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ABSTRACT

We are interested in computing tail probabilities for the max-
ima of Gaussian random fields. In this paper, we discuss
two special cases: random fields defined over a finite num-
ber of distinct point and fields with finite Karhunen-Loève
expansions. For the first case we propose an importance
sampling estimator which yields asymptotically zero rela-
tive error. Moreover, it yields a procedure for sampling the
field conditional on it having an excursion above a high
level with a complexity that is uniformly bounded as the
level increases. In the second case we propose an estimator
which is asymptotically optimal. These results serve as
a first step analysis of rare-event simulation for Gaussian
random fields.

1 INTRODUCTION

Consider a Gaussian random field, f (t), living in a compact
subset T ⊂ Rd . Without loss of generality, we assume that
E f (t) = 0, and denote the covariance function by

C (s, t) = E ( f (s) f (t)) ,

s, t ∈ T . We assume that f (t) is almost surely continuously
twice differentiable, sufficient conditions for which can be
found, for example, in (Adler and Taylor 2007, Adler,
Taylor, and Worsley 2009). Consequently, diffusions and
other stochastic processes with rough paths are not included
in the current discussion. Despite this, not all the results
in the current paper require differentiability. Nevertheless,
we assume it in preparation for later work where it will be

needed. We are interested in computing

P
(

sup
t∈T

f (t) > b
)

, (1)

as b→ ∞. The strategy we adopt is based on importance
sampling. Besides computing the probability in (1), the
sampler provides weighted samples with which one can
efficiently compute conditional expectations of the form

E
(

Γ( f (·))|sup
t∈T

f (t) > b
)

where Γ(·) is some bounded functional mapping fromC2 (T )
to R. This is one of the advantages of importance sampling
over the classic asymptotic approximations of (1).

Tail probabilities of Gaussian and related random fields
are of importance both in the theory of probability and
statistics and in a wide range of applications. Among the
areas of application are the following:

• Physical oceanography and hydrology, where, as in
(Adler, Muller, and Rozovskii 1996, Rubin 2002),
the spatial parameter set T might be the two dimen-
sional water surface or a three dimensional body
of water, and the variable being measured might
be water temperature and/or pressure.

• Atmospheric studies, where the random field might
provide a model for wind speads or airborne con-
taminants, with a theory as described in (Daley
1991).

• Geostatistics and other earth sciences, where, as
for oceanography, the spatial aspects of parame-
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ter spaces may be two or three dimensional. cf.
(Christakos 1991, Christakos 2000, Olea 1999).

• Astrophysics, where random field techniques have
been heavily used in analyzing the COBE (Cosmic
Background Explorer) data, which measures the
‘signature radiation’ from the universe of 15 bil-
lion years ago (Smoot and Davidson 1993, Torres
1994, Vogeley, Park, Geller, Huchin, and Gott
1994). This is directional data, and so is realised
as a random field on the two-dimensional sphere.
Three dimensional astrophysical data has been gen-
erated by the Sloan digital sky survey (Gott, Ham-
brick, Vogeley, Kim, Park, Choi, Cen, Ostriker,
and Nagamine 2008).

• Analysis of functional magnetic resonance imaging
(fMRI) data as in (Evans, Marret, Neelin, Collins,
Worsley, Dai, Milot, Meyer, , and Bub 1992, Fris-
ton, Holmes, Worsley, Polin, Frith, and Frackowiak
1995, Shafie, Sigal, Siegmund, and Worsley 2003,
Taylor and Worsley 2007). Here random field tech-
niques have been heavily used in the thresholding
problems, which, because of their importance and
wide usage in a number of areas we take a moment
to describe.

Signal detection and thresholding Consider the clas-
sical signal+noise paradigm, which considers the model

f (t) = s(t)+η(t). (2)

The signal s is deterministic, and, purely for reasons of
exposition, is assumed to take primarily positive values if,
in fact, it is present. The noise η is a mean zero random field
of background noise, the statistical properties of which are
assumed to be known. The first problem here is determining
whether or not the signal is at all present, and, in view of
the assumed positivity of s, a useful statistic for testing this
is the threshold statistic

sup
t∈T

f (t).

(In fact, the supremum is the maximum likelihood statistics
for this test, if η is Gaussian white noise smoothed with
a filter with shape matching that of the signal. This is the
‘matched filter theorem’ of signal processing.)

In order to use this statistic, or, indeed, to perform any
statistical thresholding technique, one needs to know how
to compute, at least for large values of u, the excursion
probabilities (1) when no signal is present. Hence our
interest in them. (By ‘large’ we mean large enough for this
probability to be less that about 0.10, the level at which
one usually begins to talk about statistical significance.)

Computing Gaussian excursion probabilities is a hard
problem, and except for a handful of special cases there
are no known precise formulae for them. While there do
exist a number of good approximations, some of which
we will meet below, these are not always easy to apply,
and so in this paper we approach the problem from the
viewpoint of simulation. A basic problem is that random
fields are, in general, represented by an infinite number of
random variables, and so one of the challenges is how to
represent them in a computer, which can only represent
finite dimensional object. We will present an approach in
this paper that overcomes this problem, and will then discuss
two finite dimensional special cases: random fields defined
on finite space T , and random fields with finite Karhunen-
Loève expansions. We will provide one estimator for each
of the two cases which can then be rigorously proven to be
efficient (precise definitions are given in Section 2). These
two cases will be further generalized and extended in the
journal version of this paper.

Within this framework, the contributions of this paper
are as follows. Firstly, for the finite dimension field problem,
we develop an importance sampling algorithm that can be
shown to have asymptotically zero coefficient of variation as
the probability that the maximum of the coordinates is large
tends to zero. This estimator also provides an algorithm to
sample from the conditional distribution of a multivariate
Gaussian distribution conditional on the maximum of the
coordinates being greater than some level via von Neumann’s
acceptance-rejection sampling, and the expected acceptance
probability can be shown to converge to one as the level,
b, tends to infinity. Secondly, for Gaussian random fields
with finite Karhunen-Loève decomposition, we present an
estimator which is asymptotically optimal (a property that
is also refered to as weak efficiency).

The remainder of this paper is organized as follows. In
Section 2 we discuss the efficiency and optimality of rare
event simulation. In Section 3 we present several important
large deviations results for Gaussian random fields. In
Section 4 we present the importance sampling algorithm
for the finite dimension field problem along with an analysis
of its efficiency. In Section 5 we discuss random fields with
finite Karhunen-Loève decomposition. Section 6 presents
two examples for which we implement our algorithms.

2 IMPORTANCE SAMPLING AND EFFICIENT
RARE-EVENT SIMULATION

Suppose we are interested in estimating P(Z > b), where Z is
a random variable taking values in R. Let F (·) be the distribu-
tion function of Z. Let G(·) be another distribution function
and assume that the likelihood ratio L(z) = I[b,+∞) (z) dF

dG (z)
is well defined. Then,

EGL(Z) = P(Z > b) ,
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where EG (·) is the expectation under G(·). If one chooses

G(dz) = P(Z ∈ dz|Z > b) =
P(Z ∈ dz, I(Z > b))

P(Z > b)
,

then L(z) = P(Z > b). This suggests that if G(·) is chosen
to be the conditional distribution of Z given Z > b, the
estimator will have zero variance. Such a choice is, of
course, not implementable, since it requires knowledge of
P(Z > b), which is precisely the probability that we do not
know how to compute. Nevertheless, the argument suggests
that an efficient importance sampling algorithm should have
a sampling distribution very close to the conditional dis-
tribution of the original law given that the excursion event
occurs. Efficient importance sampling algorithms for rare-
event simulation which use this idea is well known, see
for instance, (Asmussen and Glynn 2007), (Bucklew 2004),
(Giordano, Gubinelli, and Pagano 2005), and (Juneja and
Shahabuddin 2006). For studies particularly related to mul-
tivariate Gaussian distributions, see (Dieker and Mandjes
2006) and (Glasserman 2004).

There are many criteria to evaluate the efficiency of an
estimator. A well accepted one in the rare-event simulation
literature is to assess efficiency via second moments. Fol-
lowing this line, we define two types of efficiency criteria
for estimators of tail probabilities.

Definition 1 An estimator, Lb, is said to be strongly
efficient (for the tail of the random variable Z) if ELb =
P(Z > b), and

sup
b

VarLb

P2 (Z > b)
< ∞.

Definition 2 An estimator, Lb, is said to be asymp-
totically optimal or weakly efficient (for the tail of the
random variable Z) if ELb = P(Z > b), and

logEL2
b

2logP(Z > b)
→ 1,

as b→ ∞.
It is easy to see that strong efficiency implies weak

efficiency.
Suppose we want to simulate m i.i.d. random variables

L1
b, ...,L

m
b (equally distributed with Lb) and use their average

P̂m
b =

1
m

m

∑
i=1

Li
b

as an estimator for P(Z > b). We want to estimate P(Z > b)
with relative accuracy ε−δ , by which we mean

P
(∣∣∣∣ P̂m

b −P(Z > b)
P(Z > b)

∣∣∣∣> ε

)
< δ . (3)

If Lb is strongly efficient, then Chebyshev’s inequality shows
that, in order to achieve (3), the required number of repli-
cations, m, is bounded as b→ ∞. If Lb is weakly effi-
cient, one needs m = exp(−o(logP(Z > b))). Notice that
to achieve the same relative accuracy, crude Monte Carlo
needs m = O

(
P(Z > b)−1

)
. Therefore, both strongly effi-

cient and asymptotically optimal estimators are noticeably
more efficient than crude Monte Carlo. Obviously, how-
ever, these efficiency concepts are not enough to evaluate the
overall complexity of a computational procedure because
one must also take into account the cost required to gener-
ate a single replication of the estimator Lb. Nevertheless,
relative to single crude Monte Carlo replications, the com-
putational overhead associated to generating samples under
the importance sampling distributions that we consider is
not significant and therefore we do not explicitly address it
in our discussion here.

3 EXCURSION PROBABILITIES OF GAUSSIAN
RANDOM FIELDS

As mentioned earlier, excursion probabilities of Gaussian
random field have been studied in depth. In this section we
shall recall a few relevant results from the area, starting with
a version of a basic result due, independently, to (Borell
1975) and (Tsirelson, Ibragimov, and Sudakov 1976).

Theorem 3 (Borell-TIS) Let f (·) be a real-valued,
separable, continuous Gaussian process. Suppose that

σ
2 (T ) = sup

T
Var ( f (t)) < ∞.

Let m = supT E f (t) and choose any a for which

P
(

sup
T

( f (t)−m)≥ a
)
≤ 1

2
.

Then, for all b,

P
(

sup
T

f (t) > b
)
≤ 2

(
1−Φ

(
b−m−a

σ (T )

))
, (4)

where Φ(·) is the c.d.f. of the standard Gaussian distribution.
This theorem provides an upper bound to the tail of

the maximum of a random field and covers a large class
of Gaussian random fields including nondifferentiable ones.
However, as one would expect of a universal bound, it is
generally too crude to produce useful numerical bounds.

Note that a trivial lower bound is given by

P
(

sup
T

f (t) > b
)
≥ 1−Φ(b/σ (T )) . (5)
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Together, the two bounds imply that the decay rate of (1)
is roughly exp

(
− b2

2σ2(T )

)
. However, there is quite a gap

between (4) and (5), and generally neither of them gives the
right exact asymptotics for smooth fields. To obtain sharper
approximations, we need to make further assumption on the
field.

For example, (Adler 1981), (Taylor and Adler 2003) and
(Adler and Taylor 2007) have studied the Euler characteristic,
which we denote by χ , of excursion sets, f−1 ([b,+∞)),
where f−1 (A) = {t ∈ T : f (t) ∈ A}, for twice differentiable
fields with constant variance σ and satisfying other technical
conditions. Putting together a precise analytic formula for
the expected value of the the Euler characteristic, and the
fact that

E
(
χ
(

f−1 ([b,+∞))
))

= (1+o(1))P
(

sup
T

f (t) > b
)

,

as b→∞, one can obtain the sharp asymptotic approximation

P
(

sup
T

f (t) > b
)

=
(
1+o(1)

)
C(T )bd−1 exp

(
− b2

2σ2

)
,

(6)
where C (T ) is a constant only depending on the geom-
etry of T and d is its dimension. This approximation is
roughly bdb−1 exp

(
−b2/2σ2

)
, where b−1 exp

(
−b2/2σ2

)
is the decay rate of the Gaussian tail probability.

Interestingly, (6) implies that the maximum of a smooth
homogeneous Gaussian random field is somehow related
to bd Gaussian random variables which are no more than
weakly correlated. It further implies that if we want to
discretize the space T to approximate P(sup f > b), then
we might do well by partitioning T into bd cubes of volume
O
(
b−d
)
, and side length O

(
b−1
)
. The number of cubes

grows polynomially with b, depending on the dimension of
T . We shall use these facts below, partitioning T into small
regions of appropriate size and then using the exclusion and
inclusion formula to obtain approximations for exceedence
probabilities. This is not a new technique, introduced by
(Pickands 1969) and used heavily by (Piterbarg 1995).)
under the name “double sum method” by (Piterbarg 1995),
in wide generality. In the following Section 4 we shall apply
it to finite dimensional multivariate Gaussian distributions
as b tends to infinity.

4 THE MAXIMUM OF GAUSSIAN VECTORS

In this section, we consider the problem of computing the
tail probability of the maximum of a d dimensional Gaussian
vector. More precisely, let X = (X1, ...,Xd)∼N (0,Σ), where
Σ is a d×d positive definite matrix. Equivalently, we can
consider X as the realization of a random field f (t), where
t ranges over the finite set T = {t1, ..., td}. We want to

Figure 1: Two Dimensional Example

compute

P
(

max
j

X j > b
)

(7)

as b→ ∞.
As noted above, the motivation behind this example lies

in approximating a field defined over a general, continuous,
parameter space by its values on a finite subset and then
using (7), with X j = f (t j), to approximate (1). We will not
address the important issue of the best choice of the t j here.

We start with some notation, for which we will use
upper case letters for random variables and lower case
for non-random quantities. Let f j (x j) be the marginal
distribution of X j evaluated at x j ∈ R. Let x− j be the vector(
x1, ...,x j−1,x j+1, ...,xd

)
. Analogous notation is used for

the corresponding random variables. Let f (x− j|x j) be the
conditional density of X− j evaluated at x− j given X j = x j.
The density of X evaluated at x is denoted by f (x). Note
that f (x) = f j (x j) f (x− j|x j). Consider now the density
function,

g(x) =
d

∑
j=1

p j (b)
f j (x j) f (x− j|x j)

P(X j > b)
I (x j > b) , (8)

where p j (b) = P(X j > b)/∑
d
i=1 P(Xi > b).

One can think of this density as a mixture. The idea is
that samples drawn under g will have a maximum above b,
and the event

{
max j X j > b

}
is most likely to occur by only

one of the X j being large. The mixture probabilities p j (b),
represent the event that is X j which exceeds the threshold
b. A graphical illustration of d = 2 is presented in Figure 1,
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where the red (dark) regions contain most of the probability
of the (grey) region where max{X1,X2}> b.

The choice of g as an importance sampling density
allows us to obtain an estimator with asymptotically zero
coefficient of variation as b→ ∞. To see this, we compute
the likelihood ratio given a realization X = x sampled from
g(·) (which includes the event max j X j > b with probability
1) as

L =
f (x)
g(x)

= ∑
d
i=1 P(Xi > b)

∑
d
j=1 I (x j > b)

≤
d

∑
i=1

P(Xi > b) . (9)

Therefore,

EgL2 ≤

(
d

∑
i=1

P(Xi > b)

)2

.

where Eg (·) is expectation under g(·). Since we can claim
an asymptotically zero coefficient of variation if

Varg (L)

P(max j X j > b)2 =
Eg
(
L2
)
−P(max j X j > b)2

P(max j X j > b)2 → 0,

it suffices to show that

∑
d
i=1 P(Xi > b)

P(max j X j > b)
→ 1, (10)

as b→ ∞. Without loss of generality, assume X1, ...,Xd̃
have the largest variance, where d̃ ≤ d. This implies that
X1, ...,Xd̃ are identically distributed and

∑
d̃
i=1 P(Xi > b)

∑
d
i=1 P(Xi > b)

→ 1,

as b→ ∞. By the inclusion-exclusion formula,

d̃

∑
i=1

P(Xi > b)− ∑
i6= j,i, j≤d̃

P(Xi > b,X j > b) (11)

≤ P
(

max
j≤d̃

X j > b
)
≤

d̃

∑
i=1

P(Xi > b) .

Note that for i 6= j and i, j ≤ d̃,

P(Xi > b,X j > b) = P(Xi > b)P(X j > b|Xi > b) .

Now note that as long as the correlation between Xi and X j
is less than 1,

P(X j > b|Xi > b)→ 0,

as b→ ∞. Therefore,

∑
i6= j,i, j≤d̃

P(Xi > b,X j > b) = o

(
d̃

∑
i=1

P(Xi > b)

)
, (12)

and

∑
d̃
i=1 P(Xi > b)

P
(

max j≤d̃ X j > b
) → 1.

Furthermore,

1≥
P(max j X j > b)

∑
d
i=1 P(Xi > b)

≥

P
(

max j≤d̃ X j > b
)

∑
d̃
i=1 P(Xi > b)

∑
d̃
i=1 P(Xi > b)

∑
d
i=1 P(Xi > b)

→ 1

and (10) holds. We summarize these facts as follows.
Theorem 4 Let X be a d dimensional random vec-

tor with the multivariate Gaussian distribution N (0,Σ),
where Σ is a positive definite matrix. The sampling distri-
bution in (8) provides asymptotically zero relative error for
the exceedence probability (7). That is, the corresponding
estimator L in (9) satisfies

Var (L)

P(max j X j > b)2 → 0,

as b→ ∞. Hence, L is strongly efficient.
Another associated result that comes from the pre-

ceeding argument is that one can efficiently simulate the
conditional distribution of (X1, ...,Xd) given max j X j > b.
It follows from (9) that g(x)∑

d
i=1 P(Xi > b) is an upper

bound of f (x). By employing von Neumann’s acceptance-
rejection sampling by simulating X according to the density
g(x), then accept X with probability

p(x) =
f (x)

g(x)∑
d
i=1 P(Xi > b)

.

The expected acceptance probability

Eg p(X) =
P(max j X j > b)

∑
d
i=1 P(Xi > b)

→ 1.

By this procedure, we can sample from the conditional
distribution of X given that max j X j > b, asymptotically
using basically the same number of computer operations as
generating X unconditionally.

Before leaving this example we note that Theorem 4 has
limitations when it comes to applying it to random fields.
For a start, it assumes that the dimension of X is fixed,
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and gives an asymptotic result as b→∞. For homogeneous
random fields, in order to have ε − δ accuracy in (3), or
ε-accuracy, ∣∣∣∣P(max1≤i≤d f (ti) > b)

P(supt∈T f (t) > b)
−1
∣∣∣∣≤ ε, (13)

one needs to let the dimension d also tend to infinity, perhaps
a rate d = bα , for some α depending on the smoothness
of the random field or, equivalently, the behavior of its
correlation function at the origin. See (Piterbarg 1995).
This implies the correlation between some of the Xi and
X j will tend to 1 and (12) may not be true. Nevertheless,
the current analysis serves as the first step on the rare-
event simulation for Gaussian random fields. Generalizing
the results in this section to random fields is one of the
directions of our future studies.

5 GAUSSIAN PROCESSES WITH FINITE
KARHUNEN-LOÈVE EXPANSIONS

In this section, we consider a Gaussian random field having
the form

fZ (t) =
n

∑
i=1

Ziσi (t) (14)

where the Zi are i.i.d. N(0,1), and the σi (·) are known, de-
terministic functions. For technical convenience, we further
assume σi (·)∈C2 (T ), which will also assure fZ (·)∈C2 (T ).

We can think of (14) as a truncated version of an infinite
Karhunen-Loève expansion, although we do not need to
require that the σi (·) to be orthogonal in any sense. In that
case, to achieve ε-accuracy of the exceedence probability,
the choice of n will depend on the decay rates of the σi (t).
For example, if σi (t) decays exponentially as i→ ∞, we
need to choose n = O(logb).

With the representation in (14), to simulate fZ (t), we
only need to generate i.i.d. Gaussian r.v.’s. In this section,
we provide an algorithm that is very easy to implement and
asymptotically optimal. Based on the fact that(

n

∑
i=1

Ziσi (t)

)2

≤
n

∑
i=1

Z2
i

n

∑
i=1

σ
2
i (t) ,

supt fZ(t) > b implies ∑
n
i=1 Z2

i ≥ b2/σ2 (T ). Therefore, the
rare event sup f > b is mainly caused by ∑

n
i=1 Z2

i being large.
Consider the a sampling distribution for Z1,...,Zn with the
density

qθ (z1, ...,zn) =
(

1√
2πθ

)n

exp
(
− 1

2θ 2 ∑z2
i

)
, (15)

which forms a natural exponential family. In comparison
with the underlying standard Gaussian distribution, this
sampling distribution inflates all the Zi by a common factor
θ . Now write the (Z1, ...,Zn) in polar coordinates, (ρ,r),

where ρ =
√

∑
n
i=1 Z2

i and r = 1
ρ

(Z1, ...,Zn). If Zi’s are i.i.d
standard Gaussian, then it is easy to see that ρ and r are
independent. Thus one can think of (15) as corresponding
to exponential tilting on ρ2. The corresponding likelihood
is

Lb = I (‖ fz‖> b)θ
d exp

(
−1

2

(
1− 1

θ 2

)
∑z2

i

)
, (16)

from which it follows that

Eθ
(
L2

b
)

=∫
{z:‖ fz‖>b}

(
θ√
2π

)n

exp
(
−1

2

(
2− 1

θ 2

)
∑z2

i

)
dz1 . . .dzn,

where Eθ is expectation under qθ . Since {z : sup fz > b} ⊂{
z : σ2 (T )∑

n
i=1 z2

i ≥ b2
}

, it follows that

Eθ
(
L2

b
)

≤
(

θ√
2π

)n

∫{
z:∑n

i=1 z2
i ≥

b2
σ2(T )

} exp
(
−
(

1− 1
2θ 2

)
∑z2

i

)
dz1...dzn

=

 θ√
2− 1

θ 2

n

P
(

χ
2
n ≥

b2

σ2 (T )

(
2− 1

θ 2

))
.

Applying a (sharp) asymptotic approximation of the tail
probability of a χ2

n variable, we have

Eθ
(
L2

b
)
≤ (1+o(1))

 θ√
2− 1

θ 2

n
2−n/2−1

Γ(n/2)[
b2

σ2 (T )

(
2− 1

θ 2

)]n/2−1

exp
(
− b2

σ2 (T )

(
1− 1

2θ 2

))
= (1+o(1))

2−n/2−1

Γ(n/2)
θ n

2− 1
θ 2

bn−2

σn−2 (T )
exp
(
− b2

σ2 (T )

(
1− 1

2θ 2

))
.
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If we choose θ = b, we find

Eθ
(
L2

b
)
≤ (1+o(1))C (n)

b2n−2

2− 1
b2

exp
(
− b2

σ2 (T )

)
, h(b) , (17)

where C (n) = 2−n/2−1√e
Γ(n/2)σn−2(T ) . This leads to the following

theorem.
Theorem 5 Take f as defined by (14), and choose

the sampling distribution qθ as defined by (15) with θ = b,
giving the likelihood ratio Lb of (16). Then the corresponding
importance sampling estimate for the exceedence probability
(1) is asymptotically efficient.
Proof. A lower bound of the excursion probability can be
easily obtained, that is,

P
(

sup
T

f (t) > b
)
≥ 1−Φ

(
b

σ (T )

)
∼ 1

b
exp
(
− b2

σ2 (T )

)
,

(18)
Note that Eθ L2

b ≥
(
Eθ Lb

)2. To show that

logEθ L2
b

2logEθ (Lb)
→ 1,

as b→ ∞, it is sufficient to show that

logEθ L2
b

2logEθ (Lb)
≥

logEθ L2
b

2log
[
1−Φ

(
b

σ(T )

)]
≥ logh(b)

2log
[
1−Φ

(
b

σ(T )

)] → 1.

The above inequalities and limit are immediate from (17)
and (18).

We close this section by noting that there are many ways
to improve the efficiency of (15). For example, instead of
sampling from a Gaussian distribution, it is more efficient
to simulate from a truncated Gaussian with restriction that
∑

n
i=1 Z2

i ≥ b2/σ2 (T ). This will reduce the variance of L by
a constant factor (asymptotically free of b). Another more
important improvement lies in twisting the distribution of r.
Instead of taking r uniformly distributed on the unit sphere,
it may be more efficient to let r be concentrated on smaller
regions. To apply this idea effectively requires additional
knowledge of the behavior of the σi. For example, consider
the two cases in which σ2 (t) , ∑

n
i=1 σ2

i (t) is either constant
or has finite many local modes in T . If σ2 is constant, then
taking r to be uniformly distributed on the unit sphere is
efficient. However, if σ2 has finitely many local modes,
let r be more concentrated in a few regions, the position
of which is determined by these modes and the extent of
which is determined by the behavior of σ2 in their immediate

Table 1: Simulation results for finite fields. All results are
based on 1000 independent simulations.

b Est. Std. Er.
3 6.01E-3 4.70E-5
4 1.53E-4 6.55E-7
5 1.43e-06 2.26E-9

neighborhoods. This improvement will be included in the
journal version of this paper by employing state-dependent
importance sampling and Lyapunov function technique.

6 SIMULATION EXERCISE

In this section, we provide one example for each of the two
cases discussed in the preceding two sections.

Example 6 We compute P(maxi Xi > b), where
X = (X1, ...,X5) is multivariate Gaussian with mean zero,
marginal variance one. They share a common correlation
0.5. Table 1 shows the simulation results.

As an important aside, we note that during the imple-
mentation, it was clear that the estimator of EgL2 is not as
efficient. As we noted earlier,

L = ∑
d
i=1 P(Xi > b)

∑
d
i=1 I(Xi > b)

.

Thus, in order to observe variation in L, we need to observe
at least two of the Xi being greater than b. This event is of
very small probability even after the change of measure.

Example 7 Let f (t) = X cos t + Y sin t and T =
[0,3/4] where X and Y are i.i.d. standard Gaussian r.v.. We
compute P(‖ f‖> b) with the algorithm in Section 5. This
probability is known in closed form (cf. (Adler and Taylor
2007)) and is given by

P(‖ f‖> b) = 1−Φ(b)+
3

8π
e−b2/2. (19)

Table 2 shows the (remarkably accurate) simulation results.
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