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We develop asymptotic approximations for the tail probabilities of integrals of lognormal random fields
taking the form

∫
T
eσf(t)+µ(t)m(dt) where f is a Gaussian random field. We consider the asymptotic regime

that the variance of the random field σ2 converges to zero. Under this setting, the integral converges to
its limiting value

∫
T
eµ(t)m(dt). The tail probabilities are evaluated at places that are O(σα) distance away

from this limiting value for some α ∈ (0,1). This analysis is of interest on considering short term portfolio
risk analysis (such as daily performance), for which the variances of log-returns could be as small as a few
percent.
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1. Introduction Let {f(t) : t ∈ T} be a zero-mean continuous Gaussian random field living
on a compact set T ⊂ Rd. For a continuous and deterministic function µ(t) and a finite positive
measure m(·) on T , we are interested in the probability

v(σ) = P
(∫

T

eσf(t)+µ(t)m(dt)> b
)
, as σ→ 0, (1)

where

b=

∫
T

eµ(t)m(dt) +κσα (2)

for some constants κ> 0 and 0<α< 1. We consider two cases: m is a discrete measure with finitely
many point masses and m is the Lebesgue measure.

Motivation. The integral of lognormal random fields is the central quantity of many proba-
bilistic models in portfolio risk analysis, spatial point processes, etc. (see, e.g., Liu and Xu [12, 14]).
The current analysis is of interest particularly for risk analysis of short-term behavior of a large
size portfolio under high correlations. We elaborate more on this application. Consider a portfolio
consisting of n assets denoted by S1, ..., Sn, each of which is associated to a weight, denoted by
w1, ..., wn. The total value is S =

∑n

i=1wiSi. Of interest is the tail behavior of S. A stylized model
assumes that Si’s are lognormal random variables. Then, the total value is the sum of n correlated
lognormal random variables (Ahsan [1], Duffie and Pan [6], Glasserman et al. [10], Basak and
Shapiro [3], Deutsch [5], Foss and Richards [8]). Under such a setting, one may employ a latent
space approach by embedding S1, ..., Sn in a Gaussian process. More precisely, we construct a
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Gaussian process f(t) and a deterministic function w(t). For each 1≤ i≤ n there exists ti ∈ T such
that Si = ef(ti) and wi = w(ti). An interesting situation is that the portfolio size is large and the
asset prices become highly correlated. Then the set {t1, ..., tn} becomes dense in T . Ultimately, as
the portfolio size tends to infinity, the limiting value of the unit share price becomes

1

n

n∑
i=1

w(ti)Si→
∫
T

w(t)ef(t)m(dt)

where m(·) is the limiting distribution of {t1, ..., tn}.
Upon considering the short-term behavior of the portfolio, the variance of each asset Si is usually

small. For instance, the variance of the daily log-return of a liquid stock is usually on the order
of a few percent that corresponds to the variance of f . Thus, we introduce an additional overall
volatility parameter σ and consider ∫

T

w(t)eσf(t)m(dt).

Sending σ to zero is equivalently to considering a very short-term return of the portfolio. We are
interested in that

∫
T
w(t)eσf(t)m(dt) deviates from its limiting value,

∫
T
w(t)m(dt), by an amount

κσα that is slightly larger than σ, i.e., the target probability in (1) with eµ(t) =w(t). For instance,
if σ is on the order of a few percent, then κσα is of a larger order such as ten percent. In order to
have the probability v(σ) eventually converging to zero, it is necessary to keep α strictly less than
one.

Related works. The tail probabilities of integrals of lognormal fields have been studied both
intensively and extensively in the literature, most of which focuses on the asymptotic regime that
b tends to infinity and σ is fixed. Asmussen and Rojas-Nandayapa [2] and Gao et al. [9] study
tail probabilities and the density functions for summations of lognormal random variables. The
distributions of integrals of geometric Brownian motions are studied in Yor [16] and Dufresne [7].
For more general continuous Gaussian random fields, Liu [11] and Liu and Xu [12] derive the
asymptotic approximations of P (

∫
T
ef(t)dt > b) as b→∞ when f(t) is a three-time differentiable

Gaussian random field. Under similar conditions, Liu and Xu [14] characterize the conditional
probabilities P ( · |

∫
T
eσf(t)+µ(t)dt > b) as b→∞ and efficient Monte Carlo estimators of v(σ) are

then constructed. The corresponding density function is studied in Liu and Xu [13].
This paper considers the asymptotic regime that σ tends to zero. We develop asymptotic approx-

imations of the tail probabilities under very weak regularity conditions. The tail behaviors under
small noise are different from the cases when b tends to infinity and σ is fixed. For the latter case
the most likely sample paths typically admit the so-called one-big-jump principle, that is, the high
value of the exponential integral is due to the high excursion of f(t) at one location and the integral
in a small region around the maximum of f(t) is dominating. For case that σ converges to zero,
there is not a small dominating region and the integral on every piece of the region has a contri-
bution. This feature is often observed in the portfolio risk analysis. Suppose that a large portfolio
has a 10% downturn in one day. It is very likely to observe that most stocks in the portfolio has a
substantial negative return lead by a few (or sector of) names whose returns are the most negative
among all.

In addition to the right tail, with completely analogous analysis, we provide approximations of
the left tail probabilities

vl(σ) = P
(∫

T

eσf(t)+µ(t)m(dt)< b
)
, for b=

∫
T

eµ(t)m(dt)−κσα. (3)

The rest of the paper is organized as follows. The main approximation results are presented in
Section 2. Section 3 includes the proofs of the theorems presented in Section 2.
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2. Main results

2.1. Asymptotic approximations We start the discussion with the case when m(·) is the
Lebesgue measure. Let

C(s, t) =E(f(s)f(t))

be the covariance function of the Gaussian random field f(t) and assume that C(s, t) is positive
definite. Let C(T ) denote the set of continuous functions on T . Define a map K : C(T ) 7→ [0,∞] as
follows: for each x(·)∈ C(T ),

K(x) =

∫
T

∫
T

x(s)C(s, t)x(t)dsdt (4)

that is the squared Mahalanobis distance induced by C. Define a linear map C : C(T ) 7→ C(T )

C(x)(t) =

∫
T

C(s, t)x(s)ds.

We consider the optimization problem

K∗σ = min
x∈C(T )

K(x) subject to the constraints

∫
T

eσC(x)(t)+µ(t)dt≥ b and sup
t∈T
|x(t)| ≤ σα−1−ε,

(5)
for some ε ∈ (0,min(α,1 − α)). For σ sufficiently small, the above optimization problem has a
unique solution and it does not depend on the choice of ε. The properties of the solution will be
discussed later in this section. Now we present the first result.

Theorem 1. For 0 < α < 1, suppose that the covariance function C(s, t) is positive definite
and m is the Lebesgue measure. Let K∗σ be defined as in (5). We have the following approximation
of v(σ)

v(σ) = (c1 + o(1))σ1−α exp
(
− 1

2
K∗σ

)
, as σ→ 0, (6)

where
c1 = κ−1{(2π)−1K(eµ(·))}1/2 (7)

and the constant κ appears initially in (2).

The above theorem provides an almost explicit approximation of v(σ). The implicitly part lies
in K∗σ that is unfortunately not in a closed form. We will later present an iterative algorithm to
compute K∗σ numerically. To maintain the approximation accuracy in Theorem 1, we need to have
the computational error reduced to the level of o(1). Due to the technical complication and also to
smooth the discussion, we delay this topic to the following subsection. In the meantime, we provide
the first order approximation of K∗σ in the following proposition. This approximation is sufficient
to provide an exponential decay rate of v(σ).

Proposition 1. Under the conditions of Theorem 1, for σ sufficiently small, we have the
following results.

(i) For 0<α< 1, the optimization problem (5) has a unique solution, denoted by x∗(t).
(ii) We have the following approximations as σ→ 0

x∗(t) = (1 + o(1))κσα−1 eµ(t)∫
T×T C(s, t)eµ(s)+µ(t)dsdt

, (8)

K∗σ = (1 + o(1))κ2σ2α−2K(eµ(·))−1.

The first o(1) term is uniform in t∈ T as σ→ 0.
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The approximations in Proposition 1(ii) are obtained via the first order expansion of the integral∫
T
eσf(t)+µ(t)dt. Better approximations of x∗ and K∗σ can be obtained by expanding higher orders.

As mentioned previously, to maintain an accurate approximation, we need to reduce the accuracy
to the level o(1). The necessary order of expansions in fact depends on α and the derivation is
doable but very tedious. Thus, we seek for alternative numerical methods presented in the sequel.
Combining Theorem 1 and Proposition 1 we have the following approximation of log v(σ).

Corollary 1. Under the conditions of Theorem 1, for 0<α< 1, as σ→ 0,

log v(σ) =−(1 + o(1))
1

2
κ2σ2α−2K(eµ(·))−1.

Remark 1. An intuitive understanding of the above approximation result is given as follows.
As σ→ 0, we approximate the interval by Taylor expansion

∫
T
eσf(t)+µ(t)dt≈

∫
T
eµ(t)(1 + σf(t))dt.

This suggests that v(σ) ≈ P (
∫
T
eµ(t)f(t)dt > κσα−1). Since

∫
T
eµ(t)f(t)dt is a Gaussian random

variable with zero mean and finite variance, we have approximation v(σ) ≈ exp{−O(κ2σ2α−2)}.
This gives the order of the leading term in Theorem 1.

We now consider that m(·) is a discrete measure on T with finitely many point masses. For
simplicity, we write the random field in terms of a random vector X = (X1, ..,Xn)T that has a
positive definite covariance matrix Σ. Furthermore, we replace the function µ(t) with a vector
µ= (µ1, .., µn)T . The probability v(σ) becomes

v(σ) = P
( n∑
i=1

eσXi+µi > b
)
. (9)

Similarly to the continuous case, we define the squared Mahalanobis distance for x∈Rn,

K̃(x) = xTΣx.

We further define K̃∗σ through the optimization problem

K̃∗σ = min
x
K̃(x) subject to the constraint

n∑
i=1

eσ(Σx)i+µi ≥ b, (10)

where (Σx)i is the ith element of Σx. The next theorem presents an approximation of v(σ) for
0<α< 1, which is the discrete analogue of Theorem 1.

Theorem 2. The covariance matrix Σ is positive definite. Let K̃∗σ be defined as in (10) and b
be defined as in (2). For 0<α< 1, we have

v(σ) = (c2 + o(1))σ1−α exp
(
− K̃

∗
σ

2

)
, as σ→ 0, (11)

where c2 = κ−1
√

(2π)−1y∗TΣy∗ and

y∗ = (eµ1 , ..., eµn)T . (12)

We have the following discrete analogue of Proposition 1.

Proposition 2. Under the conditions of Theorem 2, for 0 < α < 1, we have the following
results.

(i) The optimization problem (10) has a unique solution x∗ ∈Rn.
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(ii) We have the following approximation

x∗ = (1 + o(1))κσα−1(y∗TΣy∗)−1y∗,
K̃∗σ = (1 + o(1))κ2σ2α−2(y∗TΣy∗)−1,

where y∗ is given as in (12).

Combining the above proposition and Theorem 2, we have the following approximation of
log v(σ).

Corollary 2. Under the conditions of Theorem 2, for 0<α< 1, we have as σ→ 0

log(v(σ)) =−(1 + o(1))
1

2
κ2(y∗TΣy∗)−1σ2α−2.

The approximations of the left-tail probabilities can be derived similarly as those of the right
tail. Therefore, we present the results as corollaries and omit the proof. For the case when m(·) is
the Lebesgue measure, we redefine K∗σ through the optimization problem

K∗σ = min
x∈C(T )

K(x) subject to the constraints∫
T

eσC(x)(t)+µ(t)dt≤
∫
T

eµ(t)dt−κσα and sup
t∈T
|x(t)| ≤ σα−1−ε. (13)

Corollary 3. With K∗σ defined in (13), we have

P
(∫

T

eσf(t)+µ(t)dt <

∫
T

eµ(t)dt−κσα
)

= (c1 + o(1))σ1−α exp
(
− 1

2
K∗σ

)
, as σ→ 0,

where c1 is given as in (7).

When m(·) is a discrete measure with finitely many point masses, we redefine the optimization
problem as

K̃∗σ = min
x
K̃(x) subject to

n∑
i=1

eσ(Σx)i+µi ≤
n∑
i=1

eµi −κσσ. (14)

Corollary 4. With K̃∗σ defined in (14), we have

P
( n∑
i=1

eσXi+µi <
n∑
i=1

eµi −κσα
)

= (c2 + o(1))σ1−α exp
(
− K̃

∗
σ

2

)
, as σ→ 0,

where c2 = κ−1
√

(2π)−1y∗TΣy∗.

2.2. Numerical approximation for K∗σ As discussed previously, K∗σ is not a closed form
expression. In this section, we present an iterative algorithm to solve (5) and m is the Lebesgue
measure. The case of discrete measure is similar and therefore is omitted. Let

B= {x∈ C(T ) : ‖x‖∞ ≤ σα−1−ε},

where ‖x‖∞ = supt∈T |x(t)|. Define the function Λ(·) : B→ [0,+∞) such that, for each x ∈ B, λ=
Λ(x) solves the following equation∫

T

exp
{
σλC(eσC(x)+µ)(t) +µ(t)

}
dt= b. (15)

The next proposition ensures that Λ(·) is well defined.
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Proposition 3. For each x ∈ B, there is a unique solution Λ(x) satisfying equation (15).
Moreover, 0 ≤ Λ(x) ≤ κcσα−1, where κc is a positive constant depending only on the covariance
function C and the mean function µ.

We further define the operator S :B→B by

S(x)(t) = Λ(x)eσC(x)(t)+µ(t). (16)

Our algorithm to compute K∗σ is based on the following proposition.

Proposition 4. S is a contraction mapping over B, that is, for x, y ∈B,

‖S(x)−S(y)‖∞ ≤ κ0σ
α‖x− y‖∞, (17)

where κ0 is a positive constant depending only on the covariance function C and the mean function
µ. Furthermore, the solution x∗(·) to the optimization problem (5) is the unique fixed point of S,
that is, x∗ = S(x∗).

With the above proposition, we present an iterative algorithm to compute x∗ using the above
contraction mapping theorem.

1. Let

x̂∗0 = κσα−1 eµ(t)∫
T

∫
T
C(s, t)eµ(s)+µ(t)dsdt

.

2. For each k, compute x̂∗k according to

x̂∗k = S(x̂∗k−1).

We iterate step 2 until convergence. According to the contraction mapping theorem, the rate of
convergence is

‖x̂∗k−x∗‖∞ ≤ (κ0σ
α)k‖x̂∗0−x∗‖∞ =O(σαk+α−1).

If we run the algorithm for k > 2(1−α)/α iterations, then ‖x̂∗k − x∗‖∞ = O(σαk+α−1) = o(σ1−α).
We obtain that |K(x̂∗k)−K∗σ|= o(σ1−α) and the asymptotic results in the previous theorems still
hold by replacing K∗σ with K(x̂∗k).

3. Proof In this section, we present the proofs of Theorem 1 and Propositions 1, 3, and 4.
The proofs for Theorem 2 and Proposition 2 are completely analogous to those of Theorem 1 and
Proposition 1 and therefore are omitted.

We begin with some useful lemmas. The following lemma is known as the Borell-TIS lemma,
which is proved independently by Borell [4] and Tsirelson et al. [15].

Lemma 1 (Borell-TIS). Let f(t), t∈ U , U is a parameter set, be a mean zero Gaussian ran-
dom field. f is almost surely bounded on U . Then, E[supU f(t)]<∞, and

P

(
sup
t∈U

f (t)−E[sup
t∈U

f (t)]≥ b
)
≤ exp

(
− b2

2σ2
U

)
,

where σ2
U = supt∈U Var[f(t)].

The Borell-TIS lemma provides a general bound of the tail probabilities of supt f(t). In most cases,
E[supt f(t)] is much smaller than b. Thus, for b that is sufficiently large, the tail probability can
be further bounded by:

P
(

sup
t∈T

f(t)> b
)
≤ exp

(
− b2

4σ2
T

)
. (18)
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To prove Theorem 1, the following lemma shows that f(t) can be localized to the event

L=
{
f(t) : sup

t∈T
|f(t)| ≤ κfσα−1

}
,

and we only need to focus on L for our analysis.

Lemma 2. There exists a positive constant κf sufficiently large such that

P
(

sup
t∈T
|f(t)|>κfσα−1

)
= o(1)σ1−α exp

(
− 1

2
K∗σ

)
.

Proof of Lemma 2. According to Proposition 1, whose proof is independent of the current one,
K∗σ = (1 + o(1))κ2σ2α−2K(eµ(·))−1. We choose the constant κf > 2σTκ

√
K(eµ(·))−1, then inequality

(18) implies that

P
(

sup
t∈T
|f(t)|>κfσα−1

)
≤ 2exp

(
−κ2σ2α−2K(eµ(·))−1

)
= o(1)σ1−α exp

(
− 1

2
K∗σ

)
,

which yields the desired result.

We proceed to the proof of Theorem 1. We use a change of measure technique to derive the
asymptotic approximation. The change of measure is constructed such that it focuses on the most
likely sample path corresponding to the solution to the optimization problem (5). The theoretical
properties of the optimization problem (5) are established in Propositions 1, 3 and 4. These three
propositions are the key elements of the proof.

Proof of Theorem 1. Let x∗(t) be the solution to (5). We define the exponential change of
measure

dQ

dP
= exp

(∫
T

x∗(t)f(t)dt− 1

2

∫
T

∫
T

x∗(s)C(s, t)x∗(t)dsdt
)
.

The introduced change of measure Q defines a translation of the original Gaussian random field
f(t). We state this result in the next lemma, whose proof is delayed after the proof of Theorem 1.

Lemma 3. Under measure Q, f(t) is a Gaussian random field with mean function C(x∗)(t)
and covariance function C(s, t).

According to Lemma 2,

P

(∫
T

eσf(t)+µ(t) > b,Lc
)

= o(1)σ1−α exp
(
− 1

2
K∗σ

)
.

Therefore, we only need to consider P (
∫
T
eσf(t)+µ(t) > b,L). By means of the change of measure Q,

we have

P

(∫
T

eσf(t)+µ(t) > b,L
)

= EQ

[
dP

dQ
;

∫
T

eσf(t)+µ(t) > b, L
]

= exp

(
1

2

∫
T×T

x∗(s)C(s, t)x∗(t)dsdt

)
EQ

[
e−

∫
T x

∗(t)f(t)dt;

∫
T

eσf(t)+µ(t)dt > b,L
]
, (19)

where EQ denotes the expectation with respect to the measure Q. Let

f∗ =C(x∗).
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With this notation, we have∫
T

eσf
∗(t)+µ(t)dt= b,

∫
T

f∗(t)x∗(t)dt=

∫
T×T

x∗(s)C(s, t)x∗(t)dsdt.

The random field f∗(t)+f(t) under P has the same distribution as f(t) under Q. Thus, we replace
the probability measure Q and f with P and f∗+ f in (19) and obtain

P

(∫
T

eσf(t)+µ(t) > b,L
)

= exp

(
1

2

∫
T×T

x∗(s)C(s, t)x∗(t)dsdt

)
E

[
e−

∫
T x

∗(t)(f∗(t)+f(t))dt;

∫
T

eσ(f∗(t)+f(t))+µ(t)dt > b,L
]

= exp

(
−1

2

∫
T×T

x∗(s)C(s, t)x∗(t)dsdt

)
E

[
e−

∫
T x

∗(t)f(t)dt;

∫
T

(eσf(t)− 1)w(dt)> 0,L
]
, (20)

where

w(dt) =
y∗(t)dt∫
T
y∗(s)ds

and y∗(t) = eσf
∗(t)+µ(t).

We define

F =

{∫
T

(eσf(t)− 1)w(dt)> 0

}
.

By the fact that ex− 1≥ x, we have∫
T

(eσf(t)− 1)w(dt)≥
∫
T

σf(t)w(dt).

Thus, F can be written as the union of two disjoint sets, F = F1 ∪F2, where

F1 =

{∫
T

f(t)w(dt)> 0

}
and F2 =

{∫
T

f(t)w(dt)< 0,

∫
T

(eσf(t)− 1)w(dt)> 0

}
.

Thus, the expectation in (20) can be written as

E

[
e−

∫
T x

∗(t)f(t)dt;

∫
T

(eσf(t)− 1)w(dt)> 0,L
]

=E
[
e−

∫
T x

∗(t)f(t)dt;F1,L
]

+E
[
e−

∫
T x

∗(t)f(t)dt;F2,L
]
.

(21)
We calculate each of the two terms on the right-hand side of the above equation separately. First,

we compute

E

[
e−

∫
T x

∗(t)f(t)dt;

∫
T

f(t)w(dt)> 0,L
]
. (22)

According to Proposition 4, whose proof is independent of the current one, x∗ is the fixed point of
the contraction map S and thus

x∗(t) = S(x∗)(t) = Λ(x∗)eσC(x∗)(t)+µ(t) = Λ(x∗)y∗(t).

Therefore, x∗(t) and y∗(t) are different by a factor Λ(x∗). Thus,
∫
T
x∗(t)f(t)dt and

∫
T
f(t)w(dt)

are different by a factor
∫
T
x∗(t)dt. Thanks to Proposition 1(ii), we have∫
T

x∗(t)dt= (1 + o(1))
κσα−1

∫
T
eµ(t)dt∫

T×T C(s, t)eµ(s)+µ(t)dsdt
.
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As the result, we have∫
T

x∗(t)f(t)dt =

∫
T

x∗(t)dt

∫
T

f(t)w(dt)

= (1 + o(1))
κσα−1

∫
T
eµ(t)dt∫

T×T C(s, t)eµ(s)+µ(t)dsdt

∫
T

f(t)w(dt). (23)

Define

∆ =
κσα−1

∫
T
eµ(t)dt∫

T×T C(s, t)eµ(s)+µ(t)dsdt
.

The expectation (22) can be computed as follows

E

[
e−

∫
T x

∗(t)f(t)dt;

∫
T

f(t)w(dt)> 0,L
]

= E

[
e−(1+o(1))∆

∫
T f(t)w(dt);

∫
T

f(t)w(dt)> 0,L
]

= (1 + o(1))E

[
e−(1+o(1))∆

∫
T f(t)w(dt);

∫
T

f(t)w(dt)> 0

]
= (1 + o(1))

1

∆
√

2πV ar(
∫
T
f(t)w(dt))

.

The second step in the above derivation is due to the fact that P (L)→ 1 for κf chosen sufficiently
large. Furthermore, notice that w(t) = (1 + o(1))eµ(t)/

∫
eµ(s)ds. Then,

V ar

(∫
T

f(t)w(dt)

)
= (1 + o(1))

∫
T×T e

µ(s)+µ(t)C(s, t)dsdt

(
∫
T
eµ(t)dt)2

and

E

[
e−

∫
T x

∗(t)f(t)dt;

∫
T

f(t)w(dt)> 0,L
]

= (1 + o(1))κ−1σ1−α

√
(2π)−1

∫
T×T

C(s, t)eµ(s)+µ(t)dsdt.

Thus, we conclude the derivation of the first expectation on the right-hand side of (21).
Now we proceed to the second expectation term. On the set L, by Taylor’s expansion, we have

that eσf(t)− 1≤ σf(t) +σ2f2(t) and thus∫
T

(eσf(t)− 1)w(dt)≤
∫
T

σf(t)w(dt) +

∫
T

σ2f2(t)w(dt).

So the event {
∫
T

(eσf(t) − 1)w(dt) ≥ 0} is a subset of {
∫
T

[f(t) + σf2(t)]w(dt) ≥ 0}. This gives an
upper bound of the expectation

E
[
e−

∫
T x

∗(t)f(t)dt;F2,L
]
≤E

[
e−

∫
T x

∗(t)f(t)dt;

∫
T

[f(t) +σf2(t)]w(dt)≥ 0,

∫
T

f(t)w(dt)< 0,L
]
.

We write

Z1 =−
∫
T

f(t)w(dt) and Z2 =

∫
T

f2(t)w(dt).

From (23), the right-hand side of the above inequality can be written as

E[e∆Z1 ;Z1 > 0,Z2 ≥Z1/σ,L].
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On the set {0<Z1 ≤ σ1−α+ε}, this expectation is negligible as ∆ =O(σα−1), that is,

E[e∆Z1 ; 0<Z1 <σ
1−α+ε] =O(P (0<Z1 <σ

1−α+ε)) = o(1). (24)

Furthermore, on the set L, we have supt |f(t)| ≤ κfσα−1 and thus Z1 <σ
α−1−ε for ε and σ sufficiently

small. Therefore, we only need to focus on the expectation

E
[
e∆Z1 ;σ1−α+ε <Z1 <σ

α−1−ε,Z2 >Z1/σ
]

=

∫ σα−1−ε

σ1−α+ε
e∆zP (Z2 > z/σ|Z1 = z)pZ1

(z)dz, (25)

where pZ1
(z) is the density function of Z1. We need the following lemma.

Lemma 4. For z ∈ [σ1−α+ε, σα−1−ε], there exists a constant ε0 > 0 such that

P (Z2 > z/σ|Z1 = z)≤ e−ε0z/σ. (26)

Lemma 4 implies that the expectation (25) is bounded by

(25) ≤
∫ σα−1−ε

σ1−α+ε
e−(ε0/σ−∆)zpZ1

(z)dz =

∫ σα−1−ε

σ1−α+ε
e−(1+o(1))ε0z/σpZ1

(z)dz =O(σ). (27)

Combining the results in (24) and (27), we have E[e−
∫
T x

∗(t)f(t)dt;F2,L] = o(1) and Theorem 1 is
proved.

Proof of Lemma 3. It is sufficient to show that, for any finite subset {t1, . . . , tk} ∈ T , the moment
generating function of (f(t1), . . . , f(tk)) under the measure Q is the same as that of the multivariate
normal distribution with mean (C(x∗)(t1), . . . ,C(x∗)(tk)) and covariance matrix {C(ti, tj)}i,j=1,...,k.
For any (λ1, ..., λk)∈Rk, we have

EQ
[

exp{λ1f(t1) + · · ·+λkf(tk)}
]

= E

[
dQ

dP
exp{λ1f(t1) + · · ·+λkf(tk)}

]
= E

[
exp

{∫
T

x∗(t)f(t)dt− 1

2

∫
T

∫
T

x∗(s)C(s, t)x∗(t)dsdt+λ1f(t1) + · · ·+λkf(tk)

}]
= exp

{
−1

2

∫
T

∫
T

x∗(s)C(s, t)x∗(t)dsdt

}
E

[
exp

{∫
T

x∗(t)f(t)dt+λ1f(t1) + · · ·+λkf(tk)

}]
= exp

{
−1

2

∫
T

∫
T

x∗(s)C(s, t)x∗(t)dsdt+
1

2
V ar

(∫
T

x∗(t)f(t)dt+λ1f(t1) + · · ·+λkf(tk)

)}
= exp

{
k∑
i=1

λiC(x∗)(ti) +
1

2

k∑
i

k∑
j=1

λiλjC(ti, tj)

}
,

which is the moment generating function of the target multivariate normal distribution. This
completes the proof.

Proof of Lemma 4. Conditional on Z1 = z, {f(t) : t ∈ T} is still a Gaussian random field, with
the mean and variance given as follows:

µ̃(t) =E(f(t)|Z1 = z) =−
∫
T
C(s, t)w(ds)∫

T×T C(s, t)w(ds)w(dt)
· z, (28)

V ar(f(t)|Z1 = z) =C(t, t)−
(∫

T×T
C(s, t)w(ds)w(dt)

)−1(∫
T

C(s, t)w(ds)

)2

.
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We write the conditional random field as f(t) = µ̃(t)+g(t), then the probability in (26) is bounded
by

P

(∫
T

{µ̃(t) + g(t)}2w(dt)> z/σ

)
≤ P

(
sup
t∈T
|µ̃(t)|+ sup

T

|g(t)|>
√
z/σ

)
.

According to (28), for z ∈ [σ1−α+ε, σα−1−ε], we have supt∈T |µ̃(t)|=O(z) = o(1)
√
z/σ. So the above

probability can be further bounded by

P

(
sup
T

|g(t)|> (1 + o(1))
√
z/σ

)
.

We obtain (26) by applying Lemma 1. This concludes our proof.

The proof of Proposition 1 needs the results of Propositions 3 and 4. Thus, we present the proofs
of these two propositions first.

Proof of Proposition 3. For x∈B, we define

h(λ) =

∫
T

exp
(
σλC(eσC(x)+µ)(t) +µ(t)

)
dt.

We have

h(λ) ≥
∫
T

eµ(t)(1 +σλC(eσC(x)+µ)(t))dt (29)

=

∫
T

eµ(t)dt+σλ

∫
T

eµ(t)C(eµ(1 + o(1)))(t)dt

=

∫
T

eµ(t)dt+ (1 + o(1))σλ

∫
T×T

eµ(s)C(s, t)eµ(t)dsdt.

The second equality holds because σC(x) = O(σα−ε) = o(1). If h(λ) = b, then, together with the
fact that b=

∫
T
eµ(t)dt+κσα, the above display suggests that

λ≤ (1 + o(1))κσα−1(

∫
T

∫
T

eµ(s)C(s, t)eµ(t)dsdt)−1.

This means that the equation h(λ) = b has no solution outside [0, κcσ
α−1] for some constant κc

large.
For λ∈ [0, κcσ

α−1], we obtain the following approximation by Taylor’s expansion

h(λ) =

∫
T

eµ(t)dt+σλ(1 + o(1))

∫
T

∫
T

eµ(s)C(s, t)eµ(t)dsdt

and h(λ) is approximately linear in λ as σ tends to 0. Because h(0)< b and h(κcσ
α−1)> b for κc

sufficiently large, there exists λ∈ [0, κcσ
α−1] such that h(λ) = b. Moreover, for λ∈ [0, κcσ

α−1],

h′(λ) = (1 + o(1))σ

∫
T

∫
T

eµ(s)C(s, t)eµ(t)dsdt > 0,

so the solution is unique.

Proof for Proposition 4. We first show that S is a contraction mapping. According to the
definition of S(x) in (16) we have that for x, y ∈B

‖S(x)−S(y)‖∞ ≤ |Λ(x)−Λ(y)| · ‖eσC(x)+µ‖∞+ Λ(y)‖eσC(x)+µ− eσC(y)+µ‖∞. (30)
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We give upper bounds for |Λ(x)−Λ(y)| and ‖eσC(x)+µ− eσC(y)+µ‖∞ separately. According to (15),
we have ∫

T

exp
(
σΛ(x)C(eσC(x)+µ)(t) +µ(t)

)
dt−

∫
T

exp
(
σΛ(y)C(eσC(x)+µ)(t) +µ(t)

)
dt (31)

=

∫
T

exp
(
σΛ(y)C(eσC(y)+µ)(t) +µ(t)

)
dt−

∫
T

exp
(
σΛ(y)C(eσC(x)+µ)(t) +µ(t)

)
dt. (32)

We provide a bound for |Λ(x) − Λ(y)| by deriving approximations for both sides of the above
identity. Without loss of generality, we assume Λ(x) > Λ(y). By exchanging the integration and
derivative, the left-hand side is

(31) =

∫ Λ(x)

Λ(y)

∫
T

σC(eσC(x)+µ)(t) exp
(
σλC(eσC(x)+µ)(t) +µ(t)

)
dtdλ.

Thus, we have

(31) = (1 + o(1))σ|Λ(x)−Λ(y)| ×
∫
T

C(eσC(x)+µ)(t)eµ(t)dt.

Similarly, we have the right-hand side is

(32) ≤ (1 + o(1))σΛ(y)

∫
T

eµ(t)C(eσC(x)+µ− eσC(y)+µ)(t)dt.

Notice that ‖eσC(x)+µ− eσC(y)+µ‖∞ ≤O(σ)‖x− y‖∞. Thus,

(32) = O(σ2)Λ(y)‖x− y‖∞ =O(σα+1)‖x− y‖∞.

By equating (31) and (32), we have

|Λ(x)−Λ(y)|=O(σα)‖x− y‖∞. (33)

Thus, the first term in (30) is bounded from the above by

|Λ(x)−Λ(y)| · ‖eσC(x)+µ‖∞ =O(σα)‖x− y‖∞.

We proceed to the second term on the right side of (30). By Taylor’s expansion, we have

‖eσC(x)+µ− eσC(y)+µ‖∞ ≤O(σ)‖x− y‖∞. (34)

Thus we obtain (17) by combining (30), (33), (34), and the fact that Λ(x)≤ κcσα−1.
We proceed to the proof that the fixed point of S is the solution to (5). We define set

M=

{
x∈ C(T ) :

∫
T

eσC(x)(t)+µ(t)dt≥ b and ‖x‖∞ ≤ σα−1−ε
}
.

For x ∈M, define function l(η) =
∫
T
eσηC(x)(t)+µ(t)dt that is monotonic increasing in η, so all solu-

tions to the optimization problem (5) lie on the boundary set

∂M=

{
x∈ C(T ) :

∫
T

eσC(x)(t)+µ(t)dt= b and ‖x‖∞ ≤ σα−1−ε
}
.

We use arguments in calculus of variation to show the conclusion. Let g be an arbitrary continuous
function on T and s be a scalar close to 0. We compute the derivative of the function

h(s) =K(x∗+ sg)− 2λ

σ
×
(∫

T

eσC(x∗+sg)(t)+µ(t)dt− b
)
,
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where 2λ/σ is the Lagrange multiplier. We take derivative with respect to s

h′(0) = 2

∫
T

x∗(t)C(g)(t)dt− 2λ

∫
T

eσC(x∗)(t)+µ(t)C(g)(t)dt. (35)

The solution x∗ satisfies h′(0) = 0. Since g is arbitrary, we have that x∗ is a solution to (5) is
equivalent to the following conditions

x∗(t) = λeσC(x∗)(t)+µ(t) and

∫
T

eσC(x∗)(t)+µ(t)dt= b. (36)

We plug the formula of x∗ in the first identity into the second identity and obtain that λ= Λ(x∗)
and thus x∗ is a fixed point of S. This concludes the proof.

Proof of Proposition 1. According to the contraction mapping theorem, the operator S has a
unique fixed point. According to Proposition 4 whose proof is independent of the current one,
this fixed point x∗ is the solution to optimization problem (5). This implies that (5) has a unique
solution in B.

To prove (ii), we expand the exponents in (36) and have that

x∗(t) = λeµ(t)(1 +O(σα−ε)) and

∫
T

eµ(t)[1 +σC(x∗)(t)]dt+O(σ2(α−ε)) = b.

Based on the above two identities, we solve

λ=
(1 + o(1))κσα−1∫

T×T C(s, t)eµ(s)+µ(t)dsdt
.

This yields

x∗(t) = (1 + o(1))κσα−1 eµ(t)∫
T×T C(s, t)eµ(s)+µ(t)dsdt

(37)

and

K∗σ = (1 + o(1))κ2σ2α−2
(∫

T

∫
T

C(s, t)eµ(s)+µ(t)dsdt
)−1

.
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