Proposition 1. Under the conditions of Theorem 1, F ′(a) exists almost everywhere.

Choose b < a (depending on a) in a way that a − b → 0 and a(a − b) → ∞ when we

send a to infinity. Then,

lim sup
a→∞

√
2πσT exp

(
σ2
T t

2
b + 2(a− b)b

2σ2
T

)
F ′(a) ≤ 1, (7)

where σT = supt∈T σ(t), tb = Φ−1(F (b)), and Φ(·) is the cumulative distribution

function of the standard Gaussian distribution.

We spend the rest of this subsection to prove this proposition. According to the

Karhunen-Loève representation theorem (see Chapter 3 in [5]), f(t) has the following

expression

f(t) =

∞∑
i=1

xiφi(t), (8)

where {xi, i ∈ N} are i.i.d. standard Gaussian random variables and
∑
i φi(t)

2 = 1.

For any positive integer N , let fN (t) be the partial sum of the first N terms. Note

that fN (t) can be viewed as a function of (x1, ..., xN ). We slightly abuse the notations

and write

fN (x, t) =

N∑
i=1

xiφi(t) (9)

where x , (x1, · · · , xN ). When writing fN (t) we consider it as a random function;

when writing fN (x, t) or fN (x, ·) we emphasize that it is a function of x mapping from

RN to C(T ). Similarly, we redefine function HfN : RN → R as

HfN (·) : x 7−→ HfN (x) = log

[∫
T

eσ(t)fN (x,t)dϑ(t)

]
.

Let µN be the standard Gaussian measure on the probability space (RN ,B(RN ), µN )

with density function

ϕN (x) = (2π)−N/2 exp

(
−1

2
|x|2
)
, (10)

that is, µN (A) =
∫
A
ϕN (x)dx, where | · | is the Euclidean distance.

We first establish a bound for the density of fN (t) and then send N to infinity. On

the probability space (RN ,B(RN ), µN ), define the following sets

VN,a ,
{
x ∈ RN : HfN (x) ≤ a

}
, WN,a ,

{
x ∈ RN : sup

t∈T
{σ(t)fN (x, t)} ≤ a

}
. (11)
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and distribution functions

FN (a) , P (HfN ≤ a) = µN (VN,a),

GN (a) , P

(
sup
t∈T
{σ(t)fN (t)} ≤ a

)
= µN (WN,a). (12)

We prove Proposition 1 in four steps. In Steps 1 and 2, we derive a “not-so-friendly”

bound for F ′N (a). In Step 3, we send N to infinity and develop the corresponding

bound for F ′(a). Finally inequality (7) is proved in Step 4 based on the results in Step

3.

3.1.1. Step 1. Let ∇HfN (x) be the gradient field of HfN (x) with respect to x and

denote

lx =
1

|∇HfN (x)|
.

Further let Sa be the surface on which HfN (x) = a, i.e.,

Sa = {x : HfN (x) = a} .

We write

f̃N (x, t) = σ(t) · fN (x, t).

For a ∈ R, the density function F ′N (a) can be written as a surface integral as follows:

F ′N (a) = lim
ε→0

FN (a+ ε)− FN (a)

ε
= lim
ε→0

µN (Va+ε)− µN (Va)

ε
=

∫
Sa

lxϕN (x)dSa(x),

(13)

where ϕN is defined as in (10) and dSa(x) denotes the surface integral element on

Sa ⊂ RN .

The next lemma gives a basic inequality that bounds the surface integral by an

integral on the set VN,a. Its proof follows a similar derivation in [41].

Lemma 1. Consider the probability space (RN ,B(RN ), µN ). Under the conditions in

Theorem 1, we have the following bound∫
Sa

lxϕN (x)dSa(x) ≤
∫
V cN,a

lh(x)

(
c+h(x) + 1

)
dµN (x), (14)

where V cN,a = RN \ VN,a, h(x) = arg minz∈Sa |x − z| is the projection of x onto the

surface Sa,

cx = 〈x,nx〉, c+x = max{cx, 0},
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〈·, ·〉 is the inner product, and nx is the unit vector orthogonal to the surface Sa pointing

towards the side where HfN (x) has larger values.

3.1.2. Step 2. We start with deriving bounds for lh(x) and ch(x), where h(x) is defined

as in Lemma 1. Note that

∂iHfN (h(x)) = e−a
∫
T

σ(t)φi(t)e
f̃N (h(x),t)dϑ(t)

and since h(x) ∈ Sa

l−1
h(x)ch(x) = 〈h(x),∇HfN (h(x))〉

= e−a
∫
T

f̃N (h(x), t)ef̃N (h(x),t)dϑ(t)

≤ sup
t∈T
{f̃N (h(x), t)} · e−a

∫
T

ef̃N (h(x),t)dϑ(t)

= sup
t∈T
{f̃N (h(x), t)}. (15)

This implies that

c+h(x) ≤ lh(x)

(
sup
t∈T
{f̃N (h(x), t)}

)+

. (16)

The following two lemmas provide a bound for lh(x).

Lemma 2. VN,a is a convex set and HfN : RN → R is a convex function.

Lemma 3. For each b < a and x ∈ Sa

lx = |∇HfN (x)|−1 ≤ ρ(x, VN,b)

a− b
,

where VN,b = {z ∈ RN : HfN (z) ≤ b} and ρ(x, VN,b) = infz∈VN,b |x− z|.

According to (16) and Lemma 3, for each x ∈ V cN,a, the integrant in (14) is bounded

by

lh(x)

(
c+h(x) + 1

)
≤ ρ(h(x), VN,b)

a− b

(
ρ(h(x), VN,b)

a− b

(
sup
t∈T

f̃N (h(x), t)

)+

+ 1

)
, (17)

which implies that

F ′N (a) ≤
∫
V cN,a

lh(x)

(
c+h(x) + 1

)
dµN (x)

≤
∫
V cN,a

ρ(h(x), VN,b)

a− b

(
ρ(h(x), VN,b)

a− b

(
sup
t∈T

f̃N (h(x), t)

)+

+ 1

)
dµN (x),

(18)
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Figure 1: This graph illustrates the relative positions of different sets used in the proof. The

legends indicate the boundary of each set.

By the fact that for any x

log

[∫
t∈T

ef̃N (x,t)dϑ(t)

]
≤ sup

t∈T
f̃N (x, t),

we obtain WN,a ⊆ VN,a for all a, where WN,a is defined as in (11). Now for some

constant M ≥ 1, partition V cN,a = RN\VN,a into two parts:

V cN,a = V cN,a,1 ∪ V cN,a,2, (19)

where

V cN,a,1 = {x+ λnx : λ ≥ 0, x ∈ Sa, and sup
t∈T
{f̃N (x, t)} < M · a}

and

V cN,a,2 = {x+ λnx : λ ≥ 0, x ∈ Sa, and sup
t∈T
{f̃N (x, t)} ≥M · a}

with nx defined as in Lemma 1. Figure 1 illustrates the relative geometric positions of

all the relevant sets.
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We split the integral (18) into

F ′N (x) ≤
∫
V cN,a,1

ρ(h(x), VN,b)

a− b

(
ρ(h(x), VN,b)

a− b

(
sup
t∈T

f̃N (h(x), t)

)+

+ 1

)
dµN (x)

+

∫
V cN,a,2

ρ(h(x), VN,b)

a− b

(
ρ(h(x), VN,b)

a− b

(
sup
t∈T

f̃N (h(x), t)

)+

+ 1

)
dµN (x)

= I1 + I2.

We consider the integrals I1 and I2 separately. When GN (a) = P (supt∈T f̃N (t) ≤

a) ≤ 1/2, we take M = 1. Note that in this case, by the fact that WN,a ⊆ VN,a, the

first term on the right-hand-side of the above display vanishes and we only need to

consider the second integral. Then for the first integral we only consider the case that

GN (a) > 1/2 (note that GN (a) > 1/2 implies a > 0).

A bound for I1. By the definition of V cN,a,1, x ∈ V cN,a,1 implies that supt∈T f̃N (h(x), t) <

M · a and therefore we have for a > 0

I1 ≤
∫
V cN,a,1

ρ(h(x), VN,b)

a− b

(
ρ(h(x), VN,b)

a− b
Ma+ 1

)
dµN (x). (20)

The following lemma provides a bound for I1.

Lemma 4. For any a > b with GN (b) > 1/2 and increasing function J(·), we have

the following inequality:∫
V cN,a,1

J(ρ(x, VN,b))dµN (x) ≤
∫ ∞
τM,a,b+tN,b

J(u− tN,b)dΦ(u),

where

tN,b = Φ−1(µN (VN,b)), τM,a,b =
a− b
Ma

(
a− b
Ma

+ 1

)
t′N,b

with

t′N,b = Φ−1
(
P
(
Hf̃N

< b, sup
t∈T

f̃N (t) < Ma
))
.

According to Lemma 4, for any b < a such that GN (b) > 1/2, the right-hand-side

of (20) satisfies the following inequality∫
V cN,a,1

ρ(h(x), VN,b)

a− b

(
ρ(h(x), VN,b)

a− b
Ma+ 1

)
dµN (x)

≤
∫ ∞
τM,a,b+tN,b

u− tN,b
a− b

(
(u− tN,b)
a− b

Ma+ 1

)
dΦ(u). (21)



On the Density Functions of Integrals of Gaussian Random Fields 13

This integral can be further bounded by the following inequality whose proof is given

in [41].

Lemma 5. For the standard normal distribution, we have the following inequality

∫ ∞
t+r

(u− t)kdΦ(u) ≤ (1− Φ(t+ r)) rkk! ·
k∑
i=0

1

(k − i)!ri(t+ r)i
for k ∈ N, r > 0.

(22)

Apply Lemma 5 to (21) and obtain that

I1 ≤ (1− Φ(τM,a,b + tN,b))C1(a, b, τM,a,b)

where

C1(a, b, τM,a,b)

=
Ma

(a− b)2
τ2
M,a,b +

τM,a,b

a− b
+

2MaτM,a,b + a− b
(a− b)2(τM,a,b + tN,b)

+
2Ma

(a− b)2(τM,a,b + tN,b)2
.

A bound for I2. Choose another constant b̃ < a. Given the fact that WN,b̃ ⊆ VN,b̃,

we have

I2 ≤
∫
V cN,a,2

ρ(x,WN,b̃)

a− b̃

(
ρ(x,WN,b̃)

a− b̃

(
sup
t∈T

f̃N (h(x), t)

)+

+ 1

)
dµN (x). (23)

We use the following lemma to further bound I2.

Lemma 6. Consider the probability space (RN ,B(RN ), µN ) and a positive measure

set B, we have for any increasing function J on R+ and r > 0∫
Bcr

J(ρ(x,B))dµN (x) ≤
∫ ∞
tB+r

J(u− tB)dΦ(u),

where Bcr = RN\Br = {x : ρ(x,B) > r}, and tB , Φ−1(µN (B)).

In order to use Lemma 6 with B = WN,b̃, we need to derive a lower bound for ρ(x,WN,b̃)

for x ∈ V cN,a,2 (so that each x ∈ V cN,a,2 is reasonably far away from WN,b̃ and V cN,a,2 ⊆

Bcr) and furthermore an upper bound for supt∈T f̃N (h(x), t), h(x) ∈ Sa.
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Let φN (t) = (φ1(t), · · · , φN (t)). For any z ∈ WN,b̃, any unit-length vector v and

scalar λ,

sup
t∈T

f̃N (z + λv, t) = sup
t∈T

{
σ(t)

〈
z + λv, φN (t)

〉}
≤ sup

t∈T

{
σ(t)

〈
z, φN (t)

〉}
+ sup
t∈T

{
σ(t)

〈
λv, φN (t)

〉}
≤ b̃+ λσT . (24)

Let λ < (Ma− b̃)/σT and we have that for any unit-length vector v,

sup
t∈T

f̃N

(
z +

Ma− b̃
σT

v, t

)
< Ma.

Thus for any point x ∈ RN , if ρ(x,WN,b̃) <
Ma−b̃
σT

, then supt f̃N (x, t) < Ma. Therefore

for any x ∈ V cN,a,2, we have that ρ(h(x),WN,b̃) ≥
Ma−b̃
σT

. Given that WN,b̃ ⊆ VN,a and

that VN,a is a convex set, we obtain that 〈h(x)− y,nh(x)〉 > 0 for all y ∈WN,b̃. Thus,

we obtain that

ρ(x,WN,b̃) ≥ ρ(h(x),WN,b̃) ≥
Ma− b̃
σT

. (25)

Thus, we derived a lower bound of ρ(x,WN,b̃) for x ∈ V cN,a,2. See Figure 1 for the

illustration.

For x ∈ V cN,a and h(x) ∈ Sa, let zx = arg infz∈WN,b̃
ρ(h(x), z) and ñx,z = (h(x) −

zx)/|h(x)− zx| (see Figure 1). We have an upper bound for supt∈T f̃N (h(x), t) by the

following inequality,

sup
t∈T

f̃N (h(x), t) = sup
t∈T

f̃N
(
zx + ρ(h(x),Wb̃)ñxz , t

)
≤ ρ(x,Wb̃)σT + b̃,

where the last step follows exactly the same argument as in (24). Thus, plugging the

above bound for supt∈T f̃N (h(x), t) into (23), we have

∫
V cN,a,2

lh(x)

(
c+h(x) + 1

)
dµN (x)

≤
∫
V cN,a,2

(ρ(x,WN,b̃)

a− b̃

)2 (
ρ(x,WN,b̃)σT + b̃+

)
+
ρ(x,WN,b̃)

a− b̃

 dµN (x).
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Then, by Lemma 6 (B = WN,b̃ and V cN,a,2 ⊆ BcMa−b̃
σT

), the following inequality holds:

∫
V cN,a,2

(ρ(x,WN,b̃)

a− b̃

)2 (
ρ(x,WN,b̃)σT + b̃+

)
+
ρ(x,WN,b̃)

a− b̃

 dµN (x)

≤
∫ ∞
rM,a,b̃+tWN,b̃

[(
u− tWN,b̃

a− b̃

)2 (
(u− tWN,b̃

)σT + b̃+
)

+
u− tWN,b̃

a− b̃

]
dΦ(u),

where

tWN,b̃
= Φ−1(GN (b̃)) and rM,a,b̃ =

Ma− b̃
σT

.

By Lemma 5 the above integral is bounded by(
1− Φ(rM,a,b̃ + tWN,b̃

)
)
C2(a, b̃, rM,a,b̃),

where

C2(a, b̃, rM,a,b̃)

,
rM,a,b̃

a− b̃
+

1

(a− b̃)(tWN,b̃
+ rM,a,b̃)

+
b̃+

(a− b̃)2

2∑
i=0

r2
M,a,b̃

2!

(2− i)!ri
M,a,b̃

(tWN,b̃
+ rM,a,b̃)

i

+
σT

(a− b̃)2

3∑
i=0

r3
M,a,b̃

3!

(3− i)!ri
M,a,b̃

(tWN,b̃
+ rM,a,b̃)

i
. (26)

Combining (23) and (26) together, we have for a such that GN (a) > GN (b) > 1/2 and

b̃ < a

F ′N (a) ≤ min
M≥1

{
(1− Φ(τM,a,b + tN,b))C1(a, b, τM,a,b)

+
(
1− Φ(rM,a,b̃ + tWN,b̃

)
)
C2(a, b̃, rM,a,b̃)

}
. (27)

and for a satisfying GN (a) ≤ 1/2, by taking M = 1, we have for constant b̃ < a

F ′N (a) ≤
∫
V cN,a,2

ρ(h(x), VN,b̃)

a− b̃

(
ρ(h(x), VN,b̃)

a− b̃

(
sup
t∈T

f̃N (h(x), t)

)+

+ 1

)
dµN (x)

≤
(
1− Φ(ra,b̃ + tWN,b̃

)
)
C2(a, b̃, ra,b̃),

with ra,b̃ = (a− b̃)/σT .

3.1.3. Step 3: Extension to f(t). From the above derivations, FN (a) are continu-

ously differentiable on R. Let

D+F ′N (a) , lim sup
ε→0

F ′N (a+ ε)− F ′N (a)

ε
.



16 Liu and Xu

By Lemma 11 (presented in the appendix) the total variation of F ′N on any interval

[a1, a2] satisfies

a2∨
a1

F ′N ≤ sup
a∈[a1,a2]

F ′N (a) + 2(a2 − a1) · sup
a∈[a1,a2]

D+F ′N (a) ≤ m1 +m2(a2 − a1),

for some constants m1,m2 > 0. Therefore we have that F ′N (a) is continuous on [a1, a2]

except for a countable set. Also, F ′N (a) is bounded in L1 norm on the interval [a1, a2].

Then, by Helly’s Selection Theorem, there exists a subsequence {F ′Ni}i such that it

converges almost everywhere (and also in the L1 norm) to a function F̃ ′ of bounded

total variation on [a1, a2]. Note that FN (a) converges uniformly to F (a) on interval

[a1, a2] (Theorem 3.1.2 in [5]). Therefore,

F (a2)− F (a1) = lim
i
FNi(a2)− FNi(a1) = lim

i

∫ a2

a1

F ′Ni(b)db =

∫ a2

a1

F̃ ′(b)db,

which implies F̃ ′ = F ′ almost everywhere on [a1, a2].

Therefore, by the convergence result, we obtain an upper bound of F ′(a) by sending

N to infinity on both sides of (27), i.e., for G(a) > G(b) > 1/2 and b̃ < a (where

G(a) = P (supt f̃(t) ≤ a)) we have

F ′(a) ≤ min
M≥1

{
(1− Φ(τM,a,b + tb))C1(a, b, τM,a,b)

+
(
1− Φ(rM,a,b̃ + tWb̃

)
)
C2(a, b̃, rM,a,b̃)

}
, (28)

and for a such that G(a) ≤ 1/2 and b̃ < a ,

F ′(a) ≤
(
1− Φ(ra,b̃ + tWb̃

)
)
C2(a, b̃, ra,b̃),

where tb = Φ−1(F (b)), tWb̃
= Φ−1(G(b̃)), rM,a,b̃ = Ma−b̃

σT
, ra,b̃ = a−b̃

σT
, and with a slight

abuse of notation τM,a,b = a−b
Ma

(
a−b
Ma + 1

)
t′b with t′b = Φ−1(P (Hf < b, supt∈T f(t) <

Ma)).

3.1.4. Step 4. Based on the result in (28), we now prove Proposition 1 in step 4. We

first present the Borel-TIS lemma that is proved by [15, 40].

Lemma 7. (Borel-TIS.) Let f(t), t ∈ U (U is a parameter set), be a mean zero

Gaussian random field. f is almost surely bounded on U . Then,

E(sup
U
f(t)) <∞,
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and

P (max
t∈U

f (t)− E[max
t∈U

f (t)] ≥ b) ≤ e
− b2

2σ2U ,

where

σ2
U = max

t∈U
V ar[f(t)].

Based on the Borel-TIS lemma, we have that

lim inf
a→∞

ta
a
≥ lim
a→∞

tWa

a
= σ−1

T and tWa − σ−1
T a = O(1).

Now choose b = b(a) < a such that, as a→∞, a− b→ 0 and a(a− b)→∞ and

M = σT

(
1 +

C

a

)
tb
b
> 1

with a constant C big enough (note that tb ≥ tWb
≥ b/σT + O(1)). In addition, let b̃

be a fixed constant. Under the above settings, as a→∞, we simplify the functions

C1(a, b, τM,a,b) = (1 + o(1)) · t
′
b
2

Ma

C2(a, b̃, rM,a,b̃) =
σT (Ma− b̃)3

(a− b̃)2σ3
T

· (1 + o(1)) =
M3a

σ2
T

· (1 + o(1)).

We now show that the second term in (28) is of a smaller order, that is,(
1− Φ(rM,a,b̃ + tWb̃

)
)
C2(a, b̃, rM,a,b̃) = o(1) · (1− Φ(τM,a,b + tb))C1(a, b, τM,a,b). (29)

By choosing b̃ as a constant and sending a to infinity, for some λ > 0, we have that

(rM,a,b̃ + tWb̃
)2 − (tb + τM,a,b)

2

=

(
Ma− b̃
σT

+ tWb̃

)2

−
(
tb +

a− b
Ma

(
a− b
Ma

+ 1

)
t′b

)2

≥ (2 + o(1))a

(
Ma− b̃
σT

+ tWb̃
− tb −

a− b
Ma

(
a− b
Ma

+ 1

)
t′b

)

≥ (2 + o(1))a

(
Ma

σT
− tb + (tWb̃

− σ−1
T b̃) + o(1)

)
≥ (2 + o(1))

λ

2σT
a,

where the second inequality follows from the following argument. By the fact that

tWb
≤ t′b ≤ tb, we have

a− b
Ma

(
a− b
Ma

+ 1

)
t′b =

(
1 +

a− b
σT (a+ C) tbb

)
a− b

σT (a+ C) tbb
t′b

= (1 + o(1))
a− b
σT tb

t′b = o(1). (30)
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Therefore, we obtain (29) and the second term in (28) is ignorable. Furthermore, by

(30), we have that

(tb + τM,a,b)
2 =

(
tb +

(
1 +

a− b
σT (a+ C) tbb

)
a− b

σT (a+ C) tbb
t′b

)2

≥ t2b + 2
(a− b)b
σT (a+ C)

t′b

≥ t2b + 2
(a− b)b
σ2
T

+ o (1) ,

where the last step follows from the fact that t′b ≥ tWb
= σ−1

T b+O(1).

Therefore

(1− Φ(τM,a,b + tb))C1(a, b, τM,a,b)

≤ (1 + o(1)) · t
′
b
2

Ma

1√
2π

1

τM,a,b + tb
exp

− t2b + 2 (a−b)b
σ2
T

2


≤ (1 + o(1)) · 1√

2πσT
exp

− t2b + 2 (a−b)b
σ2
T

2

 ,

where the last inequality follows from the fact that t′b < tb < tb + τM,a,b and t′b <

Ma/σT = (a+ C)tb/b. Thereby, we complete the proof of Proposition 1.

3.2. Proof of the theorems

In this section, we prove our theorems based on Proposition 1. We propose a change

of measure Q which is central to the proof of our theorems. Let P be the original

measure. The probability measure Q is defined such that P and Q are mutually

absolutely continuous with the Radon-Nikodym derivative being

dQ

dP
=

∫
T

exp
{
− 1

2 (f(t)− u)2
}

exp
{
− 1

2f(t)2
} dϑ(t), (31)

for some u ∈ R. Note that Q depends on u. To simplify the notations, we omit

the index of u in Q when there is no ambiguity. One can verify that (35) is a valid

Radon-Nikodym derivative. We will provide further description in Section 3.2.2. See

also [30] who used this change of measure to derive asymptotic approximation of

P (
∫
T

exp(σf(t) + µf (t))dt > b) with µf (t) being a deterministic function.
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3.2.1. Proof of Theorem 1. In order to use Proposition 1, we first derive a lower

bound for ta. For each u, we rewrite

dQ

dP
=

∫
T

exp

(
2uf(t)− u2

2

)
dϑ(t). (32)

We have

P

(
log

∫
T

eσ(t)f(t)dϑ(t) > a

)
= EQ

[
dP

dQ
; log

∫
T

eσ(t)f(t)dϑ(t) > a

]
= e

u2

2 · EQ
[

1∫
T
euf(t)dϑ(t)

; log

∫
T

eσ(t)f(t)dϑ(t) > a

]
,

where EQ is the expectation under measure Q. Note that

log

∫
T

eσ(t)f(t)dϑ(t) > a

implies that for a large enough∫
T

eσT f(t)dϑ(t) ≥
∫
T∩{f(t)≥0}

eσ(t)f(t)dϑ(t)

≥ ea −
∫
T∩{f(t)<0}

eσ(t)f(t)dϑ(t)

≥ ea − 1.

Then by Jensen’s inequality, we have conditioning on log
∫
T
eσ(t)f(t)dϑ(t) > a with a

large enough, ∫
T

euf(t)dϑ(t) ≥ [ea − 1]
u
σT (33)

and therefore

P

(
log

∫
T

eσ(t)f(t)dϑ(t) > a

)
= e

u2

2 · EQ
[

1∫
T
euf(t)dϑ(t)

; log

∫
T

eσ(t)f(t)dϑ(t) > a

]
≤ e

u2

2 · [ea − 1]
− u
σT

=
(
1− e−a

)− u
σT · e

u2

2 −
ua
σT .

This bound holds for all u and exp
(
u2

2 −
ua
σT

)
is minimized when u = a/σ. Thus, for

a sufficiently large, the bound of the tail is

1− F (a) = P

(
log

∫
T

eσ(t)f(t)dϑ(t) > a

)
≤ (1 + o(1)) exp

(
− a2

2σ2
T

)
. (34)
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According to the above inequality, we have

ta ≥ Φ−1

(
1− exp

(
− a2

2σ2
T

))
=

a

σT
− σT

log a− log σT
a

+
C̃

a
+ o

(
1

a

)
,

where C̃ satisfies 1√
2π

exp
(
− C̃
σT

)
= 1. Then by Proposition 1, take b = a− 1/

√
a and

we have

F ′(a) ≤ (1 + o(1)) · 1√
2πσT

exp

− t2b + 2 (a−b)b
σ2
T

2


≤ (1 + o(1))

a

σ2
T

· exp

(
− a2

2σ2
T

)
,

which completes our proof.

3.2.2. Proof of Theorem 2. Under the assumptions of Theorem 2, σ(t) ≡ σ and

dϑ(t) = eµf (t)dt∫
T
eµf (t)dt

. Then

P

(
log

∫
T

eσf(t)dϑ(t) > a

)
= P

(
log

∫
T

eσf(t)+µf (t)dt > a+ log

∫
T

eµf (t)dt

)
.

Similar to the proof of Theorem 1, we prove Theorem 2 by deriving an upper bound

for

P

(
log

∫
T

eσf(t)+µf (t)dt > a

)
,

which helps to get an lower bound for ta (then replace a by a+ log
∫
eµf (t)dt).

Consider the change of measure:

dQ

dP
=

1

mes(T )

∫
T

exp
(
− 1

2 (f(t)− u)2
)

exp
(
− 1

2f(t)2
) dt =

1

mes(T )

∫
T

exp

(
2uf(t)− u2

2

)
dt, (35)

where mes(T ) is the Lebesgue measure of T . It is more intuitive to describe the

measure Q from a simulation point of view ([30]). One can simulate f(t) under the

measure Q according to the following two steps:

1. Simulate a random variable τ uniformly over T with respect to the Lebesgue

measure.

2. Given the realized τ , simulate the Gaussian process f(t) with mean uC(t − τ)

and covariance function C(t).
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The second step is equivalent to first sampling f(τ) from N(u, 1) and then sampling

{f(t) : t 6= τ} from its original conditional distribution under the measure P given

f(τ). It is not hard to verify that the above two-step procedure is consistent with

the Radon-Nikodym derivative in (35). Under Q, a random variable τ is first sampled

uniformly over T , then f(τ) is simulated with a large mean at level u. This implies

that the high value of the integral
∫
T
eσf(t)dt is mostly caused by the fact that the

field reaches a high level at one location t∗ and such a location t∗ is very close to τ .

Therefore, the random index τ localizes the maximum of the field. We can write the

tail probability as

P

(
log

∫
T

eσf(t)+µf (t)dt > a

)
= mes(T )eu

2/2EQ

[
1∫

T
euf(t)dt

; log

∫
T

eσf(t)+µf (t)dt > a

]
= eu

2/2

∫
T

EQ

[
1∫

T
euf(t)dt

; log

∫
T

eσf(t)+µf (t)dt > a
∣∣∣τ] dτ. (36)

According to Step 2 of the simulation, conditional on τ and under measure Q, the

process

f̄(t) = f(t)− uC(t− τ)

follows the same law as f(t) under P .

Let u be the solution to ea−σuu
d
2α−dγ = 1 with 0 < γ < ε, where ε is chosen as

in the theorem statement. Choose δ such that e− supt∈T µf (t)ud/2α+dγ = mes(s ∈ T :

|s| < uδ). Keep in mind that δ ≈ 1/2α+ γ. Let

L = {sup
t∈T

f̄(t) < a1/2+η}.

For any η satisfying 0 < η < αδ − 1/2, by Jensen’s inequality, we have (36) on Lc

P

(
log

∫
T

eσf(t)+µf (t)dt > a,Lc
)

= mes(T )e
u2

2 · EQ
[

1∫
T
euf(t)dt

; log

∫
T

eσf(t)dt > a− sup
t∈T

µf (t) and Lc
]

≤ e
u2

2 −
u(a−supt∈T µf (t)−logmes(T ))

σ

×Q
(

log

∫
T

eσf(t)dt > a− sup
t∈T

µf (t) and sup
t∈T

f̄(t) > a1/2+η

)
= o(1)e−

u2

2 , (37)
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where the inequality is thanks to (33) and the last step follows from the Borel-TIS

Lemma (applied to f̄). Therefore we have that

P

(
log

∫
T

eσf(t)+µf (t)dt > a

)
≤ eu

2/2

∫
T

EQ

[
1∫

T
euf(t)dt

; log

∫
T

eσf(t)dt > a− sup
t∈T

µf (t) and L
∣∣∣τ] dτ

+o(1)e−
u2

2 . (38)

In what follows, we derive an upper bound for the conditional expectation in (38).

We first consider the set {log
∫
T
eσf(t)dt > a− supt∈T µf (t)} in (38). Let εu = u−

1
α+δ

(recall that δ is some constant such that e− supt∈T µf (t)ud/2α+dγ = mes(s ∈ T : |s| <

uδ)). We can write the integral log
∫
T
eσf(t)dt into two parts as below:∫

T

eσf(t)dt = eσuT1 + eσuT2,

where

T1 =

∫
|t−τ |<εu

eσf(t)dt =

∫
|t−τ |<εu

eσf̄(t)+σu(C(t−τ)−C(0))dt

and

T2 =

∫
|t−τ |≥εu

eσf(t)dt =

∫
|t−τ |≥εu

eσf̄(t)+σu(C(t−τ)−C(0))dt.

Thus, log
∫
eσf(t)dt > a− supt∈T µf (t) if and only if

T1 + T2 > e− supt∈T µf (t)udγ−d/2α. (39)

For T1, since C(0)− C(t− τ) = |t− τ |α +R(t− τ) where R(t− τ) = o(|t− τ |α)

T1 =

∫
|t−τ |<εu

eσf̄(t)+σu(C(t−τ)−C(0))dt

=

∫
|t−τ |<εu

eσf̄(t)−σu(|t−τ |α+R(t−τ))dt

= u−
d
α

∫
|s|<uδ

eσf̄(τ+u−
1
α s)−σ|s|α−uσR(u−

1
α s)ds. (40)

For T2, by the condition that supt∈T\N0
C(t) < C(0) = 1 where N0 is a neighborhood

of 0, we have for u large enough,

T2 ≤ e−σu
δα

∫
T

eσf̄(t)dt,
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and on set L, we have

T2 < mes(T )eσa
1/2+η−σuδα . (41)

For the term
∫
T
euf(t)dt in (38), we have∫

|t−τ |<εu
euf(t)dt

= eu
2

·
∫
|t−τ |<εu

eu(f̄(t)+u(C(t−τ)−C(0)))dt

= eu
2

u−
d
αmes(|s| < uδ) · 1

mes(|s| < uδ)

∫
|s|<uδ

e
u
(
f̄(τ+u−

1
α s)−|s|α−uR(u−

1
α s)

)
ds.

(42)

By Jensen’s inequality and (39), on the set {log
∫
eσf(t)dt > a}, we have

1

mes(|s| < uδ)

∫
|s|<uδ

e
u
(
f̄(τ+u−

1
α s)−|s|α−uR(u−

1
α s)

)
ds

≥

[
1

mes(|s| < uδ)

∫
|s|<uδ

eσf̄(τ+u−
1
α s)−σ|s|α−σuR(u−

1
α s)ds

]u/σ

=

(
ud/αT1

mes(|s| ≤ uδ)

)u/σ
=

(
ud/αT1

e− supt∈T µf (t)ud/2α+dγ

)u/σ
≥

(
1− esupt∈T µf (t)u

d
2α−dγT2

)u/σ
≥

(
1− esupt∈T µf (t)u

d
2α−dγmes(T ) exp

(
σa1/2+η − σuδα

))u/σ
. (43)

The first equality in the above display is due to (40); the second equality is due to the

definition of δ; the second inequality is due to (39); the last step is due to (41). Now

combining the above results of (40),(41), (42), and (43), we get

EQ

[
1∫

T
euf(t)dt

; log

∫
T

eσf(t)dt > a− sup
t∈T

µf (t) and L
∣∣∣τ]

≤ EQ

[
1

eu2e− supt∈T µf (t)u−
d
2α+dγ

(
1−mes(T )esupt∈T µf (t)u

d
2α−dγeσa1/2+η−σuδα

)u/σ ;

u
d
2α−dγT1 > 1−mes(T )esupt∈T µf (t)u

d
2α−dγeσa

1/2+η−σuδα and L
]

≤ (1 + o(1))esupt∈T µf (t)u
d
2α−dγe−u

2

. (44)
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Note that u is the solution to ea−σuu
d
2α−dγ = 1. Then following (38) we can obtain

that

P

(
log

∫
T

eσf(t)dt > a

)
≤ (mes(T ) + o(1))esupt∈T µf (t)u

d
2α−dγe−

u2

2 ,

which implies that

1− F (a) = P

(
log

∫
T

eσf(t)+µf (t)dt > a+ log

∫
T

eµf (t)dt

)
≤ (mes(T ) + o(1))esupt∈T µf (t)uγ

d
2α−dγe−

uγ
2

2 ,

where uγ is the solution to ∫
T

eµf (t)dt · ea−σuγu
d
2α−dγ
γ = 1.

Then,

ta ≥ Φ−1

(
1−mes(T )esupt∈T µf (t)u

d
2α−dγ
γ e−

u2γ
2

)
= uγ −

(
d

2α − dγ + 1
)

log uγ

uγ
− log(

√
2πmes(T )esupt∈T µf (t))

uγ
+ o

(
1

a

)
.

Therefore, by Proposition 7, take b = a− 1/
√
a and we have

F ′(a) ≤ (mes(T ) + o(1))esupt∈T µf (t)σ−1u
1+ d

2α−dγ
γ e−

u2γ
2 .

Then for any ε ∈ (0, 1
2α ), take γ such that γ < ε and we have

lim sup
a→∞

u
dε− d

2α−1
ε e

u2ε
2 F ′(a) = 0

which completes the proof of Theorem 2.

3.2.3. Proof of Theorem 3. We cite the following result (see Theorem 3.4 in [30])

that provides an approximation of F (a) for three-time differentiable fields.

Lemma 8. Under the assumptions and notations of Theorem 3,

P

(
log

∫
T

eσf(t)+µf (t)dt > a

)
= (1 + o(1))ud−1

∫
T

exp

{
− (u− µf (t)/σ)2

2

}
· CH(µf , σ, t)dt,

where u is the solution to (
2π

σ

) d
2

u−
d
2 eσu = ea.
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By Lemma 8 we have that for a three times differentiable Gaussian random field

satisfying the conditions in Theorem 3,

1− F (a) = P

(
log

∫
T

eσf(t)+µf (t)dt > a+ log

∫
T

eµf (t)dt

)
= (1 + o(1))ũd−1

∫
T

exp

{
− (ũ− µf (t)/σ)2

2

}
· CH(µf , σ, t)dt, (45)

where ũ is the solution to(
2π

σ

) d
2

ũ−
d
2 eσũ = ea ·

∫
T

eµf (t)dt.

Therefore we can get

ta = Φ−1

(
ũd−1

∫
T

exp

{
− (ũ− µf (t)/σ)2

2

}
· CH(µf , σ, t)dt

)
+ o

(
1

a

)
which implies ta/a→ σ−1. Then by Proposition 1, let b = a− 1/

√
a and we have

F ′(a) ≤ (1 + o(1))σ−2a(1− F (a)).

The right-hand-side of the above display is precisely the approximation in the Theorem.

In order to prove the theorem, we need to show that the right-hand-side of the

above equality is also an asymptotic lower bound of the density. According to the

approximation in (45), we have that

1− F (a) =

∫ ∞
a

F ′(x)dx ≤ (1 + o(1))

∫ ∞
a

σ−2x(1− F (x))dx

= (1 + o(1))(1− F (a)). (46)

We prove the lower bound by reaching a contradiction to (46). If our conclusion

does not hold, there exists ε > 0 and {ai, i ≥ 1} such that limi ai →∞ such that

F ′(ai)

σ−2ai(1− F (ai))
< 1− ε.

Then∫ ∞
ai

[
σ−2x(1− F (x))− F ′(x)

]
dx ≥ (1 + o(1))

∫ ãi

ai

ε

2
· σ−2x(1− F (x))dx, (47)

where

ãi = inf
{
x > ai : σ−2x(1− F (x))− F ′(x) > ε/2 · σ−2ai(1− F (ai))

}
.
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We have a lower bound for ãi as

ãi ≥ ai +
ε/2 · σ−2ai(1− F (ai))

supa≥ai D
+F ′(a) +

∣∣∣∂σ−2a(1−F (a))
∂a |a=ai

∣∣∣
Following the result in Lemma 11, we derive an upper bound for D+F ′(ai) as in

the Steps 3 and 4 in last section. Under the conditions of this theorem, we have

M = σ(1 + C/a)ta/a→ 1; then for b = a− 1/
√
a

D+F ′(a) ≤
(
1− Φ(τM,a,b + tb)

)
C3(a, b, rM,a,b)

+
(
1− Φ(rM,a,b + tWb

)
)
C4(a, b, rM,a,b)

= (1 + o(1))
(
1− Φ(τM,a,b + tb)

)
C3(a, b, rM,a,b)

= (1 + o(1))σ−4a2
(
1− Φ(τM,a,b + tb)

)
= (1 + o(1))σ−4a2(1− F (a)).

Therefore

ãi ≥ ai + (1 + o(1))
ε/2 · σ−2ai(1− F (ai))

2σ−4a2
i (1− F (ai))

= ai + (1 + o(1))
εσ2

4ai
.

Thus we have for the right side integral in (47)

(1 + o(1))

∫ ãi

ai

ε

2
· σ−2x(1− F (x))dx ≥ (1 + o(1))ηε(1− F (ai)), (48)

where ηε > 0 depends on ε and σ. Then (47) and (48) indicate that for all ai∫ ∞
ai

[
σ−2x(1− F (x))− F ′(x)

]
dx ≥ (1 + o(1))ηε(1− F (ai)).

This contradicts the fact (implied by (46)) that∫ ∞
a

[
σ−2x(1− F (x))− F ′(x)

]
dx = o(1− F (a)).

Therefore we complete our proof.

4. Appendix: Lemmas in the proofs

In this section, we present the proofs of lemmas used in the previous section.

The following well-known isoperimetric inequality is due independently to [35, 15].
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Lemma 9. Let B is a measurable set of positive measure in RN and

µN (B) = Φ(a).

Then, we have for every r ≥ 0,

µN (Br) ≥ Φ(a+ r),

where Br = B + rU = {x+ ry : x ∈ B, y ∈ U}. and U is the unit ball in RN .

The following result follows from Theorem 1 in [27].

Lemma 10. For any convex set B in Rn and a half space H = {x ∈ RN : 〈x,n〉 ≤ a}

with some real number a and some unit vector n such that

µN (B) ≥ µN (H) = Φ(a),

we have for every r ≥ 1,

µN (rB) ≥ µN (rH) = Φ(ra),

where rB = {rx : x ∈ B}.

We now start proving the lemmas.

Proof of Lemma 1. Lemma 1 follows from a similar argument as in [41]. For equa-

tion (13), the inequality

exp

(
− t

2

2

)
≤ (t+ + 1)

∫ ∞
t

exp

(
−u

2

2

)
du

implies that∫
Sa

lxϕN (x)dSa(x)

=

∫
Sa

lx · (2π)−N/2 exp

(
−|x|

2 − c2x
2

)
exp

(
−c

2
x

2

)
dSa(x)

≤
∫
Sa

lx · (2π)−N/2 exp

(
−|x|

2 − c2x
2

)(
c+x + 1

) ∫ ∞
cx

exp

(
−u

2

2

)
dudSa(x)

=

∫
Sa

lx(c+x + 1)

∫ ∞
0

ϕN (x+ λnx)dλdSa(x).
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The last step is due to a change of variable u = cx + λ and the fact that

|x+ λnx|2 = |x|2 + λ2 + 2λcx.

The above surface integral can be bounded by a volume integral,∫
Sa

lx(c+x + 1)

∫ ∞
0

ϕN (x+ λnx)dλdSa(x)

≤
∫
Sa

∫ ∞
0

lx(c+x + 1)

N−1∏
i=1

(1 + λki(x))ϕN (x+ λnx)dλdSa(x)

=

∫
V cN,a

lh(x)(c
+
h(x) + 1)ϕN (x)dx,

where ki(x)’s are the principle curvatures of Sa at x. The above inequality results

from the fact that curvatures are nonnegative in that Sa is the border of a convex set.

Therefore, we obtain that

F ′N (a) ≤
∫
V cN,a

lh(x)

(
c+h(x) + 1

)
dµN (x).

Proof of Lemma 2. For any two functions f and g, if log
[∫
T

exp(f(t))dϑ(t)
]
≤ a

and log
[∫
T

exp(g(t))dϑ(t)
]
≤ a then,

log

[∫
T

exp

(
f(t) + g(t)

2

)
dϑ(t)

]
≤ log

[
1

2
exp(a) +

1

2
exp(a)

]
≤ a.

Therefore Hf = log
[∫
T

exp(f(t))dϑ(t)
]

is a convex function.

Proof of Lemma 3. By Taylor expansion, the norm of the gradient can be defined

as

|∇HfN (x)| = sup
|v′|=1

lim
ε→0+

HfN (x)−HfN (x+ εv′)

ε
.

For each b < a, HfN (x) = a, and x∗ = arg infz∈VN,b |x− z|, let v∗ = (x∗ − x)/|x∗ − x|.

Then,

|∇HfN (x)| ≥ lim
ε→0+

HfN (x)−HfN (x+ εv∗)

ε
.

By convexity of H (Lemma 2) and the fact that fN (x + εv∗, ·) is a linear function of

ε, HfN (x+ εv∗) is a convex function of ε and therefore

HfN (x)−HfN (x+ εv∗)

ε
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is a positive and decreasing function of ε. We choose ε = |x∗ − x| = ρ(x, VN,b), then

|HfN (x)−HfN (x+ εv∗)| = a− b. Thus, we obtain a bound

|∇HfN (x)| ≥ a− b
ρ(x, VN,b)

.

The proof of Lemma 4 needs Lemma 6. Therefore, we prove Lemma 6 first.

Proof of Lemma 6. Lemma 9 implies that the following inequality holds:∫
Bc
J(ρ(x,B))dµN (x) ≤

∫ ∞
tB

J(u− tB)dΦ(u).

In view of this, we have∫
Bcr

J(ρ(x,B))dµN (x)

≤
∫
Bc
J(ρ(x,B))I(ρ(x,B) ≥ r) + J(r)I(ρ(x,B) < r)dµN (x)

−
∫
Br\B

J(r)I(ρ(x,B) ≤ r)dµN (x)

≤
∫ ∞
tB

J(u− tB)I(u− tB ≥ r) + J(r)I(u− tB < r)dΦ(u)− J(r) [µN (Br)− µN (B)] .

(49)

Note that

1− µN (Br) =

∫
Bc
I(ρ(x,B) ≥ r)dµN (x) ≤

∫ ∞
tB

I(u− tB ≥ r)dΦ(u) = 1− Φ(tB + r).

Then, µN (Br) ≥ Φ(tB + r) and further µN (Br)− µN (B) ≥ Φ(tB + r)−Φ(tB). Insert

this result back into (49) and notice that∫ ∞
tB

J(r)I(u− tB < r)dΦ(u) = J(r)[Φ(tB + r)− Φ(tB)].

We then obtain that∫
Bcr

J(ρ(x,B))dµN (x) ≤
∫ ∞
tB+r

J(u− tB)dΦ(u).

Proof of Lemma 4. Let

a′ =
a− b
Ma

b+ b, and V ′N,b = {z : HfN (z) < b and sup
t∈T

fN (z, t) < Ma}.
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Thanks to the convexity of VN,b, ρ(x, VN,b) ≥ ρ(h(x), VN,b) for all x ∈ V cN,a,1. We want

to apply Lemma 6 by considering B = VN,b and V cN,a,1 ⊂ BcτM,a,b . Thus, we only need

to show that for each x ∈ Sa ∩ {sup f̃N (x, t) < Ma}

ρ(x, VN,b) ≥ τM,a,b =
a− b
Ma

a′

b
t′N,b.

By Lemma 3 and inequality (15), we have

ρ(x, VN,b) ≥ (a− b)lx ≥
a− b
Ma

cx.

Therefore we only need to show that

cx ≥
a′

b
t′N,b.

For any z ∈ V ′N,b,

log

∫
T

exp

(
f̃N

(
z · a

′

b
, t

))
dt = log

∫
T

exp

(
f̃N

(
z + z · a

′ − b
b

, t

))
dt

≤ log

∫
T

exp(f̃N (z, t))dt+ sup
t∈T

f̃N

(
z · a

′ − b
b

, t

)
≤ b+

a′ − b
b

Ma = a.

Thus, we have that µN

({
z · a

′

b : z ∈ V ′N,b
})
≤ FN (a). Thanks to Lemma 10, we have

Φ

(
t′N,b ·

a′

b

)
≤ µN

({
z · a

′

b
: z ∈ V ′N,b

})
≤ FN (a). (50)

Consider an x ∈ Sa and its unit vector nx orthogonal to the tangent plane of Sa at x,

denoted by Tx. According to the convexity of VN,a, the entire set of VN,a lies on one

side of Tx, which is the side opposite of the nx. The above statement is equivalent to

VN,a ⊂ {z : 〈z,nx〉 < cx} where cx = 〈x,nx〉. Thus,

FN (a) = µN (VN,a) ≤ µN ({z : 〈z,nx〉 < cx}) = Φ(cx).

Combined with the above inequality with (50), we obtain that for each x ∈ Sa∪V cN,a,1,

Φ(t′N,ba
′/b) ≤ FN (a) ≤ Φ(cx) and thus cx ≥ t′ba′/b. Therefore,

ρ(x, VN,b) ≥ (a− b)lx ≥
a− b
Ma

cx ≥
a− b
Ma

a′

b
t′N,b.

which completes our proof by Lemma 6.
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The next lemma provides bound for the second derivative of F (a)

D+F ′N (a) , lim sup
ε→0

F ′N (a+ ε)− F ′N (a)

ε
. (51)

Lemma 11. Consider the probability space (RN ,B(RN ), µN ). Under the conditions

in Theorem 1, we have when GN (a) > 1/2, for b̃ < a and b < a such that GN (b) > 1/2

D+F ′N (a) ≤ min
M≥1

{(
1− Φ(τM,a,b + tN,b)

)
C3(a, b, τM,a,b)

+
(
1− Φ(rM,a,b̃ + tWN,b̃

)
)
C4(a, b̃, rM,a,b̃)

}
and for GN (a) ≤ 1/2

D+F ′N (a) ≤
(
1− Φ(ra,b̃ + tWN,b̃

)
)
C4(a, b̃, ra,b̃),

where tWN,b
= Φ−1(GN (b)), rM,a,b̃ = Ma−b̃

σ , ra,b̃ = a−b̃
σ , τM,a,b = a−b

Ma

(
a−b
Ma + 1

)
t′N,b

C3(a, b, τM,a,b)

=
1

(a− b)2

(
10

3

2∑
i=0

τ2
M,a,b2!

(2− i)!τ iM,a,b(tN,b + τM,a,b)i
+

a2M2

(a− b)2

4∑
i=0

τ4
M,a,b4!

(4− i)!τ iM,a,b(tN,b + τM,a,b)i

)
.

C4(a, b̃, rM,a,b̃)

=
10

3(a− b̃)2

2∑
i=0

r2
M,a,b̃

2!

(2− i)!ri
M,a,b̃

(tWN,b̃
+ rM,a,b̃)

i
+

b̃2

(a− b̃)4

4∑
i=0

r4
M,a,b̃

4!

(4− i)!ri
M,a,b̃

(tWN,b̃
+ rM,a,b̃)

i

+
2σb̃

(a− b̃)4

5∑
i=0

r5
M,a,b̃

5!

(5− i)!ri
M,a,b̃

(tWN,b̃
+ rM,a,b̃)

i
+

σ2

(a− b̃)4

6∑
i=0

r6
M,a,b̃

6!

(6− i)!ri
M,a,b̃

(tWN,b̃
+ rM,a,b̃)

i
.

Proof of Lemma 11. As in Step 1 in Section 3.1.1, we have a volume integral bound

for F ′N (a)

D+F ′N (a) ≤
∫
V cN,a

l2h(x)

(
(c+x )2 +

10

3

)
dµN (x).

The proof the above bound follows an argument in [41] (in particular, pages 850-851

of that volume) and therefore is omitted.

Similarly to the proof in Section 3, consider the partition of V cN,a: V cN,a = V cN,a,1 ∪

V cN,a,2 for M ≥ 1 and we have

D+F ′N (a) ≤
∫
V cN,a,1

l2h(x)

(
(c+x )2 +

10

3

)
dµN (x) +

∫
V cN,a,2

l2h(x)

(
(c+x )2 +

10

3

)
dµN (x).

(52)
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Similarly as in the above derivation for (20), we have for a, b such that GN (a) >

GN (b) > 1/2∫
V cN,a,1

l2h(x)

(
(c+x )2 +

10

3

)
dµN (x)

≤
∫
V cN,a,1

ρ(h(x), VN,b)
2

(a− b)2

(
ρ(h(x), VN,b)

2

(a− b)2

(
sup
t∈T

fN (h(x), t)
)2

+
10

3

)
dµN (x)

≤
∫ ∞
τM,a,b+tN,b

(u− tN,b)2

(a− b)2

(
(u− tN,b)2

(a− b)2

(
Ma

)2
+

10

3

)
dΦ(u)

=
(
1− Φ(τM,a,b + tN,b)

)
C3(a, b, rM,a,b). (53)

Similarly as in the above derivation for (26), we have for b̃ < a,∫
V cN,a,2

l2h(x)

(
(c+x )2 +

10

3

)
dµN (x)

≤
∫
V cN,a,2

ρ(h(x), VN,b̃)
2

(a− b̃)2

(
ρ(h(x), VN,b̃)

2

(a− b̃)2

(
sup
t∈T

fN (h(x), t)
)2

+
10

3

)
dµN (x)

≤
∫ ∞
rM,a,b̃+tWN,b̃

(u− tWN,b̃
)2

(a− b̃)2

(
(u− tWN,b̃

)2

(a− b̃)2

(
(u− tWN,b̃

)σ + b̃
)2

+
10

3

)
dΦ(u)

≤
(
1− Φ(rM,a,b̃ + tWN,b̃

)
)
C4(a, b̃, rM,a,b̃), (54)

where tWN,b̃
= Φ−1(GN (b̃)), rM,a,b̃ = Ma−b̃

σ , and the last inequality follows from

Lemma 5. Note that when GN (a) < 1/2 we take M = 1 and our conclusion holds.
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