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Abstract

The recent surge of interests in cognitive assessment has led to developments of novel sta-

tistical models for diagnostic classification. Central to many such models is the well-known

Q-matrix, which specifies the item-attribute relationships. This paper proposes a data-driven

approach to identification of the Q-matrix and estimation of related model parameters. A key

ingredient is a flexible T -matrix that relates the Q-matrix to response patterns. The flexibility

of the T -matrix allows construction of a natural criterion function as well as a computationally

amenable algorithm. Simulations results are presented to demonstrate usefulness and applica-

bility of the proposed method. Extension to handling of the Q-matrix with partial information

is presented. The proposed method also provides a platform on which important statistical

issues, such as hypothesis testing and model selection, may be formally addressed.

Keywords: Cognitive diagnosis, DINA model, DINO model, latent traits, model selection, multi-

dimensionality, optimization, self-learning, statistical estimation.

1 Introduction

Diagnostic classification models (DCM) are an important statistical tool in cognitive diagnosis and

can be employed in a number of disciplines, including educational assessment and clinical psychology

(Rupp and Templin, 2008b; Rupp, Templin, and Henson, 2010). A key component in many such

models is the so-called Q-matrix, which specifies item-attribute relationships, so that responses to

items can reveal the attribute configurations of the respondents. Tatsuoka (1983, 2009) proposed

the simple and easy-to-use rule space method for Q-matrix based classifications.

Different DCMs can be built around the Q-matrix. One simple and widely studied model

among them is the DINA model (Deterministic Input, Noisy output “AND” gate; see Macready
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and Dayton, 1977; Junker and Sijtsma, 2001). Other important developments can be found in

Tatsuoka (1985); DiBello, Stout, and Roussos (1995); Junker and Sijtsma (2001); Hartz (2002);

Tatsuoka (2002); Leighton, Gierl, and Hunka (2004); von Davier (2005); Templin (2006); Templin

and Henson (2006); Chiu, Douglas, and Li (2009). Rupp et al. (2010) contains a comprehensive

summary of many classical and recent developments.

There is a growing literature on the statistical inference of Q-matrix based DCMs that addresses

the issues of item parameters estimation when the Q-matrix is prespecified (Rupp, 2002; Henson

and Templin, 2005; Roussos, Templin, and Henson, 2007; Stout, 2007). Having a correctly specified

Q-matrix is crucial both for parameter estimation (such as the slipping, guessing probability, and

the attribute distribution) and for the identification of subjects’ underlying attributes. As a result,

these approaches are sensitive to the choice of the Q-matrix (Rupp and Templin, 2008a; de la Torre,

2008; de la Torre and Douglas, 2004). For instance, a misspecified Q-matrix may lead to substantial

lack of fit and, consequently, erroneous attribute identification. Thus, it is desirable to be able to

detect misspecification and to obtain a data driven Q-matrix.

In this paper, we consider the estimation problem of the Q-matrix. In particular, we introduce

an estimator of the Q-matrix under the setting of the DINA model. The proposed estimator

only uses the information of dependence structure of the responses (to items) and does not rely

on information about the attribute distribution, or the slipping, or guessing parameters. The

definition of these concepts will be provided in the text momentarily. Nonetheless, if additional

information is available such as a parametric form of the attribute distribution or partial information

about the Q-matrix, the estimation procedure is flexible enough to incorporate those structures.

Such information, if correct, can be substantially improve the efficiency of the estimator, enhance

the identifiability of the Q-matrix, and reduce the computational complexity. In addition to the

construction of the estimator, we also provide computational algorithms and simulation studies to

assess the performance of the proposed procedure.

It is worth pointing out that our method is in fact generic in the sense that it can be adapted to

cover a large class of DCMs besides the DINA model. In particular, the procedure is implementable

to the DINO (Deterministic Input, Noisy output “OR” gate) model, the NIDA (Noisy Inputs,

Deterministic “And” Gate) model, and the NIDO (Noisy Inputs, Deterministic “Or” Gate), model

among others. In addition to the estimation of the Q-matrix, we emphasize that the main idea
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behind the derivations forms a principled inference framework. For instance, during the course of

the description of the estimation procedure, necessary conditions for a correctly specified Q-matrix

are naturally derived. Such conditions can be used to form appropriate statistics for hypothesis

testing and model diagnosis. In connection to that, additional developments (e.g. the asymptotic

distributions of the corresponding statistics) are needed, but they are not the focus of the current

paper. Therefore, the proposed framework can potentially serve as a principled inference tool for

the Q-matrix in diagnostic classification models.

This paper is organized as follows. Section 2 is a presentation of the estimation procedures and

the corresponding algorithms. Section 3 includes simulation studies to assess the performance of

the proposed estimation methods.

2 Estimation of the Q-matrix

We will be concerned with the situation that N subjects taking a test consisting of J items.

The responses are binary, so that the data will be an N × J matrix with entries being 0 or 1.

The diagnostic classification model to be considered for such data envisions K attributes that are

related to both the subjects and the items.

2.1 Setup and notation

The following notation and specifications are needed to describe the diagnostic classification models.

Responses to items: There are J items and we use R = (R1, ..., RJ)> to denote the vector of

responses to them, where, for each j, Rj is a binary variable taking 0 or 1, and superscript >

denotes transpose.

Attribute profile: There are K attributes and we use α = (α1, ..., αK)> to denote the vector of

attributes, where αk = 1 or 0, indicating the presence or absence of the k-th attribute, k = 1, . . . ,K.

Note that both α and R are subject-specific. Throughout this paper, we assume that the

number of attributes K is known and that the number of items J is observed.

Q-matrix: This describes the link between the items and the attributes. In particular, Q =

(Qjk)J×K is an J ×K matrix with binary entries. For each j and k, Qjk = 1 indicates that item j

requires attribute k and Qjk = 0 otherwise.
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Let ξj(α, Q) denote the ideal response, which indicates if a subject possessing attribute profile

α is capable of providing a positive response to item j if the item-attribute relationship is specified

by matrix Q. Different ideal response structures give rise to different DCMs. For instance,

ξjDINA(α, Q) = 1(αk ≥ Qjk for all k = 1, ...,K) (1)

is associated with the DINA model, where 1 is the usual indicator function. The DINA model

assumes conjunctive relationship among attributes, that is, it is necessary to possess all the at-

tributes indicated by the Q-matrix to be capable of providing a positive response to an item. In

addition, having additional unnecessary attributes does not compensate for a lack of the necessary

attributes. To simplify the notation, we write ξjDINA = ξj .

The last ingredient of the model specification is related to the so-called slipping and guessing

parameters (Junker and Sijtsma, 2001). The concept is due to Macready and Dayton (1977) for

mastery testing; see also van der Linden (1978). The slipping parameter is the probability that a

subject (with attribute profile α) responds negatively to an item if the ideal response to that item

ξ(α, Q) = 1; similarly, the guessing parameter refers to the probability that a subject responds

positively if his or her ideal response ξ(α, Q) = 0. We use s to denote the slipping probability

and g to denote the guessing probability (with corresponding subscript indicating different items).

In the discussion, it is more convenient to work with the complement of the slipping parameter.

Therefore, we define c = 1 − s to be the probability of answering correctly, with sj and cj being

the corresponding item-specific notation. Given a specific subject’s profile α, the response to item

j under the DINA model follows a Bernoulli distribution

P (Rj = 1|Q,α, cj , gj) = c
ξj(α,Q)
j g

1−ξj(α,Q)
j . (2)

In addition, conditional on α, (R1, ..., RJ) are jointly independent.

Lastly, we use subscripts to indicate different subjects. For instance, Rr = (R1
r , ..., R

J
r )> is the

response vector of subject r. Similarly, αr is the attribute vector of subject r. With N subjects,

we observe R1, ...,RN but not α1, ...,αN . We further assume that the attribute profiles are i.i.d.
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so that

P (αr = α) = pα

and let p = (pα : α ∈ {0, 1}K), c = (c1, ..., cJ), and g = (g1, ..., gJ). Thus, we have completed our

model specification.

2.2 Estimation of the Q-matrix

Intuition. The attribute profiles of examinees are not directly observed. Thus, the estimator

of the Q-matrix is built only on the information contained in response vectors, R1,..., RN . The

estimation of the Q-matrix is based on an assessment of how well a given matrix Q fits the data.

Throughout the discussion, we use Q to denote the true matrix that generates the data and Q′ to

denote a generic J by K matrix with binary entries. In particular, each Q-matrix along with the

corresponding parameters (Q′,p, c,g) determines the distribution of the response vector R given

by

P (R|Q′,p, c,g) =
∑
α

pα

J∏
j=1

P (Rj |Q′,α, c,g). (3)

We further consider the (observed) empirical distribution

P̂ (R) =
1

N

N∑
i=1

I(Ri = R). (4)

If the Q-matrix and the other parameters, (Q′,p, c,g), are correctly specified the empirical distri-

bution in (4) eventually converges to (3) as the sample size (the number of subjects) becomes large.

The estimator is then constructed based on this observation.

The T -matrix. The T -matrix is central to the construction of our estimator. It is another rep-

resentation of the Q-matrix and serves as a connection between the observed response distribution

and the model structure. In particular, it sets up a linear dependence between the attribute distri-

bution and the response distribution. It is a tool that allows the expression of the probabilities in

(3) in terms of matrix products. We first specify each row vector of the T -matrix. For each item

j, recall that

P (Rj = 1|Q′,p, c,g) =
∑
α

pαP (Rj = 1|Q′,α, c,g), (5)
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where P (Rj = 1|Q′,α, c,g) = (cj− gj)ξj(α, Q′) + gj . If we create a row vector BQ′,c,g(j) of length

2K containing the probabilities P (Rj = 1|Q′,α, c,g) for all α’s and arrange those elements in an

appropriate order, then for all j we can write (5) in the form of a matrix product

∑
α

pαP (Rj = 1|Q′,α, c,g) = BQ′,c,g(j)p,

where p is the column vector containing the probabilities pα. Similarly, for each pair of items, we

may establish that the probability of responding positively to both items j1 and j2 is

P (Rj1 = 1, Rj2 = 1|Q′,p, c,g) =
∑
α

pαP (Rj1 = 1|Q′,α, c,g)P (Rj2 = 1|Q′,α, c,g)

= BQ′,c,g(j1, j2)p,

where BQ′,c,g(j1, j2) is a row vector containing the probabilities P (Rj1 = 1|Q′,α, c,g)P (Rj2 =

1|Q′,α, c,g) for each α. Note that each element of BQ′,c,g(j1, j2) is the product of the correspond-

ing elements of BQ′,c,g(j1) and BQ′,c,g(j2). With a completely analogous construction, we have

that

P (Rj1 = 1, ..., Rjl = 1|Q′,p, c,g) = BQ′,c,g(j1, ..., jl)p,

for each combination of distinct (j1, ..., jl). Similarly, BQ′,c,g(j1, ..., jl) is the element-by-element

product of BQ′,c,g(j1),...,BQ′,c,g(jl). From a computational point of view, one only needs to con-

struct the BQ′,c,g(j)’s for each individual item j and then take products to obtain the corresponding

combinations.

The T -matrix has 2K columns. Each row vector of the T -matrix is one of the vectorsBQ′,c,g(j1, ..., jl),

i.e., the T -matrix is a stack of B-vectors

Tc,g(Q′) =



BQ′,c,g(1)

...

BQ′,c,g(J)

BQ′,c,g(1, 2)

...


.
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By the definition of the B-vectors, we have that

Tc,g(Q′)p =



P (R1 = 1|Q′,p, c,g)

...

P (RJ = 1|Q′,p, c,g)

P (R1 = 1, R2 = 1|Q′,p, c,g)

...


(6)

is a vector containing the corresponding probabilities associated with a particular set of parameters

(Q′, c,g,p). We further define β to be the vector containing the probabilities (corresponding to

those in (6)) of the empirical distribution, e.g., the first element of β is 1
N

∑N
i=1 1(R1

i = 1) and

the (J + 1)-th element is 1
N

∑N
i=1 1(R1

i = 1, R2
i = 1). With a large sample and a set of correctly

specified parameters (Q, c,g,p), we have that

β → Tc,g(Q)p (7)

almost surely as N →∞.

An illustrative example. To aid the understanding of the T -matrix, we provide one simple

example. Suppose that we are interested in testing two attributes. The population is naturally

divided into four strata. The corresponding contingency table of attributes is

Attribute 2

Attribute 1
p00 p01

p10 p11

Let vector p = (p00, p10, p01, p11)
> contain all the corresponding probabilities in this particular

order. Consider an exam containing three problems and admitting the following Q-matrix,

Q =


1 0

0 1

1 1

 . (8)
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To simplify the discussion, we consider the case that ci = 1 and gi = 0, that is, there is no chance

of slipping or guessing. Thus, the response R is completely determined by the attribute profile α.

Under this simplified situation, if the Q-matrix is correctly specified, we should be able to obtain

the following identities

p10 + p11 = N1/N,

p01 + p11 = N2/N,

p11 = N3/N,

where Nj =
∑N

r=1 I(Rji = 1) is the total number correct responses to item j. We then create the

corresponding T -matrix and β-vector as follows

Tc,g(Q) =


0 1 0 1

0 0 1 1

0 0 0 1

 , β =


N1/N

N2/N

N3/N

 . (9)

The first column of Tc,g(Q) corresponds to the zero attribute profile; the second corresponds to

α = (1, 0); the third corresponds to α = (0, 1); and the last corresponds to α = (1, 1). The first

row of T (Q) corresponds to item one, the second to two, and the third to three. Note that the

T -matrix changes as the Q-matrix changes. For instance, for an alternative matrix

Q′ =


1 1

0 1

1 0


the corresponding T -matrix would be

Tc,g(Q′) =


0 0 0 1

0 0 1 1

0 1 0 1

 ; (10)

while the β-vector remains.
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To illustrate our idea, consider the matrix in (8). With a correctly specified Q-matrix, we can

establish that

Tc,g(Q)p = β. (11)

Note that the β-vector is directly observed and the attribute distribution p is not. Thus, the above

display suggests that a necessary condition for a correctly specified Q-matrix is that the above

linear equations (with p being the variable) has a solution subject to the natural condition that∑
α pα = 1.

If for any misspecified Q-matrix, the equation (11) does not have any solution, then the Q-

matrix is identifiable. Otherwise, we may include more constraints in the T -matrix to enhance the

identifiability. For instance, we may further consider the combination of items one and two, that

is,

p11 = N1∧2/N, (12)

where N1∧2 =
∑N

i=1 1(R1
i = 1, R2

i = 1). The above identity also suggests that people who are able

to solve problem 3 must have both attributes and therefore are able to solve both problems 1 and 2,

that is, N3 = N1∧2. Certainly, this is not necessarily respected in the real data, though it is a logical

conclusion. The slipping and guessing parameters are introduced to account for such disparities.

With the additional constraint in (12) included, the corresponding T -matrix and β-vector should

be

Tc,g(Q) =



0 1 0 1

0 0 1 1

0 0 0 1

0 0 0 1


, β =



N1/N

N2/N

N3/N

N1∧2/N


. (13)

Similarly, one may include other (linear) constraints in the T -matrix that correspond to combina-

tions of distinct items.

Objective function and estimation of the Q-matrix. Based on the above construction and

the discussions, we introduce an objective function

Sc,g,p(Q) = |Tc,g(Q)p− β|, (14)
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where | · | is the Euclidean distance. If all the parameters are correctly specified, we expect that

Sc,g,p(Q)→ 0 as N →∞. A natural estimator of the Q-matrix would be

Q̂ = arg inf
Q′
Sc,g,p(Q′).

Dealing with the unknown parameters. Most of the time, the parameters (c,g,p) are un-

known. Under these situations, we consider the profiled objective functions

S(Q′) = inf
c,g,p

Sc,g,p(Q′), (15)

where the minimization is subject to the natural constraints that ci, gi, pα ∈ [0, 1] and
∑

α pα = 1.

Then, the corresponding estimator is

Q̂ = arg inf
Q′
S(Q′). (16)

The minimization of p in (15) consists of a quadratic optimization with linear constraints,

and therefore can be done efficiently. The minimization with respect to c and g is usually not

straightforward. One may alternatively replace the minimization by other estimators (such as the

maximum likelihood estimator) (ĉ(Q′), ĝ(Q′), p̂(Q′)). Thus, the objective function becomes

Ŝ(Q′) = Sĉ(Q′),ĝ(Q′),p̂(Q′)(Q
′). (17)

The corresponding estimator is

Q̃ = arg inf
Q′
Ŝ(Q′). (18)

This alternative allows certain flexibility in the estimation procedure. The S-function in (17) is

usually easier to compute. Therefore, we often work with the estimator (18) and a hill-climbing

algorithm to compute Q̃ is given in the next subsection.

Remark 1 Conceptually, we may include all the combinations (j1, ..., jl) for l = 1, ..., J in the

T -matrix, which results in a T -matrix of 2J − 1 rows. We call such a T -matrix saturated. The

corresponding vector β contains all the information of the observed responses. However, from a
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practical point of view, in order to ensure a convergence of (7) when the T -matrix is saturated, it

is necessary to have sample size N >> 2J . That is, the sample size needs to be sufficiently large so

that the count in each cell of the J-way contingency table is non-zero. Unfortunately, such a large

sample is usually not achievable even for a reasonable number of items, e.g., J = 20. Furthermore,

to construct a matrix of 2J row typically induces a substantial computational overhead.

With this concern, we typically do not include all combinations of items in the T -matrix. A

practical suggestion is to include, in an ascending order, 1-way, 2-way combinations,... until the

number of rows of the T -matrix reaches N/10. Generally speaking we include combinations of fewer

items first then include those of more items. In the simulation study presented later, a T -matrix

including at least up to (K+1)-way combinations performs well empirically. For the corresponding

theoretically analysis, see Liu et al. (2011).

2.3 Computations

In this subsection, we consider the computation of the estimator. In particular, we consider the

estimator in (18) and the objective function (17). Let (ĉ, ĝ, p̂) be the maximum likelihood estimator

(MLE). The computation of the MLE’s can be done efficiently by the EM algorithm (Dempster,

Laird, and Rubin (1977); de la Torre (2009)). Furthermore, we consider the optimization of (16)

and (18).

The optimization of a general nonlinear discrete function is a very challenging problem. A

simple-minded search of the entire space consists of evaluating the function S up to 2J×K times.

In our current setting, an a priori Q-matrix, denoted by Q0, is usually available. We expect that

Q0 is reasonably close to the true matrix Q.

For each Q′, let Uj(Q
′) be the set of J ×K matrices that are identical to Q′ except for the j-th

row (item). Then our algorithm is described as follows.

Algorithm 1 Choose a starting point Q(0) = Q0. For each iteration m, given the matrix from the

previous iteration Q(m− 1), we perform the following steps.

1. Let

Qj = arg inf
Q′∈Uj(Q(m−1))

S(Q′). (19)
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2. Let j∗ = arg infj S(Qj).

3. Let Q(m) = Qj∗.

Repeat steps 1-3 until Q(m) = Q(m− 1).

At each step m, the algorithm considers updating one of the J items. In particular, if the j-th

item is updated, the Q-matrix for the next iteration would be Qj . Then, Q(m) is set to be the Qj∗

that admits the smallest objective function among all the Qj ’s. The optimization (19) consists of

evaluating the function S 2K times. Thus, the total computation complexity of each iteration is

J × 2K evaluations of S.

Remark 2 The simulation study in Section 3 shows that if Q0 is different from Q by 3 items (out

of 20 items) Algorithm 1 has a very high chance of recovering the true matrix with reasonably large

samples.

3 Simulation

In this section, we conduct simulation studies to illustrate the performance of the proposed method.

We generate the data from the DINA model under different settings and compare the estimated

Q-matrix and the true Q-matrix.

3.1 Estimation of the Q-matrix with no special structure

The simulation setting. To start with, we consider a 20×3 Q-matrix (J = 20 items and K = 3

attributes), denoted by Q1, given by
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Q1 =



1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
0 0 1
1 1 0
1 0 1
1 0 1
0 1 1
1 0 1
0 1 1
1 1 0
0 1 1
1 0 1
0 1 1
1 1 1



. (20)

We further generate the attributes from a uniform distribution, i.e.,

pα = 2−K .

The slipping parameters and the guessing parameters are set to be si = gi = 0.2 for all items. In

addition, for each sample size N = 500, 1000, 2000, and 4000, one hundred data sets were generated

under such a setting.

To reduce the computational complexity, the T -matrix contains combinations of up to four

items. More generally, the simulation study shows that a T -matrix containing all the (K + 1) (and

lower) combinations delivers good estimates. We implement Algorithm 1 with a starting Q-matrix

Q0 specified as follows. The Q0 is constructed based on the true matrix Q by misspecifying three

items. In particular, we randomly selected 3 items out of the total 20 items without replacement.

For each of the selected items, the corresponding row of Q0 is sampled uniformly from all the

possible K dimensional binary vectors excluding the true vector (of Q) and the zero vector. That

is, each of these rows is a uniform sample of 2K − 2 vectors. Thus, it is guaranteed that Q0 does

not have zero-vectors and is different form Q by precisely three items. The simulation results are

given by the first row of Table 1. The columns “Q̂ = Q” and “Q̂ 6= Q” contains the frequencies of
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the events “Q̂ = Q” and “Q̂ 6= Q” respectively. Based on 100 independent simulations, Q̂ recovers

the true Q-matrix 98 times when the sample size is 500. For larger samples, the estimate Q̂ never

misses the true Q-matrix.

Insert Table 1 about here

We further simulate the data from Q-matrices with 4 and 5 attributes

Q2 =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1
1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1
1 1 1 1
1 1 1 1



, Q3 =



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1
0 1 1 0 0
0 1 0 1 0
0 1 0 0 1
0 0 1 1 0
0 0 1 0 1
0 0 0 1 1



. (21)

With exactly the same settings, the results are given by the corresponding rows in the Table

1. The estimator performs well except for the cases where N = 500. This is mainly because the

sample size is small relative to the dimension K.

An improved estimation procedure for small samples. We further investigate the data sets

generated according to Q2 and Q3 with N = 500 when the estimator Q̂ did not perform as well as

other situations. In particular, we look into the cases when Q̂ 6= Q. We observe that Q-matrices

with more misspecified entries do not necessarily admit larger S values. In some cases, Q does not

minimize the objective function S; nonetheless, S(Q) is not much larger than the global minimum

infQ′ S(Q′). Figures 1 and 2 show two typical cases. For each of the two figures, two plots are

provided. The x-axis shows the number of iterations of the optimization algorithm. The y-axis of
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the left plot shows the number of misspecified entries of Q(m) at iteration m; the plot on the right

shows the objective function S(Q(m)). For the case shown in Figure 1, the algorithm just misses

the true Q-matrix by one entry; for the case in Figure 2, the algorithm in fact passes the true

Q-matrix and move to another one. Both cases show that the true Q-matrix does not minimize

the objective function S. In fact, the values of the S function have basically dropped to a very

low level after three iterations. The algorithm tends to correct one misspecified item at each of

the first 2 iterations. After iteration 3, the reduction of the S function is marginal, and there

are several Q-matrices that fits the data approximately equally well. For such situations where

there are several matrices whose S values are close to the global minimum, we recommend careful

investigation of all those matrices and selection of the most sensible one from a practical point of

view.

Insert Figure 1 about here

Insert Figure 2 about here

Motivated by this, we consider a modified algorithm with an early stopping rule, i.e., we stop

the algorithm when the reduction of the S-function value is below some threshold. In particular,

we choose a threshold value of 4.5% of S(Qm−1) at the m-th iteration. With this early stopping

rule, the estimator for Q2 and Q3 can be improved substantially. The results based on the same

samples as in Table 1 are shown in Table 2 which is show much high frequency of recovering the

true Q-matrix.

Insert Table 2 about here

When attribute profile α follows a non-uniform distribution. We consider the situation

where the attribute profile α follows a non-uniform distribution. We adopt a similar setting as in

Chiu et al. (2009), where attributes are correlated and unequal prevalence. We assume a multi-

variate probit model. In particular, for each subject, let θ = (θ1, · · · , θk) be the underlying ability

following a multivariate normal distribution MVN(0,Σ), where the covariance matrix Σ has unit

variance and common correlation ρ taking values of 0.05, 0.15 and 0.25. Then the attribute profile
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α = (α1, ..., αK) is determined by

αk =

 1 if θk ≥ Φ−1
(

k
K+1

)
0 otherwise.

The other settings are similar as the previous simulations. We consider the true Q-matrix given

as in (20) and K = 3. The slipping and guessing parameters are set to be 0.2. 100 independent

datasets are generated. Table 3 shows the frequency of Q1 being recovered by the estimator (after

applying the early stopping method introduced in the above subsection). We can find that the

more correlated the attributes are, the more difficult it is to estimate a Q-matrix. This is mostly

because the samples are unevenly distributed over the 2K possible attribute profiles and thus the

“effective sample size” becomes smaller.

Insert Table 3 about here

3.2 Estimation of the Q-matrix with partial information

In this subsection, we consider the situation where partial knowledge is available for the Q-matrix.

We consider one of the situations discussed in Section 4. Consider a J×K Q-matrix where, among

the total J items, the attribute requirements of J − 1 items are known. Of interest is learning the

J-th item. In this simulation we let J = 2K + 1. The first 2K rows of Q are known to form two

complete matrices, i.e.,

Q =


IK

IK

VJ

 ,

where IK is the identity matrix of dimension K and VJ is the row corresponding to the J-th item

to be learnt. The the corresponding estimator becomes

Q̂ = arg inf
Q′∈UJ (Q)

S(Q′),

where UJ(Q) is defined in Section 2.3, as the set of Q-matrices identical to Q for the first J − 1

rows.
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With a similar setting to the previous simulations, the slipping and guessing parameters are set

to be 0.2 and the population is set to be uniform, i.e., pα = 2−K . For each combination of K = 3,

4, and 5, we consider different VJ ’s. 100 independent datasets are generated. Table 4 shows the

frequency of VJ being recovered by the estimator. One empirical finding is that the more “1”’s VJ

contains, the more difficult it is to estimate VJ .

Insert Table 4 about here

4 Discussions

Estimation of the Q-matrix for other DCM’s. The differences among DCM’s lie mostly

in their ideal response structures and the distribution of the response vectors implied by the Q-

matrices. The distribution of response vector R takes an additive form such as that in (3) if

responses to different items are conditionally independent given the attribute profile α. With

such a structure, one can construct the corresponding B-vectors that contain the corresponding

conditional probabilities of the response vectors given each attribute profile α. Furthermore, a T -

matrix is constructed by stacking all the B-vectors and an S-function is defined as the L2 distance

between the observed frequencies and those implied by the Q matrix. An estimator is then obtained

by minimizing the S-function. Thus, this estimation procedure can be applied to other DCM’s.

For instance, one immediate extension of the current estimation procedure is to the DINO model.

Incorporating available information in the estimation procedure. Sometimes partial in-

formation is available for the parameters (Q, c,g,p). For instance, it is often reasonable to assume

that some entries of the Q-matrix are known. Suppose we can separate the attributes into “hard”

and “soft” ones. By “hard”, we mean those that are concrete and easily recognizable in a given

problem and, by “soft”, we mean those that are subtle and not obvious. We can then assume that

entries in columns which correspond to “hard” attributes are known. Alternatively, there may be a

subset of items whose attribute requirements are known, while the item-attribute relationships of

all other items need to be learnt, for example, when new items need to be calibrated according to

the existing ones. Furthermore, even if an estimated Q-matrix may not be an appropriate replace-

ment of the a priori Q-matrix provided by the “expert” (such as exam makers), it can serve as
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validation as well as a method of calibration using existing knowledge about the Q-matrix. When

such information is available and correct, computation can be substantially reduced. This is be-

cause the optimization, for instance that in (18), can be performed subject to existing knowledge

of the Q-matrix. In particular, once the attribute requirements of a subset of J − 1 items are

known, one can calibrate other items, one at a time, using those known items. More specifically,

consider a J ×K matrix Q∗, the first J − 1 items of which are known. We estimate the last item

by Q̂ = arg supQ′∈UJ (Q∗) S(Q′), i.e., we minimize the S-function subject to our knowledge about

the first J − 1 items. Note that this optimization requires 2K evaluations of the S-function and is

therefore efficient. Thus, to calibrate M items, the total computation complexity is O(M × 2K),

which is typically of a manageable order.

Information about other parameters such as c, g, and p can also be included in the estimation

procedure. For instance, the attribute population is typically modeled to admit certain parametric

form such as a log-linear model with certain interactions (von Davier and Yamamoto, 2004; Henson

and Templin, 2005; Xu and von Davier, 2008). This type of information can be incorporated in to

the definition of (15) and (17), where the minimization and estimation of (c,g,p) can be subject

to additional parametric form or constraints. Such addition information is helpful enhancing the

identifiability of the Q-matrix.

Theoretical properties of the estimator. Under restrictive conditions, the theoretical prop-

erties of the proposed methods have been established in Liu, Xu, and Ying (2011), which assumes

the following conditions hold. First, the guessing parameters for all items are known. In the def-

inition of the objective function (17), ĝ is replaced by the true guessing parameters. Second, the

true Q-matrix is complete, that is, for each attribute k there exists an item that only requires this

particular attribute. Equivalently, there exist K rows in Q such that the corresponding sub-matrix

is diagonal. Together with a few other technical conditions, it is shown that with probability con-

verging to 1, Q̂ (and Q̃) is the same as the true matrix Q up to a column permutation. We write

two matrices Q1 ∼ Q2 if they differ only by a column permutation. Permuting the columns of a

Q-matrix is equivalent to relabeling the attributes. The data does not contain information about

the specific meaning of the attributes. In this sense, we do not expect to distinguish two matrices

Q1 and Q2 based on the data if Q1 ∼ Q2. Therefore, results of the form P (Q̂ ∼ Q) → 1 are the
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strongest type that one may expect. In addition, the binary relationship “∼” is an equivalence

relationship. The corresponding quotient set is the finest resolution possibly identifiable based on

the data.

Under weaker conditions, such as absence of completeness in the Q-matrix or the presence of

unknown guessing parameter, the identifiability of the Q-matrix may be weaker, which corresponds

to a coarser quotient set. One empirical finding is that Q-matrices with more diversified items

tend to be easier to identify. For instance, one simple yet surprising example of a non-identifiable

Q-matrix is that

Q =


1 0

0 1

1 0


with slipping and guessing probabilities being 0.2 for all items and pα = 1/4 for all α. This

Q-matrix cannot be distinguished from

Q′ =


1 0

0 1

1 1

 ,

that is, one can find another set of slipping, guessing probabilities and p′α that implies the same

distribution of the response vector.

Model Validation The proposed framework is applicable to not only the estimation of the Q-

matrix but also the validation of an existing Q-matrix. If the Q-matrix is correctly specified and

the assumptions of the DINA model are in place, then one may expect

|β − Tĉ,ĝ(Q)p| → 0

in probability as N → ∞. The above convergence requires no additional conditions to establish

the consistency of Q̂ and Q̃ (such as completeness or diversified attribute distribution). In fact,

it suffices that the responses are conditionally independent given the attributes and (ĉ, ĝ) are
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consistent estimators of (c,g). Then, one may expect that

Ŝ(Q)→ 0.

If the convergence rate of the estimators (ĉ, ĝ) is known, for instance, (ĉ− c, ĝ− g) = Op(N
−1/2),

then a necessary condition for a correctly specified Q-matrix is that Sĉ,ĝ(Q) = Op(N
−1/2). The

asymptotic distribution of S depends on the specific form of (ĉ, ĝ). Consequently, checking the

closeness of S to zero forms a procedure for validation of the existing knowledge of the Q-matrix

and the DINA model assumption.

Sample size. As the simulation results shows that the estimator miss the true Q-matrix with

non-ignorable probability (over 50%). This probability is substantially reduced (to 2%) when the

sample size is increased to N = 1000. This suggests that a practically large sample N should be at

least 30×2K . Note that the K binary attributes partition the population into 2K groups. In order to

have the estimator yield reasonably accurate estimate there should be on average at least 30 samples

in each group. In addition, performance of the estimator maybe further affected by the underlying

attribute distribution. For instance, if the attributes are very correlated, the probabilities of certain

attributes will be substantially smaller than others. For such cases, estimation for some rows in the

Q-matrix (those corresponding to the small probability attributes) will be less accurate. For such

situations, the “effective sample size” is even smaller.

Computation. The optimization of S(Q) over the space of J ×K binary matrices is a nontrivial

problem. This is a substantial computational load if J and K are reasonably large. This compu-

tation might be reduced by splitting the Q-matrix into small sub-matrices. For typical statistical

models, dividing the parameter space is usually not possible. The Q-matrix adopts a particular

structure with which there is certain independence among items so that splitting the Q-matrix is

valid. Similar techniques have been employed in the literature, such as Chapter 8.6 in the Tatsuoka

(2009) with large scale empirical studies in that chapter. In particular, for instance if there are 100

items, one can handle such a situation as follows. First, split the 100 items into 10 groups (possibly

with overlapping items between groups if necessary); then apply the estimator to each of the 20

groups of items respectively. This is equivalent to breaking a big 100×K Q-matrix into 20 smaller
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matrices and estimating each of them separately. Lastly, combine the 20 estimated sub-matrices

together to form a single estimate. Given that the computation for smaller scale matrices is much

easier than those big ones, the splitting approach reduces the computation overhead. Nonetheless,

developing a fast computation algorithm is an important line of future research.

Summary. As a concluding remark, we emphasize that learning the Q-matrix based on the data

is an important problem even if a priori knowledge is sometimes available. In this paper, we propose

an estimation procedure of the Q-matrix under the setting of the DINA model. This method can

also be adapted to the DINO model that is considered as the dual model of the DINA model.

Simulation study shows that the estimator performs well when the sample size is reasonably large.
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N=500 N=1000 N=2000 N=4000

Q̂ = Q Q̂ 6= Q Q̂ = Q Q̂ 6= Q Q̂ = Q Q̂ 6= Q Q̂ = Q Q̂ 6= Q

Q1 94 6 100 0 100 0 100 0
Q2 82 18 100 0 100 0 100 0
Q3 38 62 98 2 100 0 100 0

Table 1: Numbers of correctly estimated Q-matrices out of 100 simulations with N = 500, 1000,
2000, and 4000 for Q1, Q2, and Q3.
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N=500

Q̂ = Q Q̂ 6= Q

Q = Q2 94 6
Q = Q3 70 30

Table 2: The results of algorithm with an early stopping rule for Q2 and Q3 based on the same
samples as in Table 1.
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N=1000 N=2000 N=4000

Q̂ = Q1 Q̂ 6= Q1 Q̂ = Q1 Q̂ 6= Q1 Q̂ = Q1 Q̂ 6= Q1

ρ = 0.05 78 22 98 2 100 0
ρ = 0.15 71 29 94 6 99 1
ρ = 0.25 41 59 76 24 95 5

Table 3: Numbers of correctly estimated Q1 out of 100 simulations with N = 500, 1000, 2000, and
4000 for different ρ values.
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N=250 N=500 N=1000 N=2000

VJ Q̂ = Q Q̂ 6= Q Q̂ = Q Q̂ 6= Q Q̂ = Q Q̂ 6= Q Q̂ = Q Q̂ 6= Q

(1 0 0) 91 9 98 2 100 0 100 0
(1 1 0) 82 18 97 3 99 1 100 0
(1 1 1) 70 30 83 17 100 0 100 0

N=500 N=1000 N=2000 N=4000

VJ Q̂ = Q Q̂ 6= Q Q̂ = Q Q̂ 6= Q Q̂ = Q Q̂ 6= Q Q̂ = Q Q̂ 6= Q

(1 0 0 0) 91 9 98 2 100 0 100 0
(1 1 0 0) 84 16 94 6 100 0 100 0
(1 1 1 0) 71 29 87 13 99 1 100 0
(1 1 1 1) 39 61 62 38 94 6 100 0

N=1000 N=2000 N=4000 N=8000

VJ Q̂ = Q Q̂ 6= Q Q̂ = Q Q̂ 6= Q Q̂ = Q Q̂ 6= Q Q̂ = Q Q̂ 6= Q

(1 0 0 0 0) 95 5 100 0 100 0 100 0
(1 1 0 0 0) 88 12 99 1 100 0 100 0
(1 1 1 0 0) 77 23 98 2 100 0 100 0
(1 1 1 1 0) 47 53 76 24 92 8 100 0
(1 1 1 1 1)∗ 29 71 37 63 56 44 88 12

Table 4: Numbers of correctly estimated Q-matrices out of 100 simulations with K = 3, 4, 5. ∗ In
the case of (1 1 1 1 1), Q̂ recovers Q 100 times when N = 12000.
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Figure 1: Results of a simulated data set with N = 500 and K = 5, for which the estimated
Q-matrix does not pass the true one.
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Figure 2: Results of a simulated data set with N = 500 and K = 5, for which the estimated
Q-matrix passes the true one but does not converge to it.
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