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Abstract

An asymptotic analysis of the tail probabilities for the dynamics of a soliton wave
U(x, t) under a stochastic time-dependent force is developed. The dynamics of the soli-
ton wave U(x, t) is described by the Korteweg-de Vries Equation with homogeneous
Dirichlet boundary conditions under a stochastic time-dependent force, which is mod-
eled as a time-dependent Gaussian noise with amplitude ε. The tail probability we
considered is w(b) := P (supt∈[0,T ] U(x, t) > b), as b→∞, for some constant T > 0 and
a fixed x, which can be interpreted as tail probability of the amplitude of water wave on
shallow surface of a fluid or long internal wave in a density-stratified ocean. Our goal is
to characterize the asymptotic behaviors of w(b) and to evaluate the tail probability of
the event that the soliton wave exceeds a certain threshold value under a random force
term. Such rare-event calculation of w(b) is very useful for fast estimation of the risk of
the potential damage that could caused by the water wave in a density-stratified ocean
modeled by the stochastic KdV equation. In this work, the asymptotic approximation
of the probability that the soliton wave exceeds a high-level b is derived. In addition,
we develop a provably efficient rare-event simulation algorithm to compute w(b). The
efficiency of the algorithm only requires mild conditions and therefore it is applicable
to a general class of Gaussian processes and many diverse applications.

1 Introduction

It is well known that the Korteweg-de Vries (KdV) equation can be used to model the
evolution in time of long, unidirectional, weakly nonlinear water waves on shallow surface
of a fluid, long internal waves in a density-stratified ocean, acoustic waves on a crystal
lattice or ion accoustic wave phenomena in plasma dynamics. This paper focuses on the
case when the forcing term of the KdV equation is random, which is a natural approach,
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for instance, if we assume that the exterior pressure is generated by a turbulent velocity
field. The stochastic KdV equation also can be employed to describe noisy plasmas, which
has been studied mostly theoretically in the last two decades, see Wadati (1983); Herman
(1990); Debussche and Printems (1999); Garnier (2001, 1993).

Understanding the probabilistic properties of the stochastic responses of stochastic
KdV equation is one of the central objectives of this work. In plasma physics, for instance,
physicists are interested in obtaining the averaged effects as well as the variation of the
amplitude of ion-acoustic waves in noisy plasmas. In this paper, we are interested in rare-
events associated with stochastic KdV equation. The analyses are crucial to the evaluation
of the tail probabilities as well as the understanding of model response under extreme-
conditions. The problem motivating the current study is to investigate the tail probability
of the event that the soliton wave exceeds a certain threshold value that tends to infinity
under a stochastic time-dependent force. This probability qualitatively evaluates the risk
of the potential damage that could caused by such soliton waves. This work provides a
computationally viable way of evaluating the tail probabilities and a qualitative description
of the behavior of the stochastic KdV equation given that the rare-event occurs.

It was Washimi and Taniuti (1966) who established rigorously that the KdV equation
could be used to model the propagation of small-amplitude ion-acoustic waves. The sta-
bility properties of the solitons exhibited by certain nonlinear differential equations was
first discovered by Zabusky and Kruskal (1965) in their classical study. The findings were
confirmed later by the theory developed by Gardner and co-workers Gardner et al. (1967).

An exact solution for additive time-dependent white Gaussian noise was obtained by
Wadati (1983). It was shown in Wadati (1983) that the mean single-soliton should behave
as a Gaussian packet with width increasing as t3/2 and amplitude decreasing as t−3/2 at
long-time. This work was later extended and exact multisoliton solutions was obtained by
Wadati and Akutsu (1984). Wadati and Akutsu (1984) indicated that the mean soliton
width increases only as t1/2. Additionally, the theoretical results for the diffusion of solitons
under the effect of multiplicative noise with long range correlation was obtained by Iizuka
(1993). Later Iizuka’s work Iizuka (1993) was confirmed by Scalerandi and Romano’s
numerical study (Scalerandi and Romano, 1998).

One important contribution to nonlinear random fields was made by the Inverse Scat-
tering Technique (IST). It allows the construction of the exact solvable nonlinear stochastic
equations. Various perturbation approaches have been developed based on the IST. Gard-
ner et al. (1967) presented the first nonlinear evolution equation integrated by the inverse
scattering scheme for KdV equation. Various foundations of IST can be found in Calogero
and Degasperis (1982); Ablowitz and Segur (1981); Faddeev and Takhtajan (1987); Dodd
et al. (1982); Newell (1985). Additionally, the books of Konotop and Vazquez (1994) and
Novikov et al. (1980) study how IST is applied to the KdV equation. Furthermore, direct
numerical simulation studies of the KdV equation and stochastic KdV are investigated in
Debussche and Printems (1999); Lin et al. (2006). The primary objective of this work is
to design efficient algorithms for fast rare-event calculations and employ such algorithms
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for rare-event calculation of stochastic KdV equation.
In this paper, we focus on investigating the one-dimensional KdV equation, with time-

dependent noise and homogeneous Dirichlet boundary conditions, in the form:

ut − 6uux + uxxx = εξ(t), x ∈ R
u(x, t = 0) = −2κ2sech2(κx), (1)

where κ is the wave number, ξ is the time-dependent Gaussian noise with mean zero, ε is the
amplitude, and sech(·) is the hyperbolic secant function defined as sech(x) = 2/(ex + e−x).
Write f(t) = ε

∫ t
0 ξ(s)ds. Note that f is a mean zero Gaussian random process in t with

variance zero at t = 0. The analytical solution to the KdV equation (1) is

U(x, t) = f(t)− 2κ2sech2

{
κ(x− 4κ2t) + 6κ

∫ t

0
f(s)ds

}
. (2)

In this paper we are interested in the following tail probability

w(b) := P
(

sup
t∈[0,T ]

U(x, t) > b
)
, as b→∞,

for a fixed x and some constant T > 0, which can be interpreted as the tail probability
of the amplitude of water waves on shallow surface of a fluid or long internal waves in
a density-stratified ocean. Our goal is to characterize the asymptotic behaviors of w(b)
and evaluate the tail probability of the event that the soliton wave U(x, t) for a fixed x
and some constant T > 0 exceeds a certain threshold value b > 0 under a random force
term. Such a rare-event calculation of w(b) is very useful for fast estimation of the risk
of the potential damage that could caused by the water wave in a density-stratified ocean
modeled by the stochastic KdV equation. Given that the probability is always evaluated
at a fixed location x, we omit the location index x in U(x, t) and write it as U(t).

The solution function U(t) takes the form of a non-linear functional of a Gaussian
random field f(t), t ∈ [0, T ]. Due to the non-linearity of U(t), the tail asymptotic analysis
of w(b) are difficult and accurate approximations of w(b) have not yet been developed in
the literature. Therefore, rare-event simulation serves as an appealing alternative from the
computational point of view in that the design and the analysis do not require very sharp
approximations of w(b). This paper, to the authors’ best knowledge, is the first analysis
of the extreme behavior of U(t) for a general class of Gaussian random fields. The main
contribution of this paper is to develop a provably efficient rare-event simulation algorithm
to compute w(b). The efficiency of the algorithm only requires that f(t) is uniformly Hölder
continuous on [0, T ]. Therefore, the results are applicable to essentially all the Gaussian
processes practically in use.

There is a rich rare-event simulation literature. An incomplete list of recent works
includes Asmussen and Kroese (2006); Dupuis et al. (2007); Blanchet and Glynn (2008);
Blanchet and Liu (2008); Blanchet et al. (2008). Recently, Adler et al. (2012) considered
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the supremum of general Hölder continuous Gaussian random fields and proposed efficient
simulation algorithms based on the change of measure technique. Asymptotic tail behaviors
of convex functionals of Gaussian random fields have also been studied in the literature;
see Liu (2012); Liu and Xu (2012b, 2013b, 2012a, 2013a) for tail behaviors of exponential
functionals of Gaussian random fields and the corresponding rare-event simulation analysis.

Central to our efficient simulation algorithm is the construction of a change of measure.
Our proposed change of measure is not of a classical exponential-tilting form. Through
this new measure, the proposed estimators basically reduce the rare-event calculations
associated to w(b) to calculations that are roughly comparable to the evaluation in which no
rare-event is involved. To illustrate this, we perform the corresponding complexity analysis
of the proposed estimators. This consists of two elements. Firstly, since f considered in
this paper is continuous, exact simulation of the entire field is usually impossible. Thus,
we need to use a discrete object to approximate the continuous field and the bias caused
by the discretization needs to be well controlled relative to w(b). The second part of our
analysis is the variance control, that is, to provide a bound of the second moments of the
(discrete) importance sampling estimators.

The paper is organized as follows. In Section 1, we provide a general introduction.
Efficient algorithms and theorems for rare-event simulation are introduced in Section 2. In
Section 3, we present simulation results for the rare-event probabilities of stochastic KdV
equation. A brief summary is given in Section 4. Proof of main results is provided in
Section 5.

2 Main results

2.1 Rare-event Simulation

Throughout this paper, we are interested in efficiently computing w(b), which goes to 0
as b → ∞. In the context of rare-event simulations, it is more meaningful to consider the
computational error relative to w(b). A well accepted efficiency concept is the so-called
polynomial efficiency; see definition 2.1 in Adler et al. (2012).

Definition 1 A family of Monte Carlo estimators {Lb : b ≥ b0} is said to be polynomially
efficient in estimating w(b) if ELb = w(b), and there exists a constant q > 0 such that

sup
b≥b0

V ar(Lb)

w2(b)| logw(b)|q
<∞. (3)

Suppose that a polynomially efficient estimator Lb has been obtained. Let {L(j)
b : j =

1, ..., n} be i.i.d. copies of Lb and Zb = 1
n

∑n
j=1 L

(j)
b be the averaged estimator that has

a relative mean squared error Var1/2(Lb)/n
1/2w(b). A simple consequence of Chebyshev’s
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inequality yields that for any η > 0

P (|Zb/w(b)− 1| ≥ η) ≤ Var(Lb)

nη2w2(b)
. (4)

The limit (3) suggests that Var(Lb) = O(w2(b)| logw(b)|q). Therefore for any positive η
and δ, in order to achieve the following relative accuracy

P (|Zb/w(b)− 1| > η) < δ, (5)

it is sufficient to generate n = O(η−2δ−1| logw(b)|q) i.i.d. copies of Lb. In Proposition 10,
we will show that | logw(b)| = O(b2). Therefore, a polynomially efficient estimator for w(b)
only requires to generate n = O(η−2δ−1b2q) i.i.d. copies. Compared with the crude Monte
Carlo simulation, which requires n = O(η−2δ−1w(b)−1), polynomially efficient estimators
are exponentially faster and therefore substantially reduce the computational cost.

To construct such polynomially efficient estimators, in this paper, we use importance
sampling for the variance reduction; see Chapter V in Asmussen and Glynn (2007). It is
based on the following identity

w(b) = E
(

1(supt U(t)>b)

)
= EQ

(
1(supt U(t)>b)

dP

dQ

)
,

where 1(·) is the indicator function, Q is a probability measure such that dP/dQ is well

defined (finite) on the set {supt U(t) > b}, and we use E and EQ to denote the expectations
under the measures P and Q respectively. Then, the random variable

Lb = 1(supt U(t)>b)
dP

dQ
(6)

is an unbiased estimator of w(b) under the measure Q.
Consider the conditional distribution Q(·) = P ( · |suptU(t) > b). The corresponding

likelihood ratio dP/dQ ≡ w(b) on the set {supt U(t) > b} has zero variance under Q.
Thus, Q is also called the zero-variance change of measure. Note that this change of
measure is of no practical value in that its implementation requires the computation of the
probabilities w(b). Nonetheless, the measure Q provides a guideline for the construction of
an efficient change of measure to compute the probabilities w(b). Therefore, the task lies
in constructing a change of measure Q that is a good approximation of Q. In addition,
from the computational point of view, we should also be able to numerically compute Lb
and to simulate f from Q.

Besides the variance control, another important issue is the bias control. The random
fields considered in this paper are continuous processes. Direct simulation is usually not
feasible. Therefore, we need to set up an appropriate discretization scheme to approximate
the continuous objects. The bias caused by the discretization also needs to be controlled
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relative to w(b). Suppose that a biased estimator L̃b has been constructed for w(b) such
that E(L̃b) = w̃(b). Thus, the computation error can be decomposed as follows∣∣∣ L̃b

w(b)
− 1
∣∣∣ ≤ |L̃b − w̃(b)|

w(b)
+
|w̃(b)− w(b)|

w(b)
.

The first term on the right-hand-side is controlled by the relative variance of L̃b and the
second term is the bias relative to w(b). Both the bias and the variance control will be
carefully analyzed in the following sections relative to w(b). The overall computational
complexity is then the necessary number of i.i.d. replicates for L̃b multiplied by the com-
putational cost to generate one L̃b.

2.2 Change of Measure and Simulation Algorithm

For the implementation, we introduce a suitable discretization scheme on [0, T ]. Let

TN = {t1, · · · , tN} with ti =
i

N
T, i = 1, · · · , N.

We use
wN (b) = P

(
sup

i=1,··· ,N
U(ti) > b

)
as an approximation of w(b). We will show in Section 2.3 that the bias caused by the
discretization is well controlled relative to w(b) with properly chosen discretization size N .
In the following, we introduce an efficient simulation algorithm to estimate wN (b).

We estimate wN (b) by importance sampling, which is based on the following change
of measure QN . We characterize the measure QN in two ways. First, we describe the
simulation of the discretized process f(ti), i = 1, · · · , N, from QN following a three-step
procedure.

Step 1 Sample a point τb ∈ {1, · · · , N} according to the following probability measure

P (τb = i) =
P (f(ti) > b)∑N
j=1 P (f(tj) > b)

. (7)

Step 2 With a generated τb, we sample f(τb) conditional on f(τb) > b.

Step 3 We proceed to sample f(tj), tj 6= τb, from the original conditional distribution under
P given τb and f(τb).

The above simulation description induces the measure QN , taking the form

QN (·) =
N∑
τb=i

P (· | f(ti) > b)P (τb = i).
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Then the corresponding Radon-Nikodym derivative between QN and P is

dQN
dP

=

∑N
i=1 1(f(ti)>b)∑N

i=1 P (f(ti) > b)
, (8)

which gives the second characterization of the change of measure.
The measure QN is constructed such that the behavior of f under QN mimics the tail

behavior of f given the rare event {supi U(ti) > b}, a good approximation of {supt U(t) >
b}, under P . According to the above simulation procedure, a random variable τb is first
generated, then f(τb) is simulated at level O(b). Under the zero-variance change of measure,
the large value of the supremum U(t) is mostly caused by the high excursion of f(t) at one
location. The random index τb is adopted to search the maximum of f(t) over the interval
[0, T ]. It worth emphasizing that τ is not necessarily the exact maximum but should be
very close to it.

Based on the above discussion, we have the importance sampling estimator taking the
form (see (6))

L̃b =
dP

dQN
1(supi U(ti)>b) =

∑N
i=1 P (f(ti) > b)∑N
i=1 1(f(ti)>b)

1(supi U(ti)>b).

and its second moment (under the measure QN ) equals

EQN

[
L̃2
b

]
= EQN

(∑N
i=1 P (f(ti) > b)∑N
i=1 1(f(ti)>b)

)2

; sup
i
U(ti) > b

 .
Note that under QN we always have maxi f(ti) > b and therefore the denominator of L̃b is
at least 1 and well defined.

The corresponding simulation algorithm is given as follows.

Algorithm 2 The algorithm has two steps:

Step 1: Simulate τb from {1, ..., N} according to the distribution function (7) and generate
f(tτb) conditional on f(tτb) > b. Given (τb, f(tτb)), simulate (f(t1), · · · , f(tτb−1),
f(tτb+1), · · · , f(tN )) from the original conditional distribution under the measure P .

Step 2: Compute and output

L̃b =

∑N
i=1 P (f(ti) > b)∑N
i=1 1(f(ti)>b)

1(supi U(ti)>b). (9)

We can see that L̃b is an unbiased estimator of wN (b). The computation of the above
estimator and the event supi U(ti) > b only consists of {f(ti) : i = 1, ..., N} and therefore
is easy to perform. We present the corresponding efficiency results in the next section.
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2.3 Efficiency Results

We first state the following technical conditions required for our main results.

A1 f(t) is almost surely continuous with respect to t and admits E[f(t)] = 0 and
E[f2(t)] = σ2(t) for all t ∈ T ; in addition, we assume that σ(0) = 0;

A2 There exist δ, κH > 0, and β ∈ (0, 1] such that, for all |s − t| < δ, the variance
functions satisfy

|σ(t)− σ(s)| ≤ κH |s− t|β;

A3 For each s, t ∈ T , let covariance function C(s, t) = Cov(f(s), f(t)) > 0. For all
|s− s′| < δ and |t− t′| < δ, the covariance function satisfies

|C(t, s)− C(t′, s′)| ≤ κH(|t− t′|2β + |s− s′|2β).

Condition A1 assumes that f has zero mean and variance function σ2(t). In fact, for
Gaussian random fields with non-constant mean functions, our efficiency results are still
expected to be applicable. The assumption that σ(0) = 0 follows from the definition of
f as in the introduction. Conditions A2 and A3 essentially ensure that the process f(t)
is uniformly Hölder continuous, that is, for |s − t| < δ, Var(f(s) − f(t)) ≤ 2κH |s − t|2β.
These assumptions are weak enough such that they accommodate essentially all Gaussian
processes practically in use (fractional Brownian motion, smooth Gaussian processes, etc).
Therefore, the algorithm developed in this paper is suitable for a wide range of applications.

As introduced in the previous section, we use wN (b) = P (supi=1,··· ,N U(ti) > b) as an
approximation of w(b). The next theorem controls the bias.

Theorem 3 For any ε > 0 and η > 0, there exist constants κ0, κ1 such that for all

b > κ1| log η| and N = κ
1/β
0 | log η|1/(2β)η−1/βb(2+2ε)/β, we have

|wN (b)− w(b)| < ηw(b).

Thanks to the continuity of f(t), as N tends to infinity, the lattice TN becomes dense
in [0, T ] and therefore wN (b) gives a good approximation of w(b) as shown in the above
theorem. In particular, it provides a lower bound of N such that wN (b)/w(b) is close
enough to 1 and the relative bias can be controlled.

With N chosen as in Theorem 3, we estimate wN (b) by importance sampling estimator
L̃b, as introduced in Algorithm 2. The next theorem controls the variance of the estimator
L̃b and gives the polynomial efficiency result.

Theorem 4 Suppose that N is chosen as in Theorem 3. There exists a finite c0 such that

EQN [L̃2
b ] ≤ c0N

2w2(b).
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The above results show that the estimator L̃b in Algorithm 2 is polynomially efficient in

estimating wN (b). To estimate w(b), we simulate n i.i.d. copies of L̃b, {L̃
(j)
b : j = 1, ..., n}

and the final estimator is Zb = 1
n

∑n
j=1 L̃

(j)
b . The estimation error is

|Zb − w(b)| ≤ |wN (b)− w(b)|+ |Zb − wN (b)|. (10)

The first term is controlled by Theorem 3, i.e., |wN (b) − w(b)| ≤ ηw(b) if we choose the
discretization size

N = O(| log η|1/(2β)η−1/βb2(1+ε)/β).

The second term of (10) is controlled by the discussion as in (4) if we choose the number
of replicates

n = O(η−2δ−1N2).

The simulation of L̃b consists of generating a random vector of dimension N . Note that
the complexity of computing the eigenvalues and eigenvectors of an N -dimension matrix
is O(N3). Thus, the total computational complexity to achieve the prescribed accuracy in
(5) is O(N5η−2δ−1).

3 Simulation

We use simulation results to illustrate the performance of the proposed algorithm. We
assume that f is a Brownian motion on [0, 1] and we take TN = {i/100 : i = 1, · · · , 100}
with discretization size N = 100. The detailed simulation is described in the next steps.

1. Generate a random variable ι from {1, 2, · · · , 100}.

2. Simulate f
(
ι

100

)
conditional on f

(
ι

100

)
> b.

3. Given ι and f
(
ι

100

)
, simulate {f

(
i

100

)
, i = 1, · · · , ι− 1, ι+ 1, · · · , 100}.

The estimated tail probabilities w(b) along with the estimated standard deviations StdQ(L̃b)
are shown in Table 1. All the results are based on 103 independent simulations. The
standard deviation of the final estimate (in the column “Est.”) is the reported standard
deviation (in the column of “Std.”) divided by

√
1000 ( in the column “Std/

√
1000”).

The simulation results show that the coefficient of variation (StdQ(Lb)/w(b)) increases
as the tail probability becomes smaller. Nevertheless, the coefficient of variation stays
reasonably small when the probability is as small as 10−13. To validate the simulation
results, we use crude Monte Carlo for b = 3. Based on 105 independent simulations, the
estimated tail probability is 6.4e-4 (Std. 8.0e-05), which is consistent with that computed
by the importance sampling estimator. We also use discretization size N = 500 to check
the simulation bias introduced by the discretization scheme. The simulation results are
given in Table 2. Again these results are consistent with the simulation results in Table 1.
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b Est. Std. Std./Est. Std./
√

1000.

b = 3 5.51e-04 6.10e-04 1.11 1.93e-05
b = 5 1.11e-07 1.42e-07 1.28 4.49e-09
b = 7 4.10e-13 6.07e-13 1.48 1.92e-14

Table 1: Estimates of w(b) on [0, 1]. All results are based on 103 independent simulations
and discretization size N = 100.

b Est. Std. Std./Est.

b = 3 5.35e-04 5.73e-04 1.07
b = 5 1.11e-07 1.58e-07 1.43
b = 7 4.08e-13 8.08e-13 1.98

Table 2: Estimates of w(b) on [0, 1]. All results are based on 103 independent simulations
and discretization size N = 500.

4 Summary

We developed a provably efficient asymptotic rare-event simulation algorithms to compute
the tail probabilities of the amplitude of water waves on shallow surface of a fluid or
long internal waves in a density-stratified ocean under a stochastic time-dependent force.
The dynamics of the soliton wave is described by the KdV equation with homogeneous
Dirichlet boundary conditions under a stochastic time-dependent force, which is modeled
as a time-dependent Gaussian noise with amplitude ε. We develop a provably efficient
rare-event simulation algorithm of the tail probabilities that the soliton wave exceeds a
high-level b that tends to infinity. The simulation results show that the coefficient of
variation (StdQ(Lb)/w(b)) increases as the tail probability becomes smaller. Nevertheless,
the coefficient of variation stays reasonably small when the probability is as small as 10−13.
Additionally, we also provide the proofs of all the supporting lemmas and theorems for the
bounds of the tail probability w(b). Such rare-event calculation of w(b) is very useful for
fast estimation of the risk of the potential damage that could caused by the water wave in
a density-stratified ocean modeled by the stochastic KdV equation. The efficiency of the
algorithm only requires mild conditions and therefore it is applicable to a general class of
Gaussian processes and many diverse applications.
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5 Proof of Main Results

5.1 Proofs of main theorems

Proof of Theorem 3. For any η, ε > 0 and a large constant κ0 > 0 (to be determined
later), let

L =
{
f(·) ∈ C(T ) : sup

s,t:|t−s|≤N−1

|f(s)− f(t)| ≤ ηκ−1/2
0 b−(1+ε)

}
, (11)

where C(T ) is the set of all continuous functions on [0, T ] and N is chosen as in the
statement of the theorem. The following lemma suggests that for our analysis we only
need to focus on the set L.

Lemma 5 Under the conditions in Theorem 3, for any ε, η > 0, there exists a constant κ0

such that, for N = κ
1/β
0 | log η|1/(2β)η−1/βb(2+2ε)/β, we have

P

(
sup
t∈[0,T ]

U(t) > b,Lc
)
≤ ηw(b). (12)

Note that maxi U(ti) ≤ supt U(t). We have the following upper bound for the bias of
wN (b):

|wN (b)− w(b)| ≤ |P (max
i
U(ti) > b,L)− P (sup

t
U(t) > b,L)|+ 2ηw(b)

= P (max
i
U(ti) < b, sup

t
U(t) > b,L) + 2ηw(b).

Applying the Borel-TIS lemma (Lemma 8), we have that there is a constant M :=

| log η|1/2κ1/3
0 such that for κ0 large enough

P (sup
t
f(t) > Mb) ≤ exp

(
− (Mb− E[supt f(t)])2

2σ2
T

)
< ηw(b),

where σT = supt∈[0,T ] σ(t) and the second inequality follows from Proposition 10 (stated

on page 14), which states that b−2logw(b)→ −1/(2σ2
T ). Therefore, we have that

|wN (b)− w(b)| ≤ P (max
i
U(ti) < b < sup

t
U(t), sup

t
f(t) < Mb,L) + 3ηw(b).

Then on the set L ∩ {supt f(t) < Mb}, we can show

|max
i
U(ti)− sup

t
U(t)| ≤ sup

t:|t−ti|≤N−1

|f(ti)− f(t)|+O(1)N−1Mb ≤ 2ηκ
−1/2
0 b−(1+ε),
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where O(1) term is a bounded constant, and the last inequality holds for large κ0. Therefore
we obtain the following upper bound

|wN (b)− w(b)| ≤ P
(
b− 2ηκ

−1/2
0 b−(1+ε) < sup

t
U(t) < b+ 2ηκ

−1/2
0 b−(1+ε),L

)
+ 3ηw(b).

(13)

Let cb = 2ηκ
−1/2
0 b−(1+ε). We have the following lemma to bound the probability term in

the above display, whose proof is provided in Section 5.2.

Lemma 6 Under the conditions of Theorem 3, we have

w(b) = (1 + o(1))P

(
sup
t∈[0,T ]

f(t) > b

)
. (14)

In addition there exists a constant c such that

P

(
b− cb < sup

t∈[0,T ]
U(t) < b+ cb,L

)
≤ c cbF

′(b− cb), (15)

where F ′(x) is the probability density function of supt∈[0,T ] f(t).

The following lemma provides an upper bound of the density function F ′(x), whose
proof follows from Ehrhard Inequality (Ehrhard, 1983); see also Chapter 4 in Bogachev
(1998).

Lemma 7 Under the conditions of Theorem 3, let F ′(x) be the probability density function
of supt∈[0,T ] f(t). Then F ′(x) exists almost everywhere. Moreover, as x goes to infinity,

F ′(x) = (1 + o(1))σ−1
T xw (x) . (16)

Lemma 7 and (15) imply that there exists a constant c such that

|wN (b)− w(b)| ≤ cηκ−1/2
0 b−εw

(
b− cb

)
+ 3ηw(b).

By (14), we have the following approximation

w(b− cb) = (1 + o(1))P (sup
t
f(t) > b− cb).

Apply Lemma 7 again and we have

P
(

sup
t
f(t) > b− cb

)
= (1 + o(1))P

(
sup
t
f(t) > b

)
= (1 + o(1))w(b).

12



Therefore w(b − cb) = (1 + o(1))w(b) and for κ0 large enough, |wN (b)− w(b)| ≤ 4ηw(b).
Then, we can redefine η and the constant κ0 and obtain the conclusion.

Proof of Theorem 4. We have

EQN

[
L̃2
b

]
= EQN

(∑N
i=1 P (f(ti) > b)∑N
i=1 1(f(ti)>b)

)2

; sup
i
U(ti) > b


≤

(
N∑
i=1

P (f(ti) > b)

)2

≤ N2 max
i
P (f(ti) > b)2

≤ N2P (max
i
f(ti) > b)2 ≤ N2P

(
sup
t∈[0,T ]

f(t) > b
)2

Lemma 6 shows that w(b) = (1 + o(1))P (supt f(t) > b) . Thus, there exists some constant
c0 > 0 such that

EQN [L̃2
b ] ≤ c0N

2w(b)2,

which gives the desired result.

5.2 Proof of Lemmas

In this section, we present the proofs of all the supporting lemmas in the main proof. We
start with some useful results. The following lemma is known as the Borel-TIS lemma,
which is proved independently by Borell (1975) and Tsirelson, Ibragimov and Sudakov
(1976).

Lemma 8 (Borel-TIS) Let f(t), t ∈ U , U is a parameter set, be a mean zero Gaussian
random field. f is almost surely bounded on U . Then, E[supU f(t)] <∞, and

P

(
sup
t∈U

f (t)− E[sup
t∈U

f (t)] ≥ b
)
≤ exp

(
− b2

2σ2
U

)
,

where σ2
U = supt∈U Var[f(t)].

The Borel-TIS lemma provides a very general bound of the tail probability. In most
cases, E[supt f (t)] is much smaller than b. Thus, for b sufficiently large, the tail probability
can be further bounded by

P
(

sup
t
f(t) > b

)
≤ exp

(
− b2

4σ2
T

)
.

In particular, the following result by Dudley (1973) (c.f. Theorem 6.7 in Adler, Blanchet
and Liu, 2012) is often used to control E[supt∈U f (t)].

13



Lemma 9 Let U be a compact subset of Rd, and let {f(t)t ∈ U} be a mean zero, continuous
Gaussian random field. Define the canonical metric d on U as

d (s, t) =
√
E[f (t)− f (s)]2

and put diam (U) = sups,t∈U d (s, t), which is assumed to be finite. Then there exists a
finite universal constant κ > 0 such that

E[max
t∈U

f (t)] ≤ κ
∫ diam(U)/2

0
[log (N (ε))]1/2dε,

where the entropy N (ε) is the smallest number of d-balls of radius ε whose union covers
U .

We can easily obtain the following bounds for the tail probability w(b). The first result
is due to the fact that f(t)− 2κ2 ≤ U(t) ≤ f(t) and the second result follows from a direct
application of the Borel-TIS lemma.

Proposition 10 Let σT = supt∈[0,T ] σ(t). Then,

P

(
sup
t∈[0,T ]

f(t) > b+ 2κ2

)
≤ w(b) ≤ P

(
sup
t∈[0,T ]

f(t) > b

)
,

and as b→∞,
b−2 logw(b)→ − 1

2σ2
T

.

We proceed to prove the supporting lemmas in the previous section.

Proof of Lemma 5. Note that

P

(
sup
t
U(t) > b,Lc

)
≤ P

(
sup
t
f(t) > b,Lc

)
,

therefore we only need to show P (supt f(t) > b,Lc) ≤ ηw(b).

On set Lc, sups,t:|t−s|≤N−1 |f(s)−f(t)| > ηκ
−1/2
0 b−(1+ε). For random variable f(s)−f(t),

the variance function has an upper bound:

Var(f(s)− f(t)) = 2(1− C(s, t)) ≤ 2κH |s− t|2β

≤ 2κHN
−2β = 2κHκ

−2
0 | log η|−1η2b−4(1+ε).

14



Then, for κ0 big enough, the Borel-TIS lemma (Lemma 8) and Lemma 9 imply that there
exists λ > 0 such that

P

(
sup
t
f(t) > b,Lc

)
≤ P

(
sup

s,t:|t−s|≤N−1

|f(s)− f(t)| > ηκ
−1/2
0 b−(1+ε)

)

≤ 2 exp

−
(
ηκ
−1/2
0 b−(1+ε) − E[sups,t:|t−s|≤N−1(f(s)− f(t))]

)2

4σ2
TκHκ

−2
0 | log η|−1η2b−4(1+ε)


≤ 2 exp

(
−λ| log η|κ0b

2(1+ε)
)
. (17)

Therefore by the result that b−2 logw(b) → −1/(2σ2
T ) from Proposition 10, we have

P (supt f(t) > b,Lc) ≤ ηw(b) when κ0 is large.

Proof of Lemma 6. (i). For the first approximation result, thanks to Lemma 5, we only
need to show that

P

(
sup
t
U(t) > b,L

)
= (1 + o(1))P

(
sup
t
f(t) > b

)
.

Under conditions A1 and A2, there exists δ0 > 0 such that

sup
0≤t≤δ0

σ(t) < sup
0≤t≤T

σ2(t) = σT .

For any δ > 0, we have the following decomposition

P

(
sup
t
U(t) > b,L

)
= P

(
sup
t
U(t) > b, sup

t
f(t) > b,L

)
= P

(
sup
t
U(t) > b, inf

δ0<t≤T

∫ t

0
f(s)ds < δb, sup

t
f(t) > b,L

)
+P

(
sup
t
U(t) > b, inf

δ0<t≤T

∫ t

0
f(s)ds > δb, sup

t
f(t) > b,L

)
. (18)

We consider the two terms in (18) one by one. Consider the following change of measure

dQ̄

dP
=

∫
T

1

T

e−(f(t)−b)2/(2σ2(t))

e−f(t)2/(2σ2(t))
dt =

1

T

∫
T
ebf(t)/σ2(t)−b2/(2σ2(t))dt.

15



Under the measure Q̄, f can be considered to be generated in the following way: 1) Simulate
a random index ι uniformly over [0, T ] with respect to the Lebesgue measure. 2) Given the
realized ι, simulate f(ι) ∼ N(b, σ2(ι)). 3) Simulate the rest of the field {f(t) : t 6= ι} from
the original conditional distribution under P given (ι, f(ι)). Note that under the measure
Q̄, conditional on ι, we can write

f(t) = C(t, ι)b+ g(t), (19)

where g(t), t ∈ [0, T ], is a Gaussian process such that it has the same distribution under
the measure Q̄ as that of f under the measure P .

Use the above change of measure, we have

P

(
sup
t
U(t) > b, inf

δ0<t≤T

∫ t

0
f(s)ds < δb, sup

t
f(t) > b,L

)
≤ P

(
inf

δ0<t≤T

∫ t

0
f(s)ds < δb, sup

t
f(t) > b,L

)
= EQ̄

[
dP

dQ̄
; sup

t
f(t) > b, inf

δ0<t≤T

∫ t

0
f(s)ds < δb,L

]
= EQ̄

[
1∫

T
1
T e

bf(t)/σ2(t)−b2/(2σ2(t))dt
; sup

t
f(t) > b, inf

δ0<t≤T

∫ t

0
f(s)ds < δb,L

]
.

Therefore, there exists λ > 0 such that on the set L

P

(∫ T

0
f(t)dt < δb, sup

t
f(t) > b,L

)
≤ EQ̄

[
1

λN−1eb supt f(t)/σ2
T−b2/(2σ

2
T )

; inf
δ0<t≤T

∫ t

0
f(s)ds < δb, sup

t
f(t) > b,L

]
≤ λ−1N exp

(
− b2

2σ2
T

)
Q̄

(
inf

δ0<t≤T

∫ t

0
f(s)ds < δb

)
= λ−1N exp

(
− b2

2σ2
T

)
EQ̄

[
Q̄

(
inf

δ0<t≤T

∫ t

0
f(s)ds < δb

∣∣∣∣ ι)] . (20)

In the following we provide an upper bound of the expectation term in (20). Conditional
on ι, equation (19) implies that∫ t

0
f(s)ds =

∫ t

0
C(s, ι)b+ g(s)ds.

By condition A3, there exists a constant δ1 such that

inf
δ0<t≤T

∫ t

0
f(s)ds ≥ 2δ1b+ inf

δ0<t≤T

∫ t

0
g(s)ds.
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Now set δ in (18) equal to δ1 and we have

Q̄

(
inf

δ0<t≤T

∫ t

0
f(s)ds < δb

)
≤ Q̄

(
inf

δ0<t≤T

∫ t

0
g(s)ds < −δb

)
.

By the Borel-TIS lemma, there exists some constant c > 0 such that

Q̄

(
inf

δ0<t≤T

∫ t

0
g(s)ds < −δb

)
≤ Q̄

(
T
∣∣∣ sup
t∈[0,T ]

g(t)
∣∣∣ > δb

)
≤ exp(−cδ2b2).

Together with (20), this implies that

P

(
inf

δ0<t≤T

∫ t

0
f(s)ds < δb, sup

t
f(t) > b

)
= o(1)P

(
sup
t
f(t) > b

)
. (21)

Thus the first term in (18) is ignorable.
Consider the second term in (18). When infδ0<t≤T

∫ t
0 f(s)ds > δb, there exist c, δ∗ > 0

such that for all t ∈ [δ0, T ],

f(t)− ce−δ∗b ≤ U(t) < f(t).

Therefore, we have that

P

(
sup

0≤t≤T
U(t) > b

)
≥ P

(
sup

δ0<t≤T
U(t) > b, inf

δ0<t≤T

∫ t

0
f(s)ds > δb, sup

t
f(t) > b,L

)

≥ P

(
sup

δ0<t≤T
f(t) > b+ ce−δ

∗b, inf
δ0<t≤T

∫ t

0
f(s)ds > δb, sup

t
f(t) > b,L

)
.

(22)

By (21) we have (22) is equal to

P

(
sup

δ0<t≤T
f(t) > b+ ce−δ

∗b

)
− o(1)P

(
sup

0<t≤T
f(t) > b

)

= (1 + o(1))P

(
sup

δ0<t≤T
f(t) > b

)
− o(1)P

(
sup

0<t≤T
f(t) > b

)
, (23)

where the equation follows from the density result in Lemma 7. Note that δ0 is chosen
such that sup0≤t≤δ0 σ(t) < sup0≤t≤T σ

2(t) = σT . The Borel-TIS lemma then indicates that

P

(
sup

0≤t≤δ0
f(t) > b

)
= o(1)P

(
sup

0≤t≤T
f(t) > b

)
. (24)
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Thus, (22)-(24) gives

w(b) ≥ (1 + o(1))P
(

sup
0≤t≤T

f(t) > b
)
.

Combining the result that w(b) ≤ P
(
sup0≤t≤T f(t) > b

)
from Proposition 10, we have the

first approximation result.
(ii). We proceed to prove the second conclusion. Note that

P

(
b− cb < sup

0≤t≤T
U(t) < b+ cb,L

)

≤ P

(
b− cb < sup

δ0≤t≤T
U(t) < b+ cb,L

)
+ P

(
sup
t≤δ0

f(t) > b− cb

)
. (25)

By Borel-TIS lemma and Lemma 7, we know that for b > κ1| log η| with κ1 large enough,

P

(
sup
t≤δ0

f(t) > b− cb

)
≤ exp

(
−

(b− cb − E[sup0≤t≤δ0 f(t)])2

2 sup0≤t≤δ0 σ
2(t)

)
= o(1)2cbσ

−1
T (b− cb)P

(
sup

0≤t≤T
f(t) > b− cb

)
= o(1)2cbF

′(b− cb).

For the first term on the right-hand side of (25), we apply the same technique as in (18)
that basically replace “U(t)” by “f(t)”. Thus, for κ1 large enough and b > κ1| log η|, we
have that

P
(
b− cb < sup

δ0≤t≤T
U(t) < b+ cb,L

)
≤ (1 + o(1))P

(
b− cb < sup

δ0≤t≤T
f(t) < b+ cb,L

)
.

Then apply Lemma 7 again and we have that

P
(
b− cb < sup

δ0≤t≤T
f(t) < b+ cb,L

)
≤ (1 + o(1))2cbσ

−1
T (b− cb)P

(
sup

δ0≤t≤T
f(t) > b− cb

)
≤ (1 + o(1))2cbσ

−1
T (b− cb)P

(
sup

0≤t≤T
f(t) > b− cb

)
= (1 + o(1))2cbF

′(b− cb).

This implies the existence of constant c such that (15) holds.
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