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Abstract

Variance parameters in mixed or multilevel models can be difficult to estimate, espe-

cially when the number of groups is small. We propose a maximum penalized likelihood

approach which is equivalent to estimating variance parameters by their marginal poste-

rior mode, given a weakly informative prior distribution. By choosing the prior from the

gamma family with at least 1 degree of freedom, we ensure that the prior density is zero

at the boundary and thus the marginal posterior mode of the group-level variance will be

positive. The use of a weakly informative prior allows us to stabilize our estimates while

remaining faithful to the data.

1 Introduction

Maximum marginal likelihood is a useful way to estimate variance parameters in mixed mod-

els. But when the number of groups is small, estimates of group-level variance parameters

can be noisy and can often be zero. In a multivariate setting, estimated covariance matrices

can be degenerate non-positive-definite.

We propose a method that pulls the variance estimates off the boundary and makes them

more stable by maximizing the marginal likelihood multiplied by a penalty function, or equiv-

alently by assigning a prior distribution to the unknown variance parameters and finding the

marginal posterior mode. Such a regularized approach will solve our problem as long as we

have a prior or penalty function that goes to zero at the boundary—but without requiring

the sort of strong prior knowledge which would limit the routine use of this approach. While

Bayes estimates are good if real prior information is available, here we are in the more common

statistical problem of searching for a generic Bayes inference with good frequency properties.
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Is this possible? Is there a default choice of prior that gives reasonable, stable infer-

ence for variance parameters in multilevel models, priors that are zero at the boundary yet

automatically respect the data? Amazingly, it turns out the answer is yes.

In this paper, we aim at developing a default choice of prior that gives reasonable stable

inference for variance parameters in multilevel models, priors that are zero at the boundary

yet automatically respect the data. In particular, we recommend a class of gamma priors

(for unidimensional problems) and Wishart (for multidimensional) that produce Bayes modal

estimates approximately one standard error away from zero when the maximum likelihood

estimate is at zero. We consider these priors to be weakly informative in the sense that they

supply some direction but still allow inference to be driven by the data.

1.1 Background

Linear mixed models, also known as hierarchical or multilevel linear models, are widely used

in the biomedical and social sciences. Typical applications include longitudinal data, observa-

tional data on subjects nested in institutions (hospitals, schools, firms) or in neighborhoods,

cluster-randomized trials, multi-site trials, and meta-analysis.

Most statistical software packages, including Stata, R and SAS, fit the models by (re-

stricted) maximum likelihood. The resulting estimates of group-level variance-covariance

parameters are often on the boundary of the parameter space. For example, in a cluster-

randomized trial of a hospital-level intervention, the between-hospital variance in patient

outcomes may be known to be large, but the estimate may be zero, particularly if there are

only a small number of hospitals in the trial.

The problem of zero estimates does not arise in single-level models, where the log-likelihood

approaches −∞ as the variance parameter approaches zero. In multilevel models, however,

there are no direct data on the group-level variance; as a result, the likelihood does not rule

out zero variances, and when noise levels are high, the marginal likelihood can happen to have

a maximum at zero.

Variance components estimated as zero can cause practical problems. First, zero variance

estimates can go against prior knowledge of researchers. For example, Gelman et al. (2007)

fit a multilevel model predicting voter choice given income, with the intercept and slope

for income varying by state. They found that richer voters tended to support Republican

candidates but with a slope that varied depending on some state-level predictors. For one

election year, the fitted model had a zero value for the point estimate of the variacne of

the state-level errors for the slopes. In the resulting inferences, the state-level slopes were

perfectly predicted by the state-level predictors. There is no reason to believe this—the

perfect prediction is merely an artifact of a variance estimate that happened to be zero—and

it is awkward to graph these results, showing an estimated perfect fit that we do not and
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should not believe. A related difficulty arises when comparing instances of a model that is

repeatedly fit, to similar data from different surveys or different years, yielding zero variance

estimates some of the time.

A second problem with boundary estimates of variance components is the resulting un-

derestimation of uncertainty in coefficient estimates. For instance, in a cluster-randomized

study or meta-analysis, researchers might be overconfident in concluding that a treatment is

effective.

Third, group comparisons are often of interest to researchers, but zero group-level vari-

ance estimates make it impossible to get useful inferences. When the group-level variance is

estimated as zero, the resulting predictions of the group-level errors will all be zero, so one

fails to find unexplained differences between groups.

Finally, convergence problems can occur for optimization algorithms that is performed on

the scale of log-variance.

In models with varying intercepts and slopes, boundary estimates for correlations can also

cause problems. For example, correlations of 1 or −1 between varying slopes and intercepts

imply that the slope is perfectly predicted from the intercept and vice versa which rarely

makes substantive sense. And in practice such a conclusion is usually not strongly supported

by the data; rather, what typically happens is that the likelihood is close to being flat and

happens to have a maximum at the boundary. When such estimates are found, it is common

to simplify the model and remove one of the varying dimensions, which can lead to poorly

estimated standard errors. Convergence problems can again occur if the covariance matrix

is constrained to be positive-definite, and some software in this case automatically reverts to

the model with constant slopes.

These problems have not been studied much in the past. Most of the literature on variance

estimation focuses on the covariance matrix of observed variables, whereas we are interested

in the covariance matrix of latent variables (coefficients that vary by group). With observed

variables, zero variances and degenerate covariance matrices are ruled out by the likelihood

(except when the data themselves happen to fall on a linear subspace), whereas with latent

variables, some amount of the observed variation in the data can be explained by the within-

group variance, and as a result the likelihood never rules out degenerate possibilities. In fact,

as we shall see, degenerate point estimates can happen frequently.

1.2 Outline of our approach

We propose a maximum penalized marginal likelihood estimator based on a weakly informa-

tive prior distribution for the group-level variance parameters. We maximize the marginal

posterior distribution, with the varying intercepts integrated out.

Bayes modal estimation has previously been used to obtain more stable estimates of item
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parameters in item response theory (Swaminathan and Gifford, 1985; Mislevy, 1986; Tsu-

takawa and Lin, 1986) and to avoid boundary estimates in log-linear models (Galindo-Garre

et al., 2004) and latent class analysis (Maris, 1999; Galindo-Garre and Vermunt, 2006). To

our knowledge, this idea has not yet been applied to variance parameters in multilevel models.

For varying-intercept models, we propose a prior distribution that prevents boundary

estimates but increases the variance estimate by no more than about one standard error, and

hence has little influence when the data are informative about the variance.

We compare the inferences from our procedure to those under maximum likelihood and

restricted maximum likelihood estimation in simulations across a wide range of conditions.

Our method performs well, not only in terms of parameter estimation but also in providing

better estimates of standard errors of regression coefficients in many situations.

In addition, our method to avoid boundary estimates is flexible enough to include stronger

prior information when available, by specifying a scale parameter in the prior density.

Our method can be considered as posterior modal estimation with a uniform prior for the

group-level variance after applying a log transformation to make the posterior distribution

more symmetric and the posterior mode closer to the posterior mean. Bayes modal inference

for other Box-Cox transformations of the group-level variance can be achieved by tuning the

shape parameter of the prior.

Compared with full Bayes or posterior mean estimation, our approach does not require

simulation and is computationally as efficient as maximum likelihood estimation, in fact po-

tentially more efficient as it avoids the slow convergence that can occur if the maximum

likelihood estimate is on the boundary. No elaborate convergence checking is required and

there is no need to specify priors for all model parameters. We have implemented posterior

modal estimation in Stata and R with only minor modifications of existing software for max-

imum likelihood estimation of linear mixed models. Given user-specified or default choices of

hyperparameters, the programs automatically find the posterior mode of the variance param-

eter and provide inferences for the coefficients conditional on that estimate.

Our method has natural extensions to models beyond the linear mixed model with a

varying intercept. For the model with varying intercept and slopes, the proposed posterior

modal estimation method can be generalized using the relationship between the gamma and

Wishart distributions. Since we propose a principled method to avoid boundary estimates, we

can extend it to other models in which there are variance parameters that could be estimated

at zero including generalized linear mixed models and hierarchical models with more than

two levels.
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Figure 1: From a simple one-dimensional hierarchical model with scale parameter 0.5 and
data in 10 groups: (a) Sampling distribution of the maximum marginal likelihood estimate
σ̂θ, based on 1000 simulations of data from the model. (b) 100 simulations of the marginal
likelihood, p(y|σθ). In this example, the maximum marginal likelihood estimate is extremely
variable and the likelihood function is not very informative about σθ.

1.3 Boundary problem for a simple model

We demonstrate the problem with a varying-intercept model with J = 10 groups and a single

group-level variance parameter. To keep things simple, we do not include covariates and treat

the mean and within-group variance as known:

yj ∼ N(θj, 1), θj ∼ N(0, σ2
θ ), for j = 1, . . . , J.

In our simulation, we set the group-level standard deviation σθ to 0.5. From this model, we

create 1000 simulated datasets and estimate σθ by maximum marginal likelihood by solving

for σ̂θ in the equation 1 + σ̂2
θ = 1

J

∑J
j=1 y

2
j , with the boundary constraint that σ̂θ = 0 if

1
J

∑J
j=1 y

2
j < 1. In this simple example, it is easy to derive the probability of obtaining a

boundary estimate as Pr(χ2(J) < J
1+σ2

θ

) = 0.37.

Figure 1(a) shows the sampling distribution of the maximum marginal likelihood estimate

of σθ. As expected, in more than a third of the simulations, the marginal likelihood is

maximized at σ̂θ = 0. The noise is so much larger than the signal here that it is impossible

to do much more than bound the group-level variance; the data do not allow an accurate

estimate.

Figure 1b displays 100 draws of the marginal likelihood function, which shows in a different

way that the maximum is likely to be on the boundary, with there being quite a bit of
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uncertainty. We want a point estimator that is positive while being consistent with the data.

2 Bayes modal estimation with weakly informative priors

2.1 A brief review of the maximum likelihood and restricted maximum

likelihood estimation

We consider the model

yij = xT
ijβ + θj + ǫij , i = 1, . . . , nj, j = 1, . . . , J,

J∑

j=1

nj = N, (1)

where xij and yij are observed; β is a p-dimensional vector of coefficients that do not vary

by group; θj ∼ N(0, σ2
θ) is a group-level error; and ǫij ∼ N(0, σ2

ǫ ) is a residual for each

observation. We further assume that θj and ǫij are independent.

The parameters (β, σθ, σǫ) in (1) are commonly estimated by maximizing the marginal like-

lihood (the integral of the joint likelihood, averaging over the varying intercepts θj). Another

option is restricted or residualized maximum likelihood (REML, Patterson and Thompson,

1971), which is equivalent to the marginal posterior mode, averaging also over a uniform prior

on β (Harville, 1974). Unlike the maximum likelihood estimator, the REML estimator of σ2
θ

is unbiased in balanced designs if it is allowed to be negative.

Discussion of small-sample inference for hierarchical models has largely focused on the

covariance matrix of β̂, say V (β̂) (Kenward and Roger, 1997). Longford (2000) points out that

this covariance matrix is often poorly estimated because variance components are estimated

inaccurately. The sandwich estimator (Huber, 1967; White, 1990) is asymptotically consistent

even if the distributional assumptions are violated. However, as Drum and McCullagh (1993)

note, it can perform poorly when the sample size is small. Crainiceanu et al. (2003) derive a

general expression for the probability that the (local) maximum of the marginal (or restricted)

likelihood is at the boundary for linear mixed models and Crainiceanu and Ruppert (2004)

discuss the finite-sample distribution of the likelihood ratio statistic for testing null hypotheses

regarding the group-level variance.

2.2 Bayes modal estimation

In the present article we are particularly concerned with the group-level standard deviation,

and we specify a prior p(σθ) only for σθ, implicitly assuming a uniform prior, p(β, σǫ), on β

and σǫ.

The marginal log-posterior density (with varying coefficients integrated out) can be written

as

log p(σθ,β, σǫ|y) = log p(y|σθ,β, σǫ) + log p(σθ) + c, (2)
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where the first term of the right hand side is the marginal log-likelihood and c is a constant.

We find the parameters that maximize (2). By integrating the posterior over θ, we avoid the

incidental parameter problem (Neyman and Scott, 1948; O’Hagan, 1976; Mislevy, 1986).

The marginal posterior density for (β, σθ, σǫ) can equivalently be regarded as a penalized

marginal likelihood.

2.3 Desired properties of a weakly informative prior

Our goal is to find a prior or penalty function for σθ so that the posterior mode is off the

boundary, but with the prior being weak enough so that inferences are consistent with the

data.

For our purpose, we desire a prior on σθ that

(i) is zero at the origin and

(ii) has a positive constant derivative at zero.

Condition (i) ensures a positive estimate of the variance parameter, even when the maximum

of the likelihood is at 0. Condition (ii) allows the likelihood to dominate if it is strongly

curved near zero. The positive constant derivative implies that there is no “dead zone” in

the prior near zero—that is, the prior does not rule out positive values near zero if they are

supported by the likelihood.

For our default choice of prior we do not impose any restriction on the right tail of p(σθ):

our primary concern here lies in the boundary estimates and the right tail has little impact on

that. If the number of groups is small and we want to further control the estimate, it would

make sense to assign a finite scale to the prior to constrain the right tail.

Various reasonable-seeming choices of priors do not satisfy both the above conditions. The

exponential and half-Cauchy families, for example, do not decline to zero at the boundary, so

they do not rule out posterior mode estimates of zero. Such priors can be excellent weakly

informative priors for full Bayesian (posterior mean) inference (see Gelman, 2006) but do not

work if the goal is to get a stable and reasonable posterior mode estimate.

The lognormal and inverse-gamma densities satisfy condition (i) but not condition (ii).

They have a zero derivative at the origin, essentially ruling out low estimates of σθ no matter

what the data suggest. For any choice of prior in either of these families, there is some ǫ

below which the prior is essentially zero, and you can find data for which the posterior mode

is inconsistent with the data. Thus, the lognormal can only be used when there is real prior

information to guide the choices of its two parameters; it cannot be a default choice of the

sort we are seeking here.
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3 Gamma prior

We propose a gamma (not inverse-gamma) prior on σθ: defined by

p(σθ) =
λα

Γ(α)
σα−1
θ e−λσθ , α > 0, λ > 0 (3)

with mean α/λ and variance α/λ2, where α is the shape parameter and λ is the rate parameter

(the reciprocal of the scale parameter).

With an appropriate choice of parameters, the gamma satisfies the two conditions for the

weakly informative prior listed in the previous section. For any α > 1, gamma(α, λ) satisfies

the first condition that p(0) = 0. In order to have a positive constant derivative at zero (the

second condition), α can be chosen to be 2.

3.1 Default choice and other options

We consider three ways to apply the gamma prior as penalty function:

• Our default choice is gamma(α, λ) with α = 2 and λ → 0, which is the (improper)

density (p(σθ) ∝ σθ). As we discuss shortly, this default bounds the posterior mode

away from zero while keeping it consistent with the likelihood.

• Sometimes we have weak prior information about a variance parameter that we would

like to include in our model. When α = 2, the gamma density has its mode at 1/λ,

and so our recommendation is to use the gamma(α, λ) prior with 1/λ set to the prior

estimate of σθ.

• If strong prior information is available, then both parameters of the gamma density can

be set to encode this. If α is given a value higher than 2, property (ii) above will no

longer hold, but this is acceptable if this represents real information about σθ.

3.2 The effect of the prior on the posterior mode

To examine the effect of α and λ on the posterior mode analytically, we treat (β, σǫ) as

nuisance parameters and assume that the marginal profile log-likelihood can be approximated

by a quadratic function in σθ,

logL(σθ) ≈ −(σθ − µ)2

2τ2
+ c1. (4)

The mode µ corresponds to the maximum likelihood estimate of σθ, and the standard devia-

tion τ corresponds to the estimated asymptotic standard error of σθ (based on the observed
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information). Under this assumption, we derive a number of properties of the gamma(α, λ)

prior on σθ.

Property 1. The posterior mode is

σ̂θ = −λτ2

2
+

µ

2
+

1

2

√
(τ2λ− µ)2 + 4(α− 1)τ2. (5)

In what follows, we discuss the behavior of σ̂θ for two cases: given under Property 2 for

µ = 0 and Property 3 for µ > 0.

Property 2. When µ = 0, for fixed α > 1 and τ , the largest posterior mode is attained when

λ → 0 with the value

σ̂θ = τ
√
α− 1. (6)

With a simple calculation, we can show that ∂σ̂θ/∂λ ≤ 0. Therefore, as λ → 0 for fixed

α and τ , the posterior mode increases monotonically to the maximum. With α = 2, the

largest possible posterior mode is τ . That is, when the maximum likelihood estimate is on

the boundary, the gamma(2, λ) prior shifts the posterior mode away from zero but not more

than one standard error.

One standard error can be regarded as a statistically insignificant distance from the

maximum likelihood estimate. If the quadratic approximation in (4) holds and the max-

imum likelihood estimate µ is zero, the likelihood-ratio test statistic for H0 : σθ = τ is

2(logL(0) − logL(τ)) = 1. For the null hypothesis σθ = 0, it is known that asymptotic dis-

tribution (as J approaches infinity) of the test statistic is 0.5χ2
0 + 0.5χ2

1 with 99th percentile

5.41. In finite samples, the mass at zero is larger and the 99th percentile is smaller, but even

with J = 5, the 99th percentile is as large as 3.48, in a model without covariates and large

cluster size (Crainiceanu and Ruppert, 2004). For testing the null hypothesis that σθ = τ > 0,

the percentile will be larger because there is less point mass at zero (Crainiceanu et al., 2003).

Therefore, a likelihood ratio test statistic of 1 can be considered small.

Property 3. If µ > 0 and α > 1, the largest possible posterior mode is attained when λ → 0

with the value

σ̂θ =
µ

2
+

µ

2

√
1 + 4(α − 1)τ2/µ2 > µ.

In addition, ∂σ̂θ/∂τ decreases in µ.

The gradient ∂σ̂θ/∂τ = α−1√
α−1+µ2/(4τ2)

is always less than
√
α− 1. (Recall that ∂σ̂θ/∂τ =

√
α− 1 for µ = 0.) In addition, this derivative becomes smaller as µ increases. This implies

that, when λ is close to zero, the gamma(α, λ) prior does not shift the posterior mode as

much when the maximum likelihood estimate is away from zero as it does when the maximum

likelihood estimate is zero. That is, while the gamma prior helps us avoid boundary estimates
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when the maximum likelihood estimate is on the boundary, it has less influence on the estimate

when the maximum likelihood estimate is plausible.

3.3 Transformation of σθ

When the posterior density of σθ is asymmetric, a transformation of σθ can make the density

more symmetric so that the posterior mode will be located near the posterior mean which has

good asymptotic properties.

Property 4. As λ → 0, a gamma(2, λ) prior on σθ is equivalent to a uniform(0,∞) prior on

σθ after log transformation of σθ.

With the uniform (improper) prior on σθ in the range of (0,∞), the log-transformed σθ

has the prior p(log σθ) ∝ σθ and this is equivalent to gamma(2, λ) on σθ as λ → 0.

With the uniform prior on σθ, the marginal posterior density is just the marginal likelihood,

which is often right-skewed or even has its mode at σθ = 0 (where the boundary estimation

problem occurs). In this case, the log transformation of σθ can make the shape of the posterior

more symmetric.

The equivalence of changing α and transforming σθ can be generalized to a family of power

transformations beyond the log. Consider the Box and Cox (1964) transformations, defined

by

gγ(σθ) =

{
σγ
θ
−1
γ if γ 6= 0;

log(σθ) if γ = 0

Property 5. A gamma(α, λ) prior on σθ is equivalent to a gamma(α + 1 − γ, λ) prior on

gγ(σθ).

From the Jacobian σ1−γ
θ of the inverse transformation, the prior p(gγ(σθ)) of gγ(σθ) is

proportional to σα−γ
θ e−λσθ , which is proportional to gamma(α − γ + 1, λ). Therefore, any

order of power transformation of σθ for obtaining a more symmetric posterior density is

equivalent to adjusting α to α+ 1− γ without transforming σθ. Property 4 is a special case

with α = 1, γ = 0 and λ → 0.

Although we have discussed the gamma prior on the group-level standard deviation (σθ),

one might want to consider priors on the variance, σ2
θ . If we assign the gamma(α, λ) on σ2

θ

instead of σθ, the logarithm of the prior becomes log p(σ2
θ) = 2(α−1) log σθ−λσ2

θ . In the limit

λ → 0, the term 2(α−1) log σθ is the same as the corresponding term of gamma(2α−1, λ) on

σθ. Therefore a gamma(α, λ) prior on σ2
θ has almost the same effect on the posterior mode

as a gamma(2α − 1, λ) prior on σθ when λ → 0.
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3.4 Connection to REML

In Section 2.1, we mentioned that REML gives an unbiased estimate for variance components

in the balanced case (when negative variance estimates are permitted). In this section, we

regard REML as a penalized likelihood estimator and compare the REML penalty with the

log of the gamma density, considered as a penalty on the log-likelihood.

Longford (1993) describes the REML log-likelihood, say logLR, in terms of the original

log-likelihood, L, and an additive penalty term,

logLR = logL− 1

2
log

(
det(XTV −1X)

)
(7)

where V is the N ×N covariance matrix of the vector of all responses y and X is the design

matrix with rows xT
ij . In the varying-intercept model in (1), V is a block-diagonal matrix

with nj ×nj blocks, Vj, j = 1, . . . , J , where Vj contains σ
2
θ +σ2

ǫ in the diagonal and σ2
θ in the

off-diagonals. Recalling that the log-posterior density is the sum of the log-likelihood and the

log-prior density in (2), the second term in (7), denoted by log pR(σθ), is analogous to the log

of the gamma prior.

In order to compare the REML penalty and log gamma density in a simple closed form,

we consider a special case of model (1) with balanced group size n, q level-1 covariates, and r

level-2 covariates. The level-1 covariates, written as columns z1, . . . ,zq of the design matrix,

consist of the same elements for each group and satisfy 1Tzu = 0, zT
u zu′ = 1 if u = u′, and 0

otherwise for u = 1, . . . , q. The level-2 covariates are assumed to be dummy variables for the

first r(< J − q − 2) groups. Then the REML penalty becomes

log pR(σθ) =
r + 1

2
log

(
σ2
θ +

σ2
ǫ

n

)
+ c1 (8)

where c1 is a constant. The proof is provided in the web-based supplementary materials.

Recall that, when λ → 0, the gamma(α, λ) prior on σ2
θ (equivalently gamma(2α− 1, λ) on

σθ) has log density,

log p(σ2
θ) = (α− 1) log σ2

θ + c2. (9)

Ignoring the constant terms that have no influence on the posterior mode, we see that the

gamma((r + 1)/2 + 1, λ) on σ2
θ (equivalently gamma(r + 2, λ) on σθ) approximately matches

the REML penalty, particularly when the group-size n is large and λ is close to zero.

Figure 2 compares the REML penalty function in (8), the log of the gamma density with

corresponding α = (r + 1)/2 + 1, and the REML penalty function in the second term of (7)

for a dataset with n = 30, J = 5, q = 1, r = 0, 1, or 2, which does not have the form assumed

when deriving (8). For the latter, the columns of the covariate matrix X consist of a vector of

ones, a level-1 covariate z1 with z1ij = i and two level-2 covariates w1 and w2 where w1j = j
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(a) REML penalty in (8) with n =
30, σǫ = 1
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(b) gamma(α, λ) prior
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(c) REML penalty for data with n =
30, q = 1, J = 5

Figure 2: REML log-penalty function compared with gamma(α = (r+ 1)/2 + 1, λ) prior, with
λ = 10−4. The shapes of the curves agree quite well except when σθ is close to 0 where the
gamma prior tends to 0.

for all j = 1, . . . , j = J and w2 is the same as w1 except that the values for the last group

are 0 instead of J . Comparing Figure 2(a) and (c), the penalties differ by a constant which

does not affect the mode, so formula (8) appears to hold more generally.

For Figure 2(a) and (b), the constant terms were ignored to make the figures easier to

compare. The REML penalty functions with r = 0, 1, and 2 look very similar to the gamma

penalty on σ2
θ with α=1.5, 2.0, and 2.5, respectively, except where σθ is close to zero. At

σθ = 0, the log of the gamma prior is −∞ for α > 1, whereas the REML penalty approaches

−∞ only if σǫ → 0 or n → ∞. This explains why REML can produce boundary estimates.

Further, it implies that the gamma prior assigns more penalty on σ2
θ close to zero than REML

for small n and large σǫ. Otherwise, REML can approximately be viewed as a special case of

our method with a gamma prior.

3.5 Implementation in Stata and R

We have implemented posterior modal estimation with a family of gamma priors in Stata and

R. Compared with posterior mean estimation, our method is less computationally intensive

and is easy to implement by modifying existing maximum likelihood estimation procedures for

(generalized) linear mixed models such as gllamm (Rabe-Hesketh et al., 2005; Rabe-Hesketh

and Skrondal, 2008) in Stata and lme4 (Bates and Maechler, 2010) in R.

In Stata, gllammmaximizes the marginal log-likelihood by the Newton-Raphson algorithm.

We add the logarithm of the prior to the marginal log-likelihood so that the posterior mode

can be estimated by the Newton-Raphson algorithm. gllamm with a gamma prior as an

option is available from the Boston College Department of Economics Statistical Software
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Components (SSC).

In R, the lmer function in the lme4 package directly computes the marginal and residual-

ized log-likelihood using sparse matrix decomposition techniques (Bates, 2005). Our program

blmer mildly alters lmer by adding a default or user-specified penalty function. The program

can be found in the arm package and is available on the Comprehensive R Archive Network.

4 Application: meta-analysis of 8-schools data

Alderman and Powers (1980) report the results of randomized experiments of coaching for the

Scholastic Aptitude Test (SAT) conducted in eight schools. The data for the meta-analysis

consist of an estimated treatment effect and associated standard error for each school (obtained

by separate analyses of the data of each school). The data have previously been analyzed by

Rubin (1981) and Gelman et al. (2004) to compare different approaches for estimating effects

in parallel studies. Meta-analyses such as this one, with a small number of studies, pose a

challenge for variance estimation, leading to poor coverage of estimated confidence intervals

for the overall treatment effect (e.g., Brockwell and Gordon, 2001).

Meta-analysis with varying intercepts (DerSimion and Laird, 1986), typically called random-

effects meta-analysis, allows for heterogeneity among studies due to differences in populations,

interventions, and outcomes. The model for the effect size yi of study i can be written as

yi = µ+ θi + ǫi, θi ∼ N(0, σ2
θ ), ǫi ∼ N(0, s2i ), (10)

and allows the true effect µ + θi of study i to deviate from the overall effect size µ by a

study-specific amount θi. In addition, the estimated effect yi for study i differs from its true

value by an estimation error ǫi with standard deviation set equal to the standard error for

study i.

Figure 3 shows the marginal profile log-likelihood (maximized with respect to µ) of σθ

(left) and σ2
θ (right). On the left we see that the maximum likelihood estimate of σθ is zero

and that the marginal profile log-likelihood function decreases slowly as σθ increases from zero.

For instance, at σθ = 10 the log-likelihood is only 1.2 less than at the maximum, suggesting

that the data are consistent with such large values of the standard deviation.

Inference for σθ is important because it affects both the point estimate and estimated

standard error of the overall effect size µ,

ŝe(µ̂) =

[
∑

i

1

s2i + σ2
θ

]
−1/2

. (11)

For example, the estimated standard error is 4.1 for σθ = 0, compared with 5.5 for σθ = 10

(the corresponding estimates of µ are 7.7 and 8.1, respectively.)
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Figure 3: Log marginal profile log-likelihood as a function of σθ (left) and σ2
θ (right) for 8-

schools data. The dotted curve is the quadratic approximation at the mode, based on the
estimated standard error. The vertical dotted line is one standard error away from the mode
and the vertical dashed line is the Bayes modal estimate for a gamma(2,λ) prior on σθ (left)
or σ2

θ (right). The quadratic approximation is good as a function of σθ (left) and consequently
the Bayes modal estimate is one standard error away from the maximum likelihood estimate
of zero. As a function of σ2

θ (right), the quadratic approximation is poor.

Prior µ σθ σ2
θ

Method α Est SE SER Est SE Est SE Log-lik

ML 7.69 4.07 3.33 0 6.32 0 0.00 −29.67
ML1 7.13 3.19 −41.40 31.44 −29.30

gamma on σθ 2 7.92 4.72 3.39 6.30 4.61 39.73 58.15 −30.18
gamma on σθ 3 8.10 5.38 3.43 9.42 5.34 88.65 100.62 −30.76

gamma on σ2
θ 1.5 7.92 4.72 3.38 6.28 4.79 39.42 57.65 − 30.18

gamma on σ2
θ 2 8.09 5.37 3.42 9.37 5.30 87.71 99.23 −30.75

1 allow σ2
θ < 0

SER: robust (sandwich) standard error.

Table 1: Maximum likelihood and posterior mode estimates for the 8 schools data, where
the prior is gamma(α, λ) on σθ or σ2

θ , with λ = 10−4. With gamma(α, λ) priors on σθ, the
posterior mode estimates are approximately at τ

√
1− α and agree well with the posterior

mode estimates with gamma((α + 1)/2, λ) on σ2
θ .

14



For the model in (10), we consider four different priors: gamma(2, λ) and gamma(3, λ) on

σθ and gamma(1.5, λ) and gamma(2, λ) on σ2
θ , where λ = 10−4. Posterior mode estimates

with these priors and maximum likelihood estimates are given in Table 1. The estimated

standard error of the maximum likelihood estimate of σθ is 6.32 (which corresponds to τ in

Section 3.2).

When the prior is on σθ (rows 3 and 4), the posterior mode estimates of σθ are at 6.30 and

9.42 for α = 2 and α = 3, respectively. These are close to the values τ
√
α− 1 with τ = 6.32,

which we expect with µ = 0 if the marginal posterior log-likelihood is quadratic in σθ, as it

appears to be in the left panel of Figure 3. In both cases, the marginal log-likelihood is only

a little bit lower than the maximum.

The maximum likelihood estimate of σ2
θ is −41.40 when it is allowed to be negative.

Specifying a gamma(2, λ) prior on σ2
θ (row 6) gives estimates that agree well with those for

a gamma(3, λ) prior on σθ as expected (see Section 3.2). Similarly, a gamma(1.5, λ) prior on

σ2
θ (row 5) gives posterior mode estimates that are close to the estimates with gamma(2, λ)

on σθ. A gamma prior on σ2
θ with α = 1.5 corresponds to REML with no level-2 covariates.

While REML gives σ̂θ = 0 (not shown here), a gamma prior with α = 1.5 gives a legitimate

estimate and at the same time it reduces the marginal log-likelihood by only 0.5.

We see in the right panel of Figure 3 that the quadratic approximation at the mode is not

a good approximation to the profile log likelihood as a function of σ2
θ and that the posterior

mode estimate (for α = 2) is considerably more than one standard error away from the

maximum likelihood estimate.

Table 1 also reports model-based and robust standard error estimates for µ̂. We see that

the estimated model-based standard error of the estimated overall effect size µ increases with

σθ as implied by (11), whereas the robust standard errors, based on the sandwich estimator,

change very little. (The data and code for this example can be downloaded from the journal

website.)

5 Simulation of balanced varying-intercept model

We consider a simple varying-intercept model,

yij = β0 + θj + β1x1ij + β2x2ij + ǫij , i = 1, . . . , n, j = 1, . . . , J (12)

with J = 3, 5, 10, 30 groups and n = 5, 30 observations per group. This model includes two

covariates: x1ij = i varies within groups only (its mean is constant across groups), and x2ij = j

varies between groups only. The coefficients β0, β1, β2 are fixed parameters, θj ∼ N(0, σ2
θ ) is

a varying intercept for each group, and ǫij ∼ N(0, σ2
ǫ ) is an error for each observation.

For each combination of J and n, we generate 100 datasets with true parameter values,

15



β0 = 0, β1 = β2 = 1, σǫ = 1, and σθ = 0, 1/
√
3, or 1, which correspond to intra-class

correlations ρ = 0, 0.25 and 0.5, respectively. We obtain posterior mode estimates with

gamma(2, λ) and gamma(3, λ) priors on σθ, where λ = 10−4. The REML penalty correponds

to α = 3 since the model contains one group-level covariate. We compare posterior mode with

maximum likelihood and REML estimates.

Boundary estimates Here we report the proportion of estimates of σθ that are on the

boundary (less than 10−5) when the true σθ is not zero (1/
√
3 and 1). For σθ = 1/

√
3, 67%

of maximum likelihood estimates and 46% of REML estimates are zero for J = 3 and n = 5.

As J or n increases, the proportion decreases, but for J = 5 and n = 30, the proportion of

estimates on the boundary is still 7% for maximum likelihood and 5% for REML.

When σθ = 1, the same pattern occurs but estimates are on the boundary less often for

a given condition. For J = 3 and n = 5, maximum likelihood produces 49% of estimates

on the boundary compared with 34% for REML. When J increases to 5 and n to 30, 4%

of maximum likelihood estimates and 1% of REML estimates are on the boundary. When

J = 30, maximum likelihood and REML yield no boundary estimates for either value of σθ

while n = 30 still gives some boundary estimates depending on J . Therefore, we can infer that

the number of groups is more critical than the cluster size for avoiding boundary estimates.

In contrast to the maximum likelihood and REML estimates, the posterior mode esti-

mates are never on the boundary in any of the simulation conditions. At the same time, the

posterior mode estimates do not differ significantly from the maximum likelihood estimates.

The likelihood ratio test for the model that restricts σθ to the posterior mode estimate σ̂Bayes
θ ,

is based on the test statistics

−2
[
logL(σ̂Bayes

θ )− logL(σ̂ML
θ )

]
. (13)

and this test statistics was calculated for each replicate. When J > 3, the largest test

statistics among all the replicates and simulation condition is 2.6. Even for J = 3, the largest

test statistic is 3.4. As discussed in Section 3.2, these values are not large.

Quadratic approximation We now assess how well some of the relationships hold that

were derived in section 3 by assuming that the marginal profile log likelihood is quadratic.

Figure 4 shows that the posterior modes calculated by the quadratic approximation of the

marginal profile log-likelihood (see properties 2 and 3, where µ and τ are the maximum

likelihood estimate of σθ and its standard error, respectively) agree well with the posterior

mode estimates with a gamma(2,λ) prior on σθ for J = 3 and J = 30 when ρ = 0.25 and n =

30. However, when a gamma prior is specified on σ2
θ for J = 3 (not shown here), the quadratic

approximation tends to underestimate the posterior mode. These findings are consistent with
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Figure 4: Posterior mode estimates with a gamma(2,λ) prior on σθ for ρ = 0.25 and n = 30,
compared with the posterior mode based on the quadratic approximation of the marginal profile
likelihood (see properties 2 and 3, where µ and τ are the maximum likelihood estimate and
standard error, respectively). Agreement is good, suggesting that the quadratic approximation
is good. Dots on the left graph that fall off the line are due to a few samples that have
uncommonly large standard errors.

the observation, for the 8 schools example in Section 4, that the quadratic approximation of

the marginal profile log-likelihood was a better approximation when considered as a function

of σθ than when considered as a function of σ2
θ . When J = 30, the quadratic approximation

works well for a gamma prior on σθ or on σ2
θ .

Estimation of σθ Figure 5 summarizes the bias of the maximum likelihood, REML, and

posterior mode estimators of σθ. As J or n increase and as σθ decreases, the bias decreases.

Thus the differences between methods are most obvious with small J or n, and particularly

when the true σθ is not zero.

For σθ = 1/
√
3 and 1, REML has the smallest bias in general and maximum likelihood

tends to underestimate σθ. Posterior mode estimates with gamma(2, λ) tends to be downward

biased for σθ but not as much as maximum likelihood estimates. On the other hand, the

posterior mode estimator with gamma(3, λ) produces the largest estimates among the four

estimators so it often overestimates σθ, but the amount of bias decreases as n increases. For

σθ = 1, the posterior mode estimator with gamma(3, λ) is less biased than REML for both

n = 5 and n = 30. In addition, the posterior mode estimator with gamma(3, λ) is close to

REML when n = 30 and σθ is not zero. This confirms that the gamma penalty on σθ with

α = 3 (equivalently gamma penalty on σ2
θ with α = 2) agrees with the REML penalty when

the model contains one group-level covariate, particularly with large n. When σθ = 0, as
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Figure 5: Estimated bias of σ̂θ for group sizes 5 and 30 (rows), standard deviations σθ = 0,
1/
√
3, and 1 (columns) and number of groups J = 3, 5, 10, 30 (x-axis). Different estimators

are represented by different line patterns as shown in the legend in the top-right graph. When
σθ > 0, all estimators outperform maximum likelihood. Posterior mode with gamma(3, λ) on
σθ performs similarly to REML for n = 30 and better than REML for σθ = 1.
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Figure 6: RMSE of σ̂θ. For σθ > 0, posterior mode with α = 2 and α = 3 performs better
than maximum likelihood or REML.

expected, the posterior mode estimator with gamma(3, λ) assigns more penalty on the values

close to the boundary than REML, so the bias is larger than for REML.

Figure 6 shows the root mean squared errors (RMSE) of σ̂θ. When the true σθ is not zero,

both posterior mode estimators (α = 2, 3) have smaller RMSE than REML and maximum

likelihood. For σθ = 1/
√
3 and σθ = 1, REML has smaller bias than the posterior mode

estimator with gamma(2, λ) but its RMSE is significantly larger because the REML estimates

have the largest variance among the four estimators. The posterior mode estimator tends to

have smaller RMSE with gamma(2, λ) than with gamma(3, λ) but the difference decreases as

n, J and σθ increase.

Estimation of standard error of β̂2 The estimated standard error of the estimated co-

efficient of the group-level covariate (β̂2) is greatly influenced by σ̂θ. The squared asymptotic

standard error of β̂2 from the Hessian matrix is

V ar(β̂2) ≈
nσ2

θ + σ2
ǫ

nJs2X2

(14)
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Figure 7: Mean of s.e(β̂2) divided by the asymptotic standard error. For σθ > 0, the posterior
mode estimator performs better than the maximum likelihood estimator and is close to REML.

where sX2
is the standard deviation of the group-level covariate X2 (Snijders and Bosker,

1993). When the true variance is not zero but σ̂θ is on the boundary, (14) implies that the

standard error of β̂2 will be underestimated.

Figure 7 shows ratios of the mean estimated standard error divided by the theoretical

standard error in (14). When the true variance is zero, standard errors for maximum likelihood

match the theoretical standard errors well but when the true variance is not zero, maximum

likelihood badly underestimates the standard errors. Especially in the case σθ = 1, maximum

likelihood underestimates standard errors by nearly 50% for J = 3, regardless of cluster size

n. Compared to maximum likelihood, REML performs consistently well regardless of the true

variance. When σθ > 0, the posterior mode estimator with a gamma(2, λ) prior is close to

REML when n = 5, and the posterior mode estimator with a gamma(3, λ) is close to REML

for n = 30. The robust standard errors (also known as the sandwich variance estimator) are

worse than any of model-based standard errors. As noted in Section 2.1, robust standard

errors are known to perform poorly in small samples.

In summary, when the true σθ is not zero, the bias of σ̂θ is as low for the posterior mode

estimator with both gamma priors as for REML. The RMSE of σ̂θ is lower for the posterior
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mode estimator with both gamma priors than for REML and the maximum likelihood esti-

mator. Regarding the standard error estimates for β̂2, the posterior mode with a gamma(2, λ)

performs well for small n and the posterior mode with gamma(3, λ) works better for large

n (again when σθ > 0). Although there is no obvious winner between gamma with α = 2

and α = 3, neither prior ever produces a boundary estimate (σ̂θ < 10−5). Recalling that

maximum likelihood and REML have quite a large proportion of boundary estimates, the

posterior mode estimator with a gamma prior is successful at avoiding boundary solutions

and, at the same time, the estimates are not significantly different from maximum likelihood

estimates for most cases.

We also performed a simulation study for unbalanced variance component models without

any covariates, following Swallow and Monahan (1984). For two different unbalanced patterns

with σθ = 0, 1/
√
3, 1, we compared maximum likelihood and REML estimates with posterior

mode estimates with a gamma(2, λ) prior, which corresponds to the REML penalty when

there is no group-level covariate. (Results are in the web-based supplementary materials.)

Similar to the balanced case, when σθ is not zero, maximum likelihood and REML tend

to underestimate σθ and the RMSEs tend to be larger than for the posterior mode estimates.

The advantage of the gamma prior in terms of the RMSE is more obvious for σθ = 1. The

standard errors of the fixed intercept estimate are also underestimated by maximum likelihood

and REML when σθ is not zero while the posterior mode estimators perform better in this

regard.

6 Discussion

6.1 Multivariate extension using the Wishart distribution

In the previous sections, we discussed the properties of gamma(2,λ) as a weakly informative

prior for the group-level standard deviation. In a model with varying intercepts and slopes,

yij = xT
ijβ + zT

ijθj + ǫij, i = 1, . . . , nj , j = 1, . . . , J,

J∑

j=1

nj = N,

where θj ∼ N(0,Σ) is a d-dimensional vector that varies between groups, we would like to

regularize the variance-covariance matrix Σ away from its boundary, |Σ| = 0. If |Σ| = 0, at

least one eigenvalue of Σ is zero. We consider gamma priors on each of the eigenvalues, say

λ1, . . . , λd.

Then the prior on Σ can be written as

p(Σ) ∝
d∏

i=1

λi exp(−δλi). (15)
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The Wishart density function is defined by

p(W |ν, S) = |W |(ν−d−1)/2 exp[−1
2tr(S

−1W )]

2νd/2|S|n/2Γd(ν/2)
, ν > d− 1, S > 0 (16)

where Γd(ν/2) = πd(d−1)/4
∏d

j=1 Γ(ν/2 + (1− j)/2), ν is degrees of freedom, and S is a scale

matrix with E(W ) = νS. With ν = d+ 3 and S = 1
2δ I, the right side of (15) is proportional

to the Wishart density.

Therefore the Wishart(d + 3, 1
2δ I) prior will shift the posterior mode of each eigenvalue

away from 0, or equivalently move the posterior mode of Σ away from the singularity. At the

same time, it moves the eigenvalues approximately at most one standard error away from the

maximum likelihood estimates as did the gamma(2,λ) in the univariate case.

The Wishart prior on Σ corresponds to a gamma prior on σ2
θ . If we consider the gamma

prior on σθ, this can be extended to the Wishart prior on Σ
1

2 = DΛ
1

2DT , where D is a matrix

of eigenvectors of Σ and Λ
1

2 is a diagonal matrix with
√
λi for the i-th diagonal element.

6.2 Other extensions

We anticipate that our approach could be applied to many extensions in the world of multilevel

models, including generalized linear mixed models, models with multiple variance parameters

(nested or non-nested), and latent variable models of all sorts—basically, any models in which

there are variance parameters that could be estimated at zero.

Another generalization arises when there are many variance parameters—either from a

large group-level covariance matrix, several different levels of variation in a multilevel model,

or both. In any of these settings, it can make sense to stabilize the estimated variance

parameters by modeling them together, adding another level of the hierarchy to allow partial

pooling of estimated variances.

6.3 Connections to other inferential approaches

One might argue that the proclivity for the standard estimates to be degenerate is a feature,

not a bug. But testing is a separate issue and we do not recommend mixing it with estima-

tion. For the purpose of estimating coefficients and their uncertainties, we want to allow the

possibility of positive σθ even if we cannot reject the null hypothesis that it is zero.

Finally, from a computational as well as an inferential perspective, a natural interpretation

of a posterior mode is as a starting point for full Bayes inferenc, in which informative priors

are specified for all parameters in the model and Metropolis or Gibbs jumping is used to

capture uncertainty in the coefficients and the variance parameters (Dorie et al., 2011). For

reasons discussed above, it can make sense to switch to a different class of priors when moving
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to full Bayes: once modal estimation is abandoned, there is no general reason to work with

priors that go to zero at the boundary.
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