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Efficient Simulations for the Exponential Integrals of Hölder Continuous
Gaussian Random Fields

Jingchen Liu 1 and Gongjun Xu, Columbia University

In this paper, we consider a Gaussian random field f(t) living on a compact set T ⊂ Rd and the computation of the

tail probabilities P (
∫
T e

f(t)dt > eb) as b → ∞. We design asymptotically efficient importance sampling estimators

for a general class of Hölder continuous Gaussian random fields. In addition to the variance control, we also analyze

the bias (relative to the interesting tail probabilities) caused by the discretization.

1. INTRODUCTION

In this paper, we focus on the design and the analysis of efficient Monte Carlo methods for

computing the tail probabilities of integrals of exponential functions of Gaussian random fields

living on a compact domain. Suppose that {f(t) : t ∈ T} is a continuous Gaussian random field

with zero mean and unit variance. That is, for each finite subset {t1, ..., tn} ⊂ T , (f(t1), ..., f(tn))

is a multivariate Gaussian random vector with E(f(ti)) = 0 and Var(f(ti)) = 1, i = 1, · · · , n.

The domain T is a d-dimensional compact subset of Rd. Further conditions will be imposed on

f in the later discussions. Define

I(T ) =

∫
T

eσ(t)f(t)+µ(t)dt, (1)

where µ(·) and σ(·) are two deterministic functions and σ(·) is strictly positive. Our focus is on

the tail probabilities

w(b) = P
(
I(T ) > eb

)
= P

(∫
T

eσ(t)f(t)+µ(t)dt > eb
)

as b→∞. (2)

1.1. Motivations

The exponential integral of a Gaussian random field is a central object of several probability

models. The integral (1) is the limiting object of the (weighted) sum of correlated lognormal

random variables. The tail event of the latter sum is an important topic. An incomplete list

of works is given by [Ahsan 1978; Duffie and Pan 1997; Glasserman et al. 2000; Basak and

Shapiro 2001; Deutsch 2004; Foss and Richards 2010]. In the portfolio risk analysis, consid-

er a portfolio consisting of n assets (S1, ..., Sn) each of which is associated with a weight (e.g.
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number of shares) (w1, ..., wn). One popular model assumes that (logS1, ..., logSn) is a multi-

variate Gaussian random vector. The value of the portfolio, S =
∑n
i=1 wiSi, is then the sum of

correlated log-normal random variables. Without loss of generality, we let
∑
wi = n.

One interesting situation is that the portfolio size is large and the asset prices are usually

highly correlated. One may employ a latent space approach used in the literature of social

network. More specifically, we construct a Gaussian process {f(t) : t ∈ T} and associate each

asset i with a latent variable ti ∈ T so that logSi = f(ti). Then, the log asset prices fall into a

subset of the continuous Gaussian process. Furthermore, there exists a (deterministic) process

w(t) so that w(ti) = wi. Then, the unit share value of the portfolio is 1
n

∑
wiSi = 1

n

∑
w(ti)e

f(ti).

For detailed discussion of latent state modeling, see [Hoff et al. 2002; Snijders 2002; Handcock

et al. 2007; Xing et al. 2010].

In the asymptotic regime that n → ∞ and the correlations among the asset prices become

close to one, the subset {ti : i = 1, ..., n} becomes dense in T . Ultimately, we obtain the limit

1

n

n∑
i=1

wiSi →
∫
w(t)ef(t)h(t)dt

where h(t) indicates the limiting spatial distribution of {ti : i = 1, ..., n} in T . Let µ(t) =

logw(t)+log h(t). Then the tail probability of the (limiting) unit share price is P (
∫
ef(t)+µ(t)dt >

eb).

Another application of the current study lies in option pricing. A stylized model for asset

price S(t) (as a function of time t) is geometric Brownian motion, that is, S(t) = eW (t), where

W (t) is a Brownian motion; see [Black and Scholes 1973; Merton 1973]. Then the payoff of

an Asian option is at expiration time T is a function of the averaged price
∫ T
0
eW (t)dt. For

instance, the payoff of an Asian call option with strike price K is max(
∫ T
0
eW (t)dt −K, 0); the

expected payoff of a digital Asian call option is precisely P (
∫ T
0
eW (t)dt > K).

1.2. Literature and contribution

There is a rich rare-event simulation literature for the sum of independent random variables.

The problems are mostly classified to light-tailed and heavy-tailed problems. An incomplete

list of recent works includes [Asmussen and Kroese 2006; Dupuis et al. 2007; Blanchet and

Glynn 2008; Blanchet and Liu 2008; Blanchet et al. 2008]. For the dependent case, [Snijders

2011] proposes several efficient Monte Carlo estimators for the sum of finitely many correlated

lognormal random variables. The current problem is a substantial generalization of this work.

We employ a different change of measure that is a mixture of infinitely many exponential

ACM Transactions on Modeling and Computer Simulation, Vol. 0, No. 0, Article 0, Publication date: 2012.



Efficient Simulations for Gaussian Random Fields 0:3

change of measures suggesting that the rare-event is mostly caused by the abnormal behavior

of the random field at one location.

Another related literature is the extreme behaviors of Gaussian random fields. The results

range from general bounds to sharp asymptotic approximations. An incomplete list of works

includes [Landau and Shepp 1970; Marcus and Shepp 1970; Sudakov and Tsirelson 1974;

Borell 1975; Tsirelson et al. 1976; Berman 1985; Hüsler 1990; Ledoux and Talagrand 1991;

Talagrand 1996]. A few lines of investigations on the supremum norm are given as follows.

Assuming locally stationary structure, the double-sum method ([Piterbarg 1996]) provides the

exact asymptotic approximation of supT f(t) over a compact set T , which is allowed to grow

as the threshold tends to infinity. For almost surely at least twice differentiable fields, [Adler

1981; Taylor et al. 2005; Adler and Taylor 2007] derive the analytic form of the expected

Euler-Poicaré Characteristics of the excursion set which serves as a good approximation of

the tail probability of the supremum. The tube method ([Sun 1993]) takes advantage of the

Karhune-Loève expansion and Weyl’s formula. The Rice method ([Azais and Wschebor 2005;

2008; 2009]) provides an implicit description of supT f(t). The discussions also go beyond the

Gaussian fields such as Gaussian random fields with random variances ([Hüsler et al. 2011]).

See also [Adler et al. 2009] for non-Gaussian and heavy-tailed processes. The corresponding

rare-event simulations have been studied in [Adler et al. 2012].

The asymptotic tail behaviors of I(T ) have been studied recently in the literature with

focus mostly on the analytic approximations of w(b) under smoothness conditions. [Liu 2012]

derives the asymptotic approximations of P (
∫
T
eσf(t)dt > eb) as b → ∞ when f(t) is a three-

time differentiable and homogeneous Gaussian random field and σ(t) takes constant value σ.

[Liu and Xu 2012c] further extends the results to the case when the process has a smooth

varying mean function, i.e., P (
∫
T
eσf(t)+µ(t)dt > eb).

The tail asymptotics of I(T ) are difficult to develop when f(t) is non-differentiable. Un-

der such a setting, accurate approximations of w(b) have not yet been developed except for

some special cases such as f(t) is a Brownian motion (c.f. [Yor 1992; Dufresne 2001]). There-

fore, rare-event simulation serves as an appealing alternative from the computational point

of view in that the design and the analysis do not require very sharp approximations of w(b).

This paper, to the authors’ best knowledge, is the first analysis of I(T ) for a general class of

non-differentiable and differentiable fields. The main contribution of this paper is to devel-

op a provably efficient rare-event simulation algorithm to compute w(b). The efficiency of the

algorithm only requires that f(t) is uniformly Hölder continuous on the compact domain T .
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Therefore, the results are applicable to essentially all the Gaussian processes practically in

use.

Central to the analysis is a change of measure Q in both a continuous form (for the theoret-

ical analysis) and a discrete form (for the simulation). The measure Q mimics the conditional

distribution of f given the occurrence of the rare event {I(T ) > eb}. Importance sampling es-

timators are then constructed based on the measure Q. An appealing feature of the proposed

method is that the specific simulation schemes do not vary substantially under different situ-

ations. That is, the choice of the change of measure does not rely much on the specific mean,

variance, or covariance structure of the process (such as, constant mean/variance, varying

mean/variance, multi- and uni-modal mean/variance, etc.). Thus, this change of measure cap-

tures the common characteristics of the conditional distributions among all the processes in

the class. With a fine tuning of the change of measure, it is conceivable that the efficiency

can be further improved by taking into account more refined structures of the process such

as homogeneity, smoothness, maxima of the mean and the variance function, etc. Nonethe-

less, a unified efficient simulation scheme is useful especially when the fine structures of the

processes are not easy to obtain. We do not pursue this further improvement in this paper.

The complexity analysis of the proposed estimators consists of two elements. Firstly, since

f considered in this paper is continuous, exact simulation of the entire field is usually impos-

sible. Thus, we need to use a discrete object to approximate the continuous field and the bias

caused by the discretization needs to be well controlled relative to w(b). The second part of

our analysis is the variance control, that is, to provide a bound of the second moments of the

(discrete) importance sampling estimators.

The rest of the paper is organized as follows. Section 2 provides the construction of our im-

portance sampling algorithm and presents the main results of this paper. Section 3 includes

simulation studies. Proofs of our main theorems are given in Section 4. The proofs of support-

ing lemmas are included in Section 5.

2. MAIN RESULTS

2.1. Preliminaries of rare-event simulations and importance sampling

Throughout this paper, we are interested in computing w(b) → 0 as b → ∞. In the contex-

t of rare-event simulations [Asmussen and Glynn 2007, Chapter VI], it is more meaningful

to consider the computational error relative to w(b). A well accepted efficiency concept is the

so-called weak efficiency, also known as asymptotic efficiency and logarithmic efficiency [As-

mussen and Glynn 2007].
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Definition 2.1. A Monte Carlo estimator Lb is said to be weakly / asymptotically / logarith-

mically efficient in estimating w(b) if ELb = w(b) and

lim
b→∞

logEL2
b

2 logw(b)
= 1. (3)

Suppose that a weakly efficient estimator Lb has been obtained. Let {L(j)
b : j = 1, ..., n} be

i.i.d. copies of Lb and Zb = 1
n

∑n
j=1 L

(j)
b be the averaged estimator that has a relative mean

squared error Var1/2(Lb)/n
1/2w(b). A simple consequence of Chebyshev’s inequality yields

P (|Zb/w(b)− 1| ≥ η) ≤ Var(Lb)

nη2w2(b)
. (4)

The limit (3) suggests that for any λ > 0, Var(Lb) ≤ EL2
b = o(w2−λ(b)). For any positive η and

δ, in order to achieve the following relative accuracy

P (|Zb/w(b)− 1| > η) < δ, (5)

it is sufficient to generate n = O(η−2δ−1w−λ(b)) i.i.d. copies of Lb for any λ > 0.

To construct efficient estimators, in this paper, we use importance sampling for the variance

reduction (see [Asmussen and Glynn 2007, Chapter V]). It is based on the following identity

w(b) = E
(

1(I(T )>eb)

)
= EQ

(
1(I(T )>eb)

dP

dQ

)
,

where Q is a probability measure on F such that dP/dQ is well defined on the set {I(t) > eb}.
We use E and EQ to denote the expectations under the measures P and Q respectively. Then,

the random variable

Lb = 1(I(T )>eb)

dP

dQ
(6)

is an unbiased estimator of w(b) under the measure Q.

If we chooseQ(·) = P ( · |I(T ) > eb) to be the conditional distribution, then the corresponding

likelihood ratio dP/dQ ≡ w(b) on the set {I(T ) > eb} has zero variance under Q. Thus, Q is

also called the zero-variance change of measure. Note that this change of measure is of no

practical value in that its implementation requires the computation of the probabilities w(b).

Nonetheless, the measure Q provides a guideline for the construction of an efficient change

of measure to compute the probability w(b). Therefore, the task lies in constructing a change
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of measure Q that is a good approximation of Q. In addition, from the computational point of

view, we should also be able to numerically compute Lb and to simulate f from Q.

Besides the variance control, another important issue is the bias control. The random fields

considered in this paper are continuous processes. Direct simulation is usually not feasible.

Therefore, we need to set up an appropriate discretization scheme to approximate the contin-

uous objects. The bias caused by the discretization also needs to be controlled relative to w(b).

Suppose that a biased estimator L̃b has been constructed for w(b) such that E(L̃b) = w̃(b).

Thus, the computation error can be decomposed as follows

∣∣∣ L̃b
w(b)

− 1
∣∣∣ ≤ |L̃b − w̃(b)|

w(b)
+
|w̃(b)− w(b)|

w(b)
.

The first term on the right-hand-side is controlled by the relative variance of L̃b and the second

term is the bias relative to w(b). Both the bias and the variance control will be carefully

analyzed in the following sections relative to w(b). The overall computational complexity is

then the necessary number of i.i.d. replicates for L̃b multiplied by the computational cost to

generate one L̃b.

2.2. The change of measure and rare-event simulation

We propose a change of measure Q on the continuous sample path space and further propose a

discrete version, denoted by QM , for the simulation purpose, where the subscript M indicates

the size of the discretization. The description of Q requires the following quantities. For each

b, we define u satisfying the following identity

(
2π

σT

) d
2

u−
d
2 euσT = eb, (7)

where

σT = sup
t∈T

σ(t).

The left-hand-side of (7) is in a similar form as the Lambert W -function. Note that when b is

large, equation (7) generally has two solutions. One is on the order of b/σT ; the other one is

close to zero. See Figure 2.2 for an example of the left-hand-side of (7) with d = 1 and σT = 1.

We choose u to be the larger solution. In the asymptotic regime that b tends to infinity, we

need to have supT σ(t)f(t) + µ(t) approximately exceeding level u so that the integral is above

the level b.
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Furthermore, we define µσ(t) = µ(t)/σT and

ut = u− µσ(t). (8)

We characterize the measure Q in two ways. First, we describe the simulation of the process

f from Q following a three-step procedure.

(1) Simulate a random index τ uniformly over T with respect to the Lebesgue measure.

(2) Given the realized τ , simulate f(τ) ∼ N(uτ , 1), where uτ is defined as in (8).

(3) Simulate the rest of the field {f(t) : t 6= τ} from the original conditional distribution under

P given (τ, f(τ)).

The above simulation description induces a measure Q. To derive the Radon-Nikodym

derivative between Q and P , we need to realize that sampling f from the measure P may

also follow a similar three-step procedure except that in Step 2 we sample f(τ) from the stan-

dard normal distribution. Thus, the random variable τ and f are independent under P . We let

F be the σ-field generated by f and F ′ be that generated by f and τ . It is straightforward to

verify that the Radon-Nikodym derivative dQ/dP on F ′ is

Z̃(f, τ) =
exp

{
− 1

2 (f(τ)− uτ )2
}

exp
{
− 1

2f(τ)2
} .

That is, for each A′ ∈ F ′, Q(A′) = E(Z̃(f, τ);A′). Then, for each A ⊂ C(T )

Q(f ∈ A) = E
[exp

{
− 1

2 (f(τ)− uτ )2
}

exp
{
− 1

2f(τ)2
} ; f ∈ A

]
= E

{
E
[exp

{
− 1

2 (f(τ)− uτ )2
}

exp
{
− 1

2f(τ)2
} ∣∣∣f]; f ∈ A}. (9)
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Note that τ and f are independent under P and τ is uniform on T , thus the conditional expec-

tation given f is written as

Z(f) = E
[exp

{
− 1

2 (f(τ)− uτ )2
}

exp
{
− 1

2f(τ)2
} ∣∣∣f] =

∫
T

1

mes(T )
·

exp
{
− 1

2 (f(t)− ut)2
}

exp
{
− 1

2f(t)2
} dt,

where mes(·) denotes the Lebesgue measure. We insert the above form into (9) and obtain that

Q(f ∈ A) = E(Z(f); f ∈ A). Therefore, Z(f) is the Radon-Nikodym derivative between Q and

P restricted on F . Given that we are only interested in the tail event regarding f (not τ ), we

work with Z(f) most of the time. By slightly abusing notation, we write

dQ

dP
= Z(f) =

∫
T

1

mes(T )
·

exp
{
− 1

2 (f(t)− ut)2
}

exp
{
− 1

2f(t)2
} dt =

∫
T

1

mes(T )
· exp

{
−1

2
u2t + f(t)ut

}
dt. (10)

Remark 2.2. To better understand the connection between the above simulation procedure

and the likelihood ratio (10), we present a discrete analogue for a finite dimensional multivari-

ate Gaussian random vector X = (X1, ..., Xn). For the finite dimensional case, τ is uniformly

distributed over {1, ..., n}. The density function of X under the change of measure is

q(x1, ..., xn) =
1

n

n∑
τ=1

qτ (xτ )f(x−τ |xτ )

where x−τ = (x1, ..., xτ−1, xτ+1, ..., xn), qτ (x) is the sampling distribution of xτ given τ , and f

is the density under the original measure. Thus, the likelihood ratio is

q(x1, ..., xn)

f(x1, ..., xn)
=

1

n

n∑
τ=1

qτ (xτ )

f(xτ )

that is the discrete analogue of (10).

Based on the above discussion, we have the (continuous version) importance sampling esti-

mator taking the form

Lb = 1(I(T )>eb)

(∫
T

1

mes(T )
· exp

{
−1

2
u2t + f(t)ut

}
dt

)−1
and its second moment equals

EQ
[
L2
b

]
= EQ

[(∫
T

1

mes(T )
· exp

{
−1

2
u2t + f(t)ut

}
dt

)−2
; I(T ) > eb

]
.
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The measure Q is constructed such that the behavior of f under Q mimics the tail behavior

of f given the rare event {I(T ) > eb} under P . According to the above simulation procedure, a

random variable τ is first sampled uniformly over T , then f(τ) is simulated with a large mean

at level uτ . Under the zero-variance change of measure, the large value of the integral I(T )

is mostly caused by the high excursion of f(t) at one location. The random index τ searches

the maximum of f(t) over the index set T . It worth emphasizing that τ is not necessarily the

exact maximum but should be very close to it.

In the case when f(t) is differentiable and strictly stationary and µ(t) ≡ 0 and σ(t) ≡ 1, the

zero-variance change of measure can be more precisely quantified. For the stationary case, ut
is a constant and we write it as u. Then, the zero-variance change of measure is approximated

as follows

sup
A

∣∣∣Q(A)− P (f ∈ A| sup
T
γu(t) > u)

∣∣∣→ 0 as b→∞,

whereQ(·) = P (f ∈ ·|I(T ) > eb) and γu(t) = f(t)+ Tr(∇2f(t))
2σu +κ0.∇2f(t) is the Hessian matrix,

Tr(·) is the trace operator, and κ0 is a constant only depending on the covariance function. See

[Liu and Xu 2012a] for the detailed description of the above results. According to the total

variation approximation, the high excursion of I(T ) is almost the same as the high excursion

of f(t) with a small correction depending on the Hessian matrix.

The propose measureQ is different fromQmostly in two ways. First, underQ, the overshoot

of γu(t) ≈ f(t) over the level u is of order O(u−1); under Q, the overshoot is of order O(1).

Second, the measure Q does not tilt the distribution of ∇2f(t). These are the main sources of

inefficiency. On the other hand, the Radon-Nikodym derivative dQ/dP takes a very friendly

form that one can take advantage of the Jensen’s inequality to prove weak efficiency for a

general class of Gaussian processes, especially for non-differentiable processes, for which there

is no quantitative result for the zero-variance change of measure.

2.3. The algorithm and efficiency results

For the implementation, we introduce a suitable discretization scheme on T . For any positive

integer N , let GN,d be a subset of Rd

GN,d =

{(
i1
N
,
i2
N
, ...,

id
N

)
: i1, ..., id ∈ Z

}
,
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where Z is the set of integers. That is, GN,d is a regular lattice on Rd. For each t = (t1, · · · , td) ∈
GN,d, define

TN (t) =
{

(s1, · · · , sd) ∈ T : sj ∈ (tj − 1/N, tj ] for j = 1, · · · , d
}

that is the 1
N -cube intersected with T and upper-cornered at t. Furthermore, let

TN = {t ∈ GN,d : mes(TN (t)) > 0}. (11)

Since T is compact, TN is a finite set. We enumerate the elements in TN = {t1, · · · , tM}, where

M ∼ mes(T )Nd.

We use

wM (b) = P
(
IM (T ) > eb

)
as an approximation of w(b) where

IM (T ) =

M∑
i=1

mes(TN (ti))× eσ(ti)f(ti)+µ(ti). (12)

We now state the main results that require the following technical conditions.

A1 f(t) is almost surely continuous with respect to t and furthermore admits E[f(t)] = 0 and

E[f2(t)] = 1 for all t ∈ T ;

A2 There exist δ, κH > 0, and β ∈ (0, 1] such that, for all |s − t| < δ, the mean and variance

functions satisfy

|µ(t)− µ(s)|+ |σ(t)− σ(s)| ≤ κH |s− t|β ;

A3 For each s, t ∈ T , define the covariance function

C(s, t) = Cov(f(s), f(t)).

For all |s− s′| < δ and |t− t′| < δ, the covariance function satisfies

|C(t, s)− C(t′, s′)| ≤ κH(|t− t′|2β + |s− s′|2β).

Condition A1 assumes that f has zero mean and unit variance. For a general Gaussian ran-

dom field with mean µ(t) and variance σ2(t), we treat the mean and the standard deviation as

ACM Transactions on Modeling and Computer Simulation, Vol. 0, No. 0, Article 0, Publication date: 2012.



Efficient Simulations for Gaussian Random Fields 0:11

additional parameters. Conditions A2 and A3 essentially ensure that the process µ(t)+σ(t)f(t)

is uniformly Hölder continuous, that is, for |s − t| < δ, Var(f(s) − f(t)) ≤ 2κH |s − t|2β . These

assumptions are weak enough such that they accommodate essentially all Gaussian processes

practically in use, such as fractional Brownian motion, smooth Gaussian processes, etc. There-

fore, the algorithm developed in this paper is suitable for a wide range of applications. The

first result controls the relative bias of wM (b).

THEOREM 2.3. Consider a Gaussian random field f satisfying conditions A1-A3. For any

ε > 0, there exists a constant κ0 such that for any η > 0, b > 1, and the lattice size N =

κ
1/β
0 | log η|1/βη−1/βb2(1+ε)/β ,

|wM (b)− w(b)|
w(b)

< η,

where β is given as in conditions A2 and A3.

Thanks to the continuity of f(t), as N tends to infinity, the lattice TN becomes dense in T .

The finite sum IM (T ) converges in probability to I(T ) and therefore wM (b)/w(b) converges to

1. On the other hand, the convergence of wM (b)/w(b) is not uniform in b. The above theorem

provides a lower bound of N such that wM (b)/w(b) is close enough to unity and the relative

bias can be controlled.

With N chosen as in Theorem 2.3, we proceed to estimating wM (b) by importance sampling,

which is based on the change of measure proposed in (10). We make the corresponding adapta-

tion under the above discretization TN . In particular we define a measure QM as the discrete

version of Q such that dQM/dP takes the form:

dQM
dP

=
M∑
i=1

1

M

e−
1
2 (f(ti)−uti )

2

e−
1
2 f(ti)

2
=

M∑
i=1

1

M
eutif(ti)−

1
2u

2
ti . (13)

The computation of the above likelihood ratio and the event IM (T ) > b only consists of {f(ti) :

i = 1, ...,M}. For the simulation under the measure QM , we propose the following algorithm.

It is not hard to verify that the above simulation procedure is consistent with the likelihood

ratio (13) and thus L̃b = 1{IM (T )>eb}
dP
dQM

is an unbiased estimator of wM (b). The next theorem

controls the variance of the estimator L̃b.

ACM Transactions on Modeling and Computer Simulation, Vol. 0, No. 0, Article 0, Publication date: 2012.



0:12 Liu and Xu

The algorithm has two steps:

Step 1: Simulate ι uniformly from {1, ...,M} and generate f(tι) from N(utι , 1). Given (ι, f(tι)), simulate
(f(t1), · · · , f(tι−1), f(tι+1), · · · , f(tM )) from the original conditional distribution under the measure
P .

Step 2: Compute and output

L̃b =
1{IM (T )>eb}∑M

i=1
1
M
e
utif(ti)−

1
2
u2
ti

. (14)

THEOREM 2.4. Suppose that f is a Gaussian random field satisfying conditions A1-A3. If

N is chosen as in Theorem 2.3, then

lim
b→∞

logEQM L̃2
b

2 logwM (b)
= 1.

The above results show that the estimator L̃b in Algorithm 1 is asymptotically efficient in

estimating wM (b). To estimate w(b), we simulate n i.i.d. copies of L̃b, {L̃(j)
b : j = 1, ..., n} and

the final estimator is Zb = 1
n

∑n
j=1 L̃

(j)
b . The estimation error is

|Zb − w(b)| ≤ |wM (b)− w(b)|+ |Zb − wM (b)|. (15)

The first term is controlled by Theorem 2.3, i.e., |wM (b) − w(b)| ≤ ηw(b) if we choose the

discretization size

N = O(| log η|1/βη−1/βb2(1+ε)/β).

The second term of (15) is controlled by the discussion as in (4) if we choose the number of

replicates

n = O(η−2δ−1w−λ(b)).

The simulation of L̃b consists of generating a random vector of dimension M = O(Nd). Note

that the complexity of computing the eigenvalues and eigenvectors or the Cholesky decomposi-

tion of an M -dimension matrix is O(M3) = O(N3d). Thus, the total computational complexity

to achieve the prescribed accuracy in (5) is O(N3dη−2δ−1w−η
′
(b)).

The current choice of measure Q as in (10) does not depend on the particular form of the

covariance structure. When there is more knowledge available, we can further tune and adapt

the measure Q to more refined structures and to improve the efficiency. Notice that the mea-

sure Q twists the process f at the random location τ . The main tuning parameters are the
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distribution of τ (which is currently chosen to be uniform) and the distribution of f(τ) (which

is currently chosen to be N(uτ , 1)). Therefore, the general form of the change of measure Q is

dQ

dP
=

∫
T

h(t)
gt(f(t))

ϕt(f(t))
dt

where h(t) is the density of τ , gt(·) is the sampling density of f(τ) given that τ = t, and ϕt(·)
is the density of f(t) under P . We may refine the choice of gt and h to take into account the

specific structures of f . For instance, if µ(t) has one unique maximum attained at t∗, then it

would be more efficient to choose h(t) concentrating around t∗. The theoretical analysis also

needs to be adapted to the specific choices of h and gt. The most difficult part of the analysis

lies in obtaining more accurate asymptotic approximations of w(b) so as to justify stronger type

of efficiency. This is particularly challenging when f(t) is not differentiable and it is beyond

the topic of the current paper. In this paper, we stick to the unified simulation scheme that is

applicable to a large class of processes and admits an acceptable efficiency property.

Remark 2.5. One limitation of the current analysis is that the total computational com-

plexity grows exponentially fast with dimension d. This is mainly due to the regular dis-

cretization method. One may alternatively use other numerical methods such as quasi-Monte

Carlo, randomized quasi-Monte Carlo, or Monte Carlo, whose complexities do not depend on

dimension, to approximate the integral
∫
ef(t)dt. In the literature of quasi-Monte Carlo and

randomized quasi-Monte Carlo low-discrepancy sequences have been developed. These more

refined choices may further reduce bias compared to the regular lattice GN,d. For more de-

tailed analysis, see [L’Ecuyer and Munger 2010; L’Ecuyer et al. 2010; L’Ecuyer 2009]. We do

not perform rigorous analysis along this line that is beyond the scope of this paper.

3. SIMULATION

To illustrate the proposed algorithm, we first apply it to homogeneous Gaussian random fields

{f(t), t ∈ T = [0, 1]d} with dimension d = 1 and 2. For the not-so-small tail probabilities,

we also use crude Monte Carlo to compute them as a validation of the importance sampling

algorithm.

For each case, we assume that f has zero mean and covariance function

C(s, t) = e−|t−s|
α

, (16)
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where | · | is the L2-norm and α is taken to be 1 and 2 corresponding to different covariance

structures of f . When α = 2, f is infinitely differentiable; when α = 1, f is non-differentiable.

We discretize T following the procedure in Section 2.2.

For d = 1, we take TN = {i/100 : i = 1, · · · , 100} with discretization size N = 100. The

detailed simulation is described in the next steps.

1. Generate a random variable ι ∼ Uniform {1, 2, · · · , 100}.
2. Simulate f

(
ι

100

)
∼ N(u, 1), where u is calculated from equation (7).

3. Given ι and f
(
ι

100

)
, simulate {f

(
i

100

)
, i = 1, · · · , ι − 1, ι + 1, · · · , 100} under the covariance

structure specified in (16).

First, we consider the one-dimensional case with constant σ(t) and µ(t). Let µ(t) = 0 and

σ(t) = 1. Then the tail probability of interest takes the form

w(b) = P

(∫ 1

0

ef(t)dt > eb
)
.

The estimated tail probabilities w(b) along with the estimated standard deviations StdQ(L̃b) =√
VarQ(L̃b) are shown in Table I. All the results are based on 104 independent simulations.

The standard deviation of the final estimate (in the column “Est.”) is the reported standard

deviation (in the column of “Std.”) divided by 100. Comparing the simulation results of α = 1

and 2, we can see that the algorithm has a smaller relative error when α = 2. The CPU time to

generate 104 samples is less than one second. To validate the simulation results, we use crude

Monte Carlo for b = 3 and 5. Based on 106 independent simulations, for b = 3, the estimated

tail probabilities are 4.7e-4 (Std. 2e-5) and 8.2e-4 (Std. 3e-5) when α = 1 and 2, respectively;

based on 109 independent simulations, for b = 5, the estimated tail probabilities are 1.2e-8

(Std. 3e-9) and 7.7e-8 (Std. 9e-9) when α = 1 and 2, respectively. These results are consistent

with those computed by the importance sampling estimators.

We also consider the non-constant mean and variances. In particular, we choose σ(t) =

1 − |t − 0.5|2 and µ(t) = |2t − 1|. The corresponding simulation results for w(b) =

P (
∫ 1

0
eσ(t)f(t)+µ(t)dt > eb) are shown in Table II. The CPU time to generate 104 samples is

less than one second. For b = 3, crude Monte Carlo estimator based on 106 independent sim-

ulations gives the estimated tail probabilities 1.4e-3 (Std. 4e-5) and 2.3e-3 (Std. 5e-5) when

α = 1 and α = 2, respectively; for b = 5, crude Monte Carlo estimator based on 109 indepen-

dent simulations gives the estimated tail probabilities 1.8e-8 (Std. 4e-9) and 1.4e-7 (Std. 1e-8)

when α = 1 and α = 2, respectively.
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Table I. Estimates of w(b) on T = [0, 1], σ(t) = 1, and µ(t) =
0

b Est. Std. Std./Est.
b = 3 4.47e-04 1.41e-03 3.14

α = 1 b = 5 1.13e-08 6.33e-08 5.60
b = 7 1.80e-15 1.66e-14 9.23
b = 3 8.49e-04 2.09e-03 2.46

α = 2 b = 5 7.03e-08 2.30e-07 3.27
b = 7 8.27e-14 3.46e-13 4.19

Estimates of w(b) for T = [0, 1] with σ(t) = 1 and µ(t) = 0.
All results are based on 104 independent simulations. The
standard deviation of the estimate is Std./100.

For the case that d = 2, we start with constant mean and variance, µ(t) = 0 and σ(t) = 1.

Then the tail probability of interest takes the form w(b) = P (
∫
[0,1]2

ef(t)dt > eb). Similarly,

we discretize T and take TN = {(i, j)/100 : i, j = 1, · · · , 100} with the discretization size

N = 100 × 100. Table III shows the estimated tail probabilities w(b) along with StdQ(L̃b). In

addition, we perform crude Monte Carlo for b = 3. The estimated tail probabilities, based on

105 independent simulations, are 1.8e-4 (Std. 4e-5) and 5.3e-4 (Std. 7e-5) when α = 1 and

α = 2, respectively. Furthermore, Table IV gives estimated tail probabilities for non-constant

functions σ(t) = 1− ‖t− (0.5, 0.5)‖22 and µ(t) = ‖2t− (1, 1)‖1, where ‖ · ‖1 and ‖ · ‖2 are the L1-

and L2-norms respectively. The CPU time to generate 104 samples varies from from 1 to 15

minutes. For b = 3, the crude Monte Carlo based on 105 independent simulations gives 3.3e-3

(Std. 2e-4) and 5.6e-3 (Std. 2e-4) for α = 1 and α = 2, respectively.

The simulation results show that the coefficients of variation (StdQ(Lb)/w(b)) increase as

the tail probabilities become smaller. Nonetheless, the coefficients of variation stay reason-

ably small when the probability is as small as 10−7. The continuity of the process and the

dimension do affect the empirical performance of the algorithm. More precisely, the algorithm

admits smaller coefficients of variation when the process is more continuous (corresponding

to a larger value of α) and the domain T is of a lower dimension. In addition, for stationary

processes, the algorithm has a slightly better performance than the nonstationary cases. This

is because, for the stationary cases, the uniform distribution of τ is closer to the distribution

of the maximum of f under Q.

4. PROOF OF THE THEOREMS

The proofs of the theorems need several supporting lemmas. To smooth the discussion, we

provide their statements at places where they are used and delay their proofs to Section 5.
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Table II. Estimates of w(b) on T = [0, 1], σ(t) = 1−|t−0.5|2,
and µ(t) = |2t− 1|

b Est. Std. Std./Est.
b = 3 1.39e-03 3.57e-03 2.56

α = 1 b = 5 2.22e-08 1.31e-07 5.87
b = 7 2.97e-15 4.45e-14 14.93
b = 3 2.30e-03 4.93e-03 2.14

α = 2 b = 5 1.31e-07 4.66e-07 3.57
b = 7 1.19e-13 6.86e-13 5.77

Estimates of w(b) on T = [0, 1] with σ(t) = 1 − |t − 0.5|2
and µ(t) = |2t − 1|. All results are based on 104 indepen-
dent simulations. The standard deviation of the estimate
is Std./100.

Table III. Estimates of w(b) on T = [0, 1]2, σ(t) = 1, and
µ(t) = 0

b Est. Std. Std./Est.
b = 3 2.01e-04 1.77e-03 8.81

α = 1 b = 5 1.16e-09 1.58e-08 13.64
b = 7 1.51e-17 5.79e-16 38.48
b = 3 5.04e-04 2.81e-03 5.57

α = 2 b = 5 1.46e-08 7.54e-08 5.18
b = 7 4.04e-15 3.11e-14 7.70

Estimates of w(b) on T = [0, 1]2 with σ(t) = 1 and µ(t) =
0. All results are based on 104 independent simulations.
The standard deviation of the estimate is Std./100.

Table IV. Estimates of w(b) on T = [0, 1]2, σ(t) = 1 − |t −
(0.5, 0.5)|2, and µ(t) = |2t− (1, 1)|1

b Est. Std. Std./Est.
b = 3 2.89e-03 1.18e-02 4.07

α = 1 b = 5 5.02e-09 5.60e-08 11.16
b = 7 1.30e-17 4.04e-16 31.13
b = 3 5.15e-03 1.58e-02 3.06

α = 2 b = 5 6.33e-08 3.09e-07 4.88
b = 7 4.25e-15 3.61e-14 8.50

Estimates of w(b) on T = [0, 1]2 with σ(t) = 1 − |t −
(0.5, 0.5)|2 and µ(t) = |2t − (1, 1)|1. All results are based
on 104 independent simulations. The standard deviation of
the estimate is Std./100.

PROOF OF THEOREM 2.3. For any η, ε > 0 and a large constant κ0 > 0 (to be determined

later), let

L =

{
f(·) ∈ C(T ) : sup

s,t:|t−s|≤dN−1

|σ(s)f(s) + µ(s)− (σ(t)f(t) + µ(t))| ≤ ηκ−1/30 b−(1+ε)

}
, (17)

where C(T ) is the set of all continuous functions on T and N is chosen as in the statement of

the theorem. The following lemma suggests that we only need to focus on the set L.
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LEMMA 4.1. Under the conditions in Theorem 2.3, for any ε > 0, there exists a constant κ0
such that, for any η > 0, b > 1, and N = κ

1/β
0 | log η|1/βη−1/βb(2+2ε)/β , we have

P
(
I(T ) > eb,Lc

)
≤ ηw(b), P

(
IM (T ) > eb,Lc

)
≤ ηw(b). (18)

With N chosen as in Lemma 4.1, we have that

|wM (b)− w(b)| (19)

≤ P
(
IM (T ) > eb, I(T ) < eb,L

)
+ P

(
IM (T ) < eb, I(T ) > eb,L

)
+ 2ηw(b).

On the set L, we have that

|IM (T )− I(T )|

=

∣∣∣∣∣
M∑
i=1

∫
TN (ti)

[
eσ(ti)f(ti)+µ(ti) − eσ(t)f(t)+µ(t)

]
dt

∣∣∣∣∣
≤ 2

∣∣∣∣∣
M∑
i=1

mes(TN (ti))× eσ(ti)f(ti)+µ(ti) × sup
|t−ti|≤dN−1

|σ(ti)f(ti) + µ(ti)− (σ(t)f(t) + µ(t))|

∣∣∣∣∣
≤ 2ηκ

−1/3
0 b−(1+ε)IM (T ).

Recall that ti is the corner point of TN (ti). The first inequality in the above display is an

application of Taylor’s expansion. A similar argument yields that

|IM (T )− I(T )| ≤ 2ηκ
−1/3
0 b−(1+ε)I(T ).

Thus, the first term in (19) is bounded by

P
(
IM (T ) > eb, I(T ) < eb,L

)
≤ P

(
eb(1− 2ηκ

−1/3
0 b−(1+ε)) < I(T ) < eb,L

)
and the second term is bounded by

P
(
IM (T ) < eb, I(T ) > eb,L

)
≤ P

(
eb < I(T ) < eb(1 + 2ηκ

−1/3
0 b−(1+ε)),L

)
.
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We insert the above bounds back to (19). There exists some constant c > 0 such that

|wM (b)− w(b)|

≤ P
(
eb(1− 2ηκ

−1/3
0 b−(1+ε)) < I(T ) < eb(1 + 2ηκ

−1/3
0 b−(1+ε)),L

)
+ 2ηw(b)

≤ P
(
b+ log(1− 2ηκ

−1/3
0 b−(1+ε)) < log I(T ) < b+ log(1 + 2ηκ

−1/3
0 b−(1+ε)),L

)
+ 2ηw(b)

≤ cηκ
−1/3
0 b−(1+ε)F ′(b− cηκ−1/30 b−(1+ε)) + 2ηw(b), (20)

where F ′(x) is the probability density function of log I(T ). The following lemma provides an

upper bound of the density function F ′(x).

LEMMA 4.2. Under the conditions of Theorem 2.3, let F ′(x) be the probability density func-

tion of log I(T ). Then F ′(x) exists almost everywhere. Moreover, for all ε > 0 and λ > 0,

F ′(x) = o(1)x1+ε/2 · w
(
x+ x−1−λ

)
as x→∞. (21)

We apply Lemma 4.2 to (20) by setting x = b− cηκ−1/30 b−(1+ε). Furthermore, we choose λ small

such that x+ x−1−λ = b and thus

F ′(b− cηκ−1/30 b−(1+ε)) ≤ o(1)b1+ε/2w(b).

We insert the above bound to the right-hand-side of (20) and obtain that for κ0 large enough,

|wM (b)− w(b)| ≤ cκ−1/30 ηb−(1+ε)o(1)b1+ε/2w(b) + 2ηw(b) ≤ 3ηw(b).

Then, we can redefine η and κ0 and conclude the conclusion.

PROOF OF THEOREM 2.4.

The main idea. The key element of this proof is an application of the Jensen’s inequality

that for all u and f(t)

1

M

M∑
i=1

euf(ti) ≥
[ 1

M

M∑
i=1

ef(ti)
]u
.

Thus, if 1
M

∑M
i=1 e

f(ti) > eb, then 1
M

∑M
i=1 e

uf(ti) > eub. The following technical proof is to write

the likelihood ratio and IM (T ) in a form that the above inequality is applicable. Thus, we

are able to develop an upper bound of the second moment of the likelihood ratio on the set

{IM (T ) > eb}.
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The technical proof. We first present a lemma that provides not-so-accurate but use-

ful bounds of w(b).

LEMMA 4.3. Under Conditions A1-A3, there exist constants c̃0, c̃1 and c̃2 such that

exp

(
−b

2 + c̃1b log b+ c̃0
2σ2

T

)
≤ w(b) ≤ exp

(
− b2

2σ2
T

+ c̃2b

)
.

Consequently,

− lim
b→∞

logw(b)

b2
→ 1

2σ2
T

.

Under the change of measure, the discrete likelihood ratio is

dQM
dP

=

M∑
i=1

1

M

e−
1
2 (f(ti)−uti )

2

e−
1
2 f(ti)

2
=

M∑
i=1

1

M
e−

1
2u

2
ti
+f(ti)uti .

Note that most TN (ti) are rectangles and there are just a few on the boundary of T that are

not rectangles. If we let κ1 = 2mes(T ), then IM (T ) is bounded from the above by

κ1
Nd

M∑
i=1

eσ(ti)f(ti)+µ(ti) ≥
M∑
i=1

eσ(ti)f(ti)+µ(ti) ·mes(TN (ti)) = IM (T ).

That is, those TN (ti)’s on the boundary of T are replaced by rectangles. Thus, the second

moment of the estimator is bounded by

EQM

[(
dP

dQM

)2

; IM (T ) > eb

]
(22)

≤ EQM
( M∑

i=1

1

M
e−

1
2u

2
ti
+f(ti)uti

)−2
;
κ1
Nd

M∑
i=1

eσ(ti)f(ti)+µ(ti) > eb


For the next step, we wish to take the term “− 1

2u
2
ti” in the exponential out of the expectation.

Note that − 1
2u

2
ti ≥ −

1
2 (u−mint∈T µσ(t))2 and we continue the above calculation

≤ e(u−mint∈T µσ(t))
2

EQM

( M∑
i=1

1

M
ef(ti)uti

)−2
;
κ1
Nd

M∑
i=1

eσ(ti)f(ti)+µ(ti) > eb

 . (23)
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We now split the set {t1, ..., tM} into {ti : f(ti) > 0} and {ti : f(ti) ≤ 0}. Furthermore, there

exists κ such that

1

Nd

∑
{ti:f(ti)≤0}

eσ(ti)f(ti)+µ(ti) ≤ κ.

Thus, there exists δ0 > 0 such that, for b sufficiently large and on the set

{ κ1

Nd

∑M
i=1 e

σ(ti)f(ti)+µ(ti) > eb}, we have κ < (1− δ0)eb and

∑
{i:f(ti)>0}

eσ(ti)f(ti)+µ(ti) ≥ δ0
M∑
i=1

eσ(ti)f(ti)+µ(ti). (24)

Therefore, κ1

Nd

∑M
i=1 e

σ(ti)f(ti)+µ(ti) > eb implies that

1

M

M∑
i=1

eσT f(ti)+maxt∈T µ(t) ≥ 1

M

∑
{i:f(ti)≥0}

eσ(ti)f(ti)+µ(ti) ≥ δ0N
d

Mκ1
eb. (25)

We now consider the behavior of the likelihood ratio on the set { κ1

Nd

∑M
i=1 e

σ(ti)f(ti)+µ(ti) > eb}.
For f(t) > 0, we have that

utf(t) ≥ (u−maxµσ(t))f(t) =
u−maxµσ(t)

σT
[σT f(t) + maxµ(t)]− (u−maxµσ(t))×maxµσ(t).

For u large enough, we have that

1

M

M∑
i=1

eutif(ti) ≥ 1

M

∑
i:f(ti)>0

e(u−maxµσ(t))f(ti) (26)

=
1

M

∑
i:f(ti)>0

exp

{
u−maxt µσ(t)

σT
[σT f(ti) + max

t∈T
µ(t)]− (u−max

t
µσ(t)) max

t∈T
µσ(t)

}

Notice that 1
M

∑
i:f(ti)≤0 e

(u−maxµσ(t))f(ti) ≤ 1. We continue the above calculations and obtain

that

≥ e−(u−maxt µσ(t))maxt∈T µσ(t)

M

M∑
i=1

exp

{
u−maxt µσ(t)

σT
[σT f(ti) + max

t∈T
µ(t)]

}
− 1.
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We apply Jensen’s inequality to the above summation and obtain that

1

M

M∑
i=1

eutif(ti)

≥ e
−u−maxt µσ(t)

σT
maxt∈T µ(t)

[
1

M

M∑
i=1

eσT f(ti)+maxt∈T µ(t)

](u−maxt µσ(t))/σT

− 1

We apply the result in (25) and continue the above calculations. There exist κ2, κ3 > 0 such

that on the set { κ1

Nd

∑M
i=1 e

σ(ti)f(ti)+µ(ti) > eb}

1

M

M∑
i=1

eutif(ti) ≥ e−κ2u

(
δ0N

d

Mκ1
eb
)(u−maxt µσ(t))/σT

− 1

≥ e−κ3u log b+u2

. (27)

For the last step, we use the definition of u as in (7) and obtain that σTu − κ4 log b ≤ b ≤ σTu

where κ4 > 0 and further

lim
b→∞

b

σTu
= 1.

Combining (22), (23), and (27), there exists a constant κ5 > 0 such that

e(u−mint∈T µσ(t))
2

EQM

( M∑
i=1

1

M
ef(ti)uti

)−2
;
κ1
Nd

M∑
i=1

eσ(ti)f(ti)+µ(ti) > eb

 ≤ e−σ−2
T b2+κ5b log b.

Combining the above results with Theorem 2.3 and Lemma 4.3, we have

lim inf
b→∞

logEQM L̃2
b

2 logwM (b)
≥ lim inf

b→∞

−b2/σ2
T + κ5b log b

−b2/σ2
T

= 1.

On the other hand, Jensen’s inequality suggests that logEQM L̃2
b ≥ 2 logwM (b) and

lim sup
b→∞

logEQM L̃2
b

2 logwM (b)
≤ 1.
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5. PROOFS OF LEMMAS

In this section, we present the proofs of the supporting lemmas in the main proof. The first

lemma is known as the Borel-TIS lemma, which is proved independently by [Borell 1975;

Tsirelson et al. 1976].

LEMMA 5.1 (BOREL-TIS). Let f(t), t ∈ U (U is a parameter set) be a mean zero Gaussian

random field. f is almost surely bounded on U . Then, E[supU f(t)] <∞, and

P
(

sup
t∈U

f (t)− E[sup
t∈U

f (t)] ≥ b
)
≤ exp

(
− b2

2σ2
U

)
,

where σ2
U = supt∈U Var[f(t)].

The Borel-TIS lemma provides a very general bound of the tail probability

P (sup
t∈U

f(t) > b) ≤ exp

(
−

(b− E[supt∈U f (t)])2

2σ2
U

)
.

In most cases, E[supt∈U f (t)] is much smaller than b. Thus, for b sufficiently large, the tail

probability can be further bounded by

P (sup
t∈U

f(t) > b) ≤ exp

(
− b2

4σ2
U

)
.

The following result by [Dudley 1973] (c.f. Theorem 6.7 in [Adler et al. 2012]) is often used to

control E[supt∈U f (t)].

LEMMA 5.2. Let U be a compact subset of Rn, and let {f(t) : t ∈ U} be a mean zero,

continuous Gaussian random field. Define the canonical metric d on U as

d (s, t) =
√
E[f (t)− f (s)]2

and put diam (U) = sups,t∈U d (s, t), which is assumed to be finite. Then there exists a finite

universal constant κ > 0 such that

E[max
t∈U

f (t)] ≤ κ
∫ diam(U)/2

0

[log (N (ε))]1/2dε,

where the entropy N (ε) is the smallest number of d−balls of radius ε whose union covers U .

By means of the above lemma, one can often establish that E[maxt∈U f (t)] = O(δ| log δ|)
where δ2 = supt∈U Var(f(t)). We now proceed to the proof of the supporting lemmas.
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PROOF OF LEMMA 4.1. We present the proof of the first bound in the lemma. The proof of the

second bound is completely analogous. Consider the change of measure

dQ

dP
=

∫
T

1

mes(T )
exp

(
utf(t)− u2t

2

)
dt. (28)

With a similar argument as in (23), we have

P
(
I(T ) > eb,Lc

)
= EQ

[
dP

dQ
; I(T ) > eb,Lc

]
≤ e(u−mint µσ(t))

2/2 · EQ
[

mes(T )∫
T
eutf(t)dt

; I(T ) > eb,Lc
]
,

where EQ is the expectation under measure Q. Note that I(T ) > eb implies that for all large

b,

1

mes(T )

∫
T

eσT f(t)+maxt∈T µ(t)dt ≥ 1

mes(T )

∫
T∩{f(t)≥0}

eσ(t)f(t)+µ(t)dt

≥ 1

mes(T )
eb − 1

mes(T )

∫
T∩{f(t)<0}

eσ(t)f(t)+µ(t)dt

≥ 1

mes(T )
eb − emaxt∈T µ(t). (29)

Furthermore, on the set {I(T ) > eb}, we have that

1

mes(T )

∫
T

eutf(t)dt ≥ 1

mes(T )

∫
T∩{f(t)>0}

exp
{

(u−max
t
µσ(t))f(t)

}
dt.

We add and subtract the term “u−maxt µσ(t)
σT

maxt∈T µ(t)” in the exponent and continue the

above calculation

=
1

mes(T )

∫
T∩{f(t)>0}

exp

{
u−maxt µσ(t)

σT

(
σT f(t) + max

t∈T
µ(t)

)
− u−maxt µσ(t)

σT
max
t∈T

µ(t)

}
dt

Since 1
mes(T )

∫
T∩{f(t)≤0} e

(u−maxt µσ(t))f(t)dt ≤ 1, the above display is bounded from below by

≥ 1

mes(T )

∫
T

exp

{
u−maxt µσ(t)

σT

(
σT f(t) + max

t∈T
µ(t)

)
− u−maxt µσ(t)

σT
max
t∈T

µ(t)

}
dt− 1
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By means of Jensen’s inequality and the lower bound in (29), the above display is further

lower bounded by

≥ exp

{
−u−maxt µσ(t)

σT
max
t∈T

µ(t)

}[
1

mes(T )

∫
T

exp{σT f(t) + max
t∈T

µ(t)}dt
](u−maxt µσ(t))/σT

− 1

≥ exp

{
−u−maxt µσ(t)

σT
max
t∈T

µ(t)

}[
eb

mes(T )
− emaxt∈T µ(t)

](u−maxt µσ(t))/σT

− 1. (30)

Therefore, we have the following bound

P
(
I(T ) > eb,Lc

)
≤ e(u−mint µσ(t))

2/2 · EQ
[

1

mes(T )−1
∫
T
eutf(t)dt

; I(T ) > eb,Lc
]

≤ e(u−mint µσ(t))
2/2
[
e
−u−maxt∈T µσ(t)

σT
maxt∈T µ(t)

( eb

mes(T )
− emaxt∈T µ(t)

)u−maxt µσ(t)
σT − 1

]−1
× Q

(
I(T ) > eb,Lc

)
Notice the facts that (u−mint µσ(t))2/2 = u2/2 +O(u) and

[
eb

mes(T )
− emaxt∈T µ(t)

]u−maxt µσ(t)
σT

= e(b/σT+O(1))(u+O(1)).

By the facts that u = b/σT +O(log b) and Q
(
I(T ) > eb,Lc

)
≤ Q(Lc), there exists a constant c1

such that for b sufficiently large,

P
(
I(T ) > eb,Lc

)
≤ exp

{
− b2

2σ2
T

+ c1b log b
}
Q(Lc).

Then Lemma 5.3 (presented momentarily) together with Lemma 4.3 implies that there exist

constants κ1 and λ such that

P
(
I(T ) > eb,Lc

)
≤ η exp

(
− b2

2σ2
T

+ c1b log b− λb1+ε
)
≤ κ1ηw(b).

Note that κ1 can be chosen such that the above inequality holds for all b and η. Then, we can

redefine η and the constant κ0 and obtain the conclusion.

The proof of the second inequality in (18) is similar. The only difference is that the integral

in the above derivation is replaced by a summation over discretization TN . Hence, we omit the

details.
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LEMMA 5.3. Under the conditions in Theorem 2.3, there exists a constant λ such that

Q (Lc) ≤ η exp
(
−λb1+ε

)
,

where L is the set defined as in (17).

PROOF OF LEMMA 5.3. We focus on a given τ and define another process

f∗(t) = f(t)− uτC(t, τ).

Then under the measure of Q, f∗(t) has the same distribution as that of f(t) under the original

measure P . Under the above notation and N = κ
1/β
0 | log η|1/βη−1/βb(2+2ε)/β , we have that

Lc =

{
sup

s,t:|t−s|≤dN−1

∣∣σ(s)f∗(s) + σ(s)uτC(s, τ) + µ(s)

− (σ(t)f∗(t) + σ(t)uτC(t, τ) + µ(t))
∣∣ > ηκ

−1/3
0 b−(1+ε)

}
.

According to the Borel-TIS lemma,

Q

(
sup
t∈T
|f∗(t)| >

√
| log η|κ1/20 b1/2+ε

)
≤ 2 exp

−
(√
| log η|κ1/20 b1/2+ε − EQ[supt∈T f∗(t)]

)2
2σ2

T

 .

Since EQ[supt∈T f∗(t)] = O(1), there exists λ1 > 0 such that for large κ0

Q

(
sup
t∈T
|f∗(t)| >

√
| log η|κ1/20 b1/2+ε

)
≤ exp

(
−λ1| log η|κ0b1+2ε

)
= ηλ1κ0b

1+2ε

≤ η exp
(
−λ1κ0b1+2ε

)
.

(31)

In what follows, we bound the tail of Lc ∩ {supt∈T |f∗(t)| ≤
√
| log η|κ1/20 b1/2+ε}. For all s, t

satisfying |t− s|β ≤ dβN−β = dβκ−10 | log η|−1ηb−(2+2ε) and b > 1, there exist positive constants

c1, c2, and c such that∣∣∣σ(s)f∗(s) + σ(s)uτC(s, τ) + µ(s)− (σ(t)f∗(t) + σ(t)uτC(t, τ) + µ(t))
∣∣∣

≤ |σ(s)| · |f∗(s)− f∗(t)|+ |f∗(t)| · |σ(s)− σ(t)|

+uτ · |σ(s)| · |C(s, τ)− C(t, τ)|+ uτ · |C(t, τ)| · |σ(s)− σ(t)|+ |µ(s)− µ(t)|

≤ σT · |f∗(s)− f∗(t)|+ cκ
−1/2
0 | log η|−1/2ηb−1−2ε.
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Applying the above bound, we obtain that

Q

(
Lc, sup

t∈T
|f∗(t)| ≤

√
| log η|κ1/20 b1/2+ε

)
≤ Q

(
sup

s,t:|t−s|≤dN−1

σT |f∗(s)− f∗(t)|+ cκ
−1/2
0 | log η|−1/2ηb−1−2ε > ηκ

−1/3
0 b−(1+ε)

)
≤ Q

(
sup

s,t:|t−s|≤dN−1

σT |f∗(s)− f∗(t)| >
1

2
ηκ
−1/3
0 b−(1+ε)

)
.

For the component f∗(s)− f∗(t) and |t− s| ≤ dN−1, the variance function has an upper bound:

Var(f∗(s)−f∗(t)) = 2(1−C(s, t)) ≤ 2κH |s−t|2β ≤ 2κHd
2βN−2β = 2κHd

2βκ−20 | log η|−2η2b−4(1+ε).

An application of Lemma 5.2 to the double-indexed process ξ(s, t) = f∗(s) − f∗(t) (that is the

supremum of the difference sup|t−s|≤dN−1(f∗(s)−f∗(t)) is the supremem of ξ(s, t) on a set where

its variance is small) yields that

EQ
[

sup
|t−s|≤dN−1

(f∗(s)− f∗(t))
]

= O(ηb−2(1+ε) log b).

We apply the Borel-TIS inequality

Q

(
sup

s,t:|t−s|≤dN−1

σT |f∗(s)− f∗(t)| >
1

2
ηκ
−1/3
0 b−(1+ε)

)

≤ 2 exp

−
(

1
2ηκ

−1/3
0 b−(1+ε) − EQ[sup|t−s|≤dN−1(f∗(s)− f∗(t))]

)2
4σ2

TκHd
2βκ−20 | log η|−2η2b−4(1+ε)


≤ exp

(
−λ2(log η)2κ

4/3
0 b2(1+ε)

)
(32)

for some λ2 > 0. Combining the results in (31) and (32), there exists λ such that for large κ0,

Q(Lc) ≤ exp
(
−λ1| log η|κ0b1+2ε

)
+ exp

(
−λ2(log η)2κ

4/3
0 b2(1+ε)

)
≤ η exp

(
−λb1+ε

)
.

PROOF OF LEMMA 4.2. Let Φ(·) be the cumulative distribution function of the standard Gaus-

sian distribution. Define cumulative distribution function of I(T ) and the associated quantiles

with respect to Φ(·) as

F (x) = P (log I(T ) ≤ x) and tx = Φ−1(F (x)).
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We cite one result (Proposition 1 in [Liu and Xu 2012b]) that gives an upper bound of F ′(x):

LEMMA 5.4. Under the conditions of Lemma 4.2, F ′(x) exists almost everywhere. Choose

y < x (depending on x) in a way that x − y → 0 and x(x − y) → ∞ when we send x to infinity.

Then,

lim sup
x→∞

√
2πσT exp

(
σ2
T t

2
y + 2(x− y)y

2σ2
T

)
F ′(x) ≤ 1, (33)

where σT = supt∈T σ(t).

𝑌 = 𝜎𝑇
−1𝑥 

𝑥 

𝑌 

𝑡𝑥 
 

Fig. 2. Plot of tx

Lemma 5.4 is equivalent to

F ′(x) ≤ 1 + o(1)√
2πσT

exp

(
−
σ2
T t

2
y + 2(x− y)y

2σ2
T

)
. (34)

To prove Lemma 4.2, it is sufficient to show that the right-hand-side of (34) is o(1)x1+ε/2w(x+

x−1−λ). Lemma 4.3 implies that

lim
x→∞

tx
x

= σ−1T . (35)
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Then, for λ > 0 we let x̃ = x+ x−1−λ and y = x− log log x/x. With such choices of x̃ and y, the

following holds

t2x̃ −
(
t2y + 2σ−2T (x− y)y

)
= (2 + o(1))σ−1T x (tx̃ − ty)− 2σ−2T (x− y)y

= (2 + o(1))σ−1T x(x− y)

(
tx̃ − ty
x̃− y

· x̃− y
x− y

− σ−1T (1 + o(1))

)
. (36)

According to Theorem 4.4.1 in [Bogachev 1998] (see also [Ehrhard 1983]), tx is a concave

function of x, and thus (tz − tx)/(z − x) is a monotone non-increasing function of z when

z > x and limz→x+(tz − tx)/(z − x) exists. Figure 5 illustrates the function tx. Then for y =

x− log log x/x and x̃ = x+ x−1−λ, we have that

(tx̃ − ty)/(x̃− y) ≤ lim
z→y+

(tz − ty)/(z − y). (37)

The concavity of tx and (35) imply that limz→y+ (tz − ty)/(z − y) is a non-increasing

function of y and converges to σ−1T . Sending x to infinity on both sides of (37) gives

lim supx→∞ (tx̃ − ty)/(x̃− y) ≤ σ−1T . Thus, the first term in the parenthesis of (36) is bound-

ed by σ−1T + o(1). Therefore, there exists a constant c0 > 0 such that

t2x̃ −
(
t2y + 2σ−2T (x− y)y

)
≤ c0x(x− y) = c0 log log x.

Then, we obtain an upper bound for (34):

F ′(x) ≤ 1√
2πσT

exp

(
−
σ2
T t

2
y + 2(x− y)y

2σ2
T

)
≤ 1√

2πσT
exp

(
− t

2
x̃ − c0 log log x

2

)
.

Note that

w(x̃) = 1− F (x̃) =
1 + o(1)√

2πtx̃
exp

(
− t

2
x̃

2

)
= (1 + o(1))

σT√
2πx

exp

(
− t

2
x̃

2

)
.

Therefore, for any ε > 0, we have that

F ′(x) ≤ (1 + o(1))σ−2T · x(log x)c0/2 · w(x̃) = o(1)x1+ε/2w(x+ x−1−λ).
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PROOF OF LEMMA 4.3. We start to derive a lower bound for w(b). Let σ(t∗) = supt∈T σ(t) = σT .

On the set L as defined in (17) (with η = η0 fixed), there exists a δ0 > 0 such that∫
|t−t∗|<N−1

eσ(t)f(t)+µ(t)dt ≥ δ0N−deσT f(t∗).

Then, on the set L if σT f(t∗) > b+ d logN − log δ0 then∫
|t−t∗|<N−1

eσ(t)f(t)+µ(t)dt ≥ eb.

Therefore, we have the lower bound

w(b) ≥ P
(
I(T ) > eb,L

)
≥ P

(∫
|t−t∗|<N−1

eσ(t)f(t)+µ(t)dt > eb,L

)
≥ P (σT f(t∗) > b+ d logN − log δ0,L)

≥ P (σT f(t∗) > b+ d logN − log δ0)× P (L|σT f(t∗) > b+ d logN − log δ0) (38)

There exist δ0, δ1 > 0 such that the conditional probability P (L|σT f(t∗) > b+ d logN − log δ0)

> δ1. Therefore,

w(b) ≥ δ1 P (σT f(t∗) > b+ d logN − log δ0) . (39)

Note that N = O(1)b(1+ε)/β and f(t∗) follows a standard normal distribution. Thus, there exist

positive constants c̃0 and c̃1 such that w(b) ≥ exp(− b
2+c̃1b log b+c̃0

2σ2
T

).

We continue to construct an upper bound. Since I(T ) > eb implies that supt∈T {σ(t)f(t)} >
b−maxt∈T µ(t)− log mes(T ). Therefore, there exists a constant c̃2 such that

w(b) ≤ P
(

sup
T
{σ(t)f(t)} > b−max

t∈T
µ(t)− log mes(T )

)
≤ exp

(
− b2

2σ2
T

+ c̃2b
)
. (40)

Combining (39) and (40), we conclude the proof.
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