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ABSTRACT
Large deviations analysis for light-tailed systems provides
an asymptotic description of the optimal importance sam-
pler in the scaling of the Law of Large Numbers. As we will
show by means of a simple example related to computational
finance, such asymptotic description can be interpreted in
different ways suggesting several importance sampling algo-
rithms, some of them state-dependent. In turn, the per-
formance of the suggested algorithms can be substantially
different.
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1. INTRODUCTION
Large deviations techniques are often used in designing

efficient importance sampling estimators for rare-event sim-
ulation. Recall that an unbiased estimator is said to be
efficient (or, more precisely, logarithmically efficient) if the
ratio of the logarithm of its second moment to the logarithm
of the square of its mean is bounded (see, for instance, Buck-
lew (2004)).

Our purpose is to illustrate how large deviations analy-
sis describes the most likely path in a macroscopic scaling
(often called “fluid scaling”) that can hide some of the fine
structure that is present in the conditional behavior, given
the rare event, at the microscopic scale. In particular, there
are frequently several different changes of measure that are
consistent with the macroscopic desciption of the large de-
viations path associated with the rare event, but that are
very different at the microscopic scale. Not surprisingly, the
specific change of measure that is simulated at a microscopic
scale can have a big impact on the variance and efficiency
of the corresponding importance sampling estimator. Our
exposition here focuses on a model problem related to the
pricing of digital knock-in options in the context of computa-
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tional finance. This problem exhibits enough complexity to
illustrate the performance of different importance sampling
algorithms that, as we indicated, are each consistent with
a large deviations analysis (in fluid scale) of the associated
problem.

To be precise, let (Xk : k ≥ 1) be a sequence of i.i.d. r.v.’s
(independent and identically distributed random variables)
and consider the random walk (r.w.) process (Sn : n ≥ 0)
defined via Sn = X1 + ...+Xn. Given a < 0 < b and S0 = 0
we are interested in efficient estimation via simulation of the
probability

u (0, n) = P

�
min

0≤k≤n
Sk < an, Sn > nb

�
. (1)

Such probability can be interpreted as the price of a digital
knock-in option in the absence of interest rates. That is, the
price of an option that upon exercise pays one unit at time
n only if both Sn > b and in addition the r.w. hit a level
lower than a before time n. (See Glasserman (2003) for more
applications of importance sampling to option pricing). For
mathematical convenience in our exposition, we shall assume
that the Xk’s follow a standard Gaussian distribution.

Large deviations theory tells us that u (0, n) decreases to
zero at an exponentially fast rate in n that can be explicitly
computed (see, for instance, Dembo and Zeitouni (1998)).
It is also possible to obtain a precise description in the fluid
scale proportional to n (i.e. the Law of Large Numbers
(LLN’s) scale) of the most likely path that the random walk
follows conditional on the exercise of the option. This path is
also known as the optimal path in large deviations analysis,
because it can be computed by solving a variational problem.

It is not hard to see that the optimal path is piecewise lin-
ear. In particular, it has slope s1 < 0 from time zero up to
some deterministic time k0 < n at which time it reaches level
a, and then it has positive slope s2 > 0 from time k0 up until
time n at which time it reaches b. Because of the connec-
tion between exponential tilting and large deviations, this
description of the optimal path suggests the first algorithm
that we study. The exponential tilting algorithm (or ET
algorithm) proceeds by performing i.i.d. exponential tilting
for the first k0 increments in order to match the slope s1.
Regardless of the state of the random walk at time k0, the
remaining n−k0 increments are then exponentially tilted to
induce drift s2. Note that the ET is state-independent.

We shall call the second algorithm that we analyze the se-
quential exponential tilting algorithm (or SET algorithm),
following the terminology adopted by Sadowsky (1996) used
in describing a similar class of methods. SET is a small vari-



ation of ET. Here, we apply exponential tilting to induce
slope s1 until the random walk hits level a,and from that
time onwards (up until time n) we apply the tilting that
induces mean s2 > 0. SET is a simple state-dependent al-
gorithm, but still there are only two tiltings that are applied
during the course of the simulation.

Finally, the third algorithm, which we call OSDET for
optimal state-dependent exponential tilting, corresponds to
applying the large deviations analysis at each step in the
course of the simulation. That is, we re-compute the optimal
path depending on the current position and the remaining
time. We then apply the corresponding exponential tilt-
ing to the next increment only and continue repeating this
procedure until time n. OSDET is fully state-dependent
in that typically one would use n different randomly deter-
mined tilting parameters over the course of the simulation.

The state-independent algorithm, ET, provides an esti-
mator that exhibits exponential complexity. In particular,
the estimator is not logarithmically efficient and this can
be seen by its poor performance in our numerical experi-
ments. In contrast to ET, the second algorithm, namely
SET, turns out to be logarithmically efficient. This may
be somewhat surprising given the similarities between these
two algorithms. However, a little thought reveals a crucial
difference between SET and ET. Indeed, the reflection prin-
ciple yields that the probability of exercise coincides (up to

quantities of order O
�
n−1/2

�
) with P{Sn ≤ − (b− 2a) n}.

Applying importance sampling to induce slope s1up to the
first passage time of level a < 0 and then applying tilt-
ing with mean s2 > 0 (which by symmetry turns out to
be −s1) is essentially equivalent to estimating the probabil-
ity of {Sn ≤ − (b− 2a) n} using the corresponding optimal
exponential tilting (which induces mean −s1). Since this
tilting is well known to be efficient for estimating such tail
sum large deviations probabilities, it follows that SET is
efficient. The third algorithm, OSDET, is also efficient. In
fact, a very similar algorithm applied to related random walk
problems has been shown to be strongly efficient (in that the
coefficient of variation of the estimator remains bounded as
n ↗ ∞) (see Blanchet and Glynn (2006)). The connection
between OSDET-type algorithms and their performance in
terms of strong efficiency will be studied elsewhere.

The second and third algorithms described above can be
related to a recently developed class of algorithms. In par-
ticular, the second algorithm corresponds to a subsolution
to the associated Issacs equation introduced by Dupuis and
Wang (2005). Interestingly, the third algorithm corresponds
to the solution to the Issacs equation (Dupuis and Wang
(2004)). It turns out that in great generality the OSDET
importance sampling strategy, in which one re-computes the
fluid scale optimal path at each step and exponentially tilts
as required, corresponds to the strategy suggested by the so-
lution to the differential game described by the Issacs equa-
tion of Dupuis and Wang. We shall not pursue the details
of this connection here but defer those details for a future
work.

2. ALGORITHMS AND PERFORMANCE
Let us first provide an explicit description of the three

procedures. We shall start with the most complex of them,
namely OSDET.

We need to evaluate for t ∈ (0, 1) and x > a the as-
ymptotic optimal path (in fluid scale) that the random walk
follows when the knock-in option is exercised, namely if the
event

{ min
nt<l≤n

Sl ≤ an, Sn ≥ nb}

occurs and it is further given that Sbntc = xn.
Large deviations theory tells us that the limit

I1 (x, t)

= lim
n→∞

1

n
log P

�
min

nt<l≤n
Sl ≤ an, Sn ≥ nb

����Snt = xn

�
exists, as does

I2 (x, t) = lim
n→∞

1

n
log P (Sn ≥ nb|Snt = xn) .

for x < b.The function I1 (·) can be computed as

I1 (x, t) = inf
y(·)∈A(x)

1

2

Z 1−t

0

ẏ (s)2 ds, (2)

where

A (x) = {y (·) ∈ AC[0, 1− t] : y (0) = x,

min
0≤u≤1−t

y (u) ≤ a, y (1− t) ≥ b}

and AC[0, t] represents the set of real valued absolutely con-
tinuous function on the interval [0, t]. The solution y∗1 ∈
A (x) attaining the infimum in (2) is called the optimal path
and it can be computed explicitly as

y∗1 (u) = [x + s1u]I (u ≤ t0)

+[s2 (u− t0)− a]I (t0 < u ≤ 1− t) ,

where

s1 = (a− x) /t0,

s2 = (b− a) / (1− t− t0) ,

t0 = (1− t) (x− a) /(b− 2a + x).

Now, let

τn (a) = inf{m ≥ 0 : Sm ≤ −na},

and suppose that k < τn (a) and that Sk = nx. Set t = k/n.
Then, the description of the optimal path suggests apply-
ing exponential tilting to the ((k + 1)-st increment in order
to induce mean s1. Because the increments are standard
Gaussian, this suggests sampling a Gaussian r.v. with mean
θ∗0 (Sk/n, k/n) = s1 and unit variance.

If k ≥ τn (a) then the next increment’s mean matches
that of the optimal path induced by I2 (·) (using a similar
characterization as (2)). The optimal path is

y∗2 (u) = x +
(b− x)

1− t
u,

which yields that if τn (a) ≤ k = nt and x = Sk/n < b then
the (k+1)-st increment follows a Gaussian distribution with
mean θ∗0 (Sk/n, k/n) = (b− x) / (1− t).

In summary, at time k, given Sk, the (k +1)-th increment
is generated according to a unit variance Gaussian distrib-



ution with mean

θ∗0 (Sk/n, k/n)

= − (b− 2a + Sk/n)

(1− k/n)
I (τn (a) > k)

+
(b− Sk/n)

1− k/n
I (τn (a) ≤ k, Sk/n < b) .

The corresponding importance sampling estimator is

L0 (n) = exp

 
−

n−1X
k=0

θ∗0 (Sk/n, k/n) Xk+1

!

exp

 
n−1X
k=0

θ∗0 (Sk/n, k/n)2 /2

!
(3)

·I
�

min
0≤k≤n

Sk ≤ an, Sn > bn

�
.

Now, we shall explain the ideas behind ET. The precise
dynamics of this procedure can be easily explained using the
notation introduced previously for OSDET. The suggested
tilting is completely path-independent and is given by

θ∗E (k/n) = − (b− 2a) I (−na/(b− 2a) > k)

+
(b− a)

1− (−a) /(b− 2a)

·I (−na/(b− 2a) ≤ k)

= − (b− 2a) I (−na/(b− 2a) > k)

+ (b− 2a) I (−na/(b− 2a) ≤ k) .

Finally, we describe the tilting strategy for SET. Using
the notation introduced for OSDET, we can easily describe
the corresponding tilting strategy as

θ∗S (Sk/n, k/n) = − (b− 2a) I (τn (a) > k)

+ (b− 2a) I (τn (a) ≤ k, x < b) .

For both ET and SET, the estimators are completely anal-
ogous to OSDET (displayed in (3)). For instance,

LE (n) = exp
�
−[θ∗E (0) Sk0 − k0θ

∗
E (0)2 /2]

�
· exp (−θ∗E (1) (Sn − Sk0))

· exp
�
(n− k0)θ

∗
E (1)2 /2

�
I

�
min

0≤k≤n
Sk ≤ an, Sn > bn

�
,

where k0 = b−an/ (b− 2a)c.
We report the output for our numerical experiments in the

table at the end of the paper. The sample size (i.e. number
of replications of each replication) is 105. We assume a = −1
and b = .8 (S0 = 0) and estimate u (0, n) for n = 10, 20 and
30 respectively. The first row indicates the corresponding es-
timate for u (0, n) (which corresponds to the empirical mean
of each of the estimators) while the second row is the esti-
mated standard deviation for each estimator and the third
row is the estimated coefficient of variation (i.e. the ratio of
the estimated standard deviation to the estimated mean).

The performance of OSDET is extremely good. This
is perhaps not surprising given that the simulated random
walk is able to recover and closely follow the optimal path
even if random perturbations push the process temporarily
off this path. The performance of ET is very poor, which
may suggest that a state-dependent algorithm is required for

efficient estimation via simulation of u (0, n) for large values
of n. In fact, as we make clear in the theorem below, the es-
timator given by ET has exponential complexity. However,
the minor variation in the algorithm obtained by moving
ET to SET provides an estimator having a performance
that seems to be very good, as can be seen by comparing
the form of θ∗E (·) and θ∗S (·) above. In fact, it turns out that
the algorithm SET can be proved to be efficient.

The next result summarizes the efficiency properties of the
estimators. Recall that an importance sampling estimator
is said to be asymptotically (logarithmically) efficient if

limn→∞ log eE[L (n)2]/ log u (0, n)2 ≥ 1, (4)

where eE (·) represents the expectation under the change-

of-measure. For our estimators above, we have eE[L (n)2] =
E[L (n)] (E (·) is the underlying probability under which the
increments are i.i.d. standard Gaussian).

Theorem 1. Let LE (n), LS (n) and L0 (n) be the esti-
mators provided by ET, SET, and OSDET respectively.
Then,

limn→∞ log E[LE (n)]/ log u (0, n)2 ≤ 1− δ

for some δ > 0. On the other hand, both LS (n) and L0 (n)
are asymptotically efficient.

Proof. Define

A =

�
Sn ≥ bn, min

0≤k≤n
Sk ≤ an

�
,

θ = (b− 2a), θ− = −θ and k0 = b−an/ (b− 2a)c.

LE (n) = exp

0@ k0X
i=1

�
θ2
−/2− θ−Xi

�
+

nX
i=k0+1

�
θ2/2− θXi

�1A IA.

Now we will analyze the second moment of LE (n)eE[LE (n)2] = exp
�
−nθ2� eE [exp(2θ [Sk0 − (Sn − Sk0) + nθ]); A] .

Let Bε = A ∩ {Sk0 + nθ ≥ nε} and

Cε = Bε ∩ {Sk0 − (Sn − Sk0) + nθ ≥ nε}

then,eE[LE (n)2] ≥ eE[exp(2θ [Sk0 − (Sn − Sk0) + nθ]); Bε]

· exp
�
−nθ2�

≥ exp
�
−nθ2� exp (4θεn) eP (Cε)

It follows that,

lim
n→∞

log eP (Cε)

n
= −2θε + O

�
ε2�

So,

log eE �LE (n)2
�
≥ −θ2 + 2θε + O

�
ε2� ,

and one can pick ε small enough such that 2θε + O
�
ε2
�
≥

δ > 0. That LS (n) is logarithmically efficient is straightfor-
ward using the reflection principle and the fact that θ− is
the optimal tilting for computing P (Sn ≤ −n (2b− a)). Fi-
nally, as we have indicated before, L0 (n) corresponds to the
estimator suggested by the solution to the Issacs equation
proposed by Dupuis and Wang (2004) and thus, in particu-
lar, is logarithmically efficient.



OSDET ET SET
n=10 1.669e-05 1.601e-05 1.653e-05

2.051e-07 8.955e-07 1.858e-07
3.885e+00 1.769e+01 3.553e+00

n=20 9.556e-09 8.662e-09 9.824e-09
1.120e-10 1.514e-09 1.229e-10
3.708e+00 5.529e+01 3.956e+00

n=30 5.921e-12 6.089e-12 6.051e-12
6.324e-14 9.685e-13 8.167e-14
3.377e+00 5.030e+01 4.267e+00

Table 1: Numerical Results
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