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LATENT VARIABLE SELECTION FOR MULTIDIMENSIONAL ITEM RESPONSE

THEORY MODELS VIA L1 PENALTY

Abstract

We develop a latent variable selection method for multidimensional item

response theory models. The proposed method identifies latent traits probed by

items of a multidimensional test. Its basic strategy is to impose an L1 penalty

term to the log-likelihood. The computation is carried out by the expectation-

maximization algorithm combined with the coordinate descent algorithm. To

the authors’ best knowledge, this is the first study investigating a data-driven

latent structure in the literature of item response theory. Simulation studies

show that the resulting estimator provides an effective way in correctly identi-

fying the latent structures. The method is applied to a real data set involving

the Eysenck Personality Questionaire.

Key words: latent variable selection, multidimensional item response theory

model, L1 regularization, expectation-maximization, BIC.
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1. Introduction

Psychological and educational tests are often conducted to investigate multiple latent

traits or skills by making use of dichotomous-response or polytomous-response items. A

key element in such tests is the relationship between the items and the latent traits. It

is conventional to pre-specify the relationship by experts’ prior knowledge of the items

and of the latent traits. The correct specification of latent traits associated with each

item is crucial both for the model parameter calibration and for the assessment of each

individual. Misspecification of the item-trait relationship may lead to serious model

lack of fit and, consequently, erroneous assessment. An interesting question is whether

this can be estimated empirically based on the data. In this paper, this question is

cast as a variable selection problem under the setting of multidimensional item response

theory (IRT) models. To the authors’ best knowledge, this is the first piece of work that

formulates the problem of finding a “simple loading structure” as a variable selection

problem and solves it using an computationally efficient method.

The concept of the multidimensional IRT can be traced back to McDonald (1967),

Lord and Novick (1968) and Reckase (1972). As summarized in Reckase (1997),

Embretson and Reise (2000) and Reckase (2009), the multidimensional IRT models con-

tain two or more parameters to describe the interaction between the latent traits and the

responses to items. Some additional references are Sympson (1978); Embretson (1984);

Ansley and Forsyth (1985); Way, Ansley, and Forsyth (1988); Ackerman (1989); Reckase

(1997).

To be more precise, we associate each subject (examinee) to an unobserved multi-
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variate trait vector denoted by θ = (θ1, ..., θK)T , each component of which represents one

latent trait. Throughout this paper, we assume that the responses are binary. For other

types of responses, the proposed method can be adapted. Each subject responds to J

items. The response function of item j takes the form P (Yj = 1|θ) = F (aTj θ + bj) where

aj = (aj1, ..., ajK)T and F is some cumulative distribution function. We say that item j is

associated with latent trait k if ajk 6= 0. Of interest in this paper is the set of traits that

are associated with each item. We formulate it as a latent variable selection problem,

that is, for each item, we select the set of latent variables influencing the distribution of

its responses. We employ variable selection techniques developed for regular regression

models for our analysis. An equivalent approach would be defining the incidence matrix

Λ = (λjk) where λjk = I(ajk 6= 0) and consider Λ as part of the model parameters. This,

however, could look more intimidating due to the discreteness of Λ. We adopt the latent

variable formulation throughout our analysis.

In the literature, various methods have been introduced for the item parameter

estimation including the marginal likelihood method (Bock, Gibbons, & Muraki, 1988),

Bayesian estimation via Markov chain Monte Carlo (Béguin & Glas, 2001; Bolt & Lall,

2003), least squares method (McDonald, 1982), etc. There are also discussions of the

dimension estimation of K (Kang, 2006; Svetina & Levy, 2012).

Another related literature is the confirmatory analysis (McKinley, 1989), for which

each item is known to be associated with a subset of the available latent traits. Under this

context, the item-trait association is specified by the matrix Λ. Confirmatory analysis

based on a multidimensional IRT model is one of the nonlinear versions of the confirma-
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tory factor analysis that is initially proposed by Jöreskog (1969). Typical confirmatory

analysis assumes that Λ is known and that the item parameters are estimated given a

pre-specified Λ.

The current study may be considered as an intermediate step between the exploratory

factor analysis and the confirmatory factor analysis. Nevertheless, it is closer to the latter

as each item is associated with only a subset of the latent traits, which implicitly requires

certain practical interpretability of each latent trait. Unlike the exploratory analysis, for

which a non-degenerate rotation on θ yields a mathematically equivalent model, we will

impose certain constraints during the parameter estimation and the estimates are not

rotation invariant. These constraints are based on empirical knowledge of the items and

may affect the final result. We recommend researchers to consider different constraints

and to make comparisons among them. There is some early work attempting to ad-

dress similar issues. For instance, Ackerman (1994) suggested that one could understand

how the latent traits were measured by test items by fitting the test data with a mul-

tidimensional IRT model from the graphical perspective. However, to the authors’ best

knowledge, estimation of the Λ-matrix via a latent variable selection framework has not

yet been formally discussed in the literature. The study in this paper fills in this void.

The dependence of the responses on the latent traits falls into the form of a general-

ized linear model, where θ plays the role of covariates while aj is the vector of regression

coefficients. Of interest is the estimation of the non-zero elements of the a-vector, which

corresponds to a latent variable selection problem. There is a rich statistics literature

on variable and model selection. Various information criteria have been proposed under
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the regression context including AIC, BIC, DIC, Cp, etc (Akaike, 1974; Schwarz, 1978;

Spiegelhalter, Best, Carlin, & Van Der Linde, 2002; Mallows, 1973). One issue in the

application of these information criteria lies in computation. Suppose that there are J

item and K attributes. Then, there are in total J×K a-coefficients. In order to minimize

the information criteria, one has to evaluate them over 2J×K models, which typically in-

duces a substantial computation overhead. Due to this concern, we consider a different

approach that is the L1 regularization. The L1 regularized regression is originally intro-

duced for linear models. It is also known as the least absolute shrinkage and selection

operator (Tibshirani, 1996). It receives much attention for solving the variable selection

problems for both linear and generalized linear models (for instance, Friedman, Hastie,

Hofling, & Tibshirani, 2007; Friedman, Hastie, & Tibshirani, 2010).

One advantage of the L1 regularized regression over the information criterion ap-

proach is that its computation is much more tractable than that of the latter. From

the methodological point of view, the current problem is different from the traditional

variable selection for generalized linear models. In the regression formulation, the latent

traits play the role of covariates. Under the regular variable selection setting, covariates

are fully observed. For the current problem, the latent traits are not directly observed

and therefore the L1 penalty is applied to the marginal log-likelihood of the observed

data with θ being integrated out. As for the corresponding computation, we apply the

expectation-maximization algorithm treating θ as the missing data.

The rest of the paper is organized as follows. Section 2 includes the specification

of the multidimensional IRT models for dichotomous responses, the estimation of the
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Λ-matrix via a regularized estimator, and the corresponding computation. Simulation

studies are included in Section 3 illustrating the performance of the proposed method.

Real data analysis is provided in Section 4. A concluding remark is provided in Section

5.

2. Latent Variable Selection via L1 Regularized Regression

2.1. Compensatory Multidimensional IRT Models

Consider a test containing J items and K latent traits. The traits are represented

by a K-dimensional vector θ ∈ RK , the K dimensional Euclidean space. Each subject

responds to all J items. For the present discussion, all responses are dichotomous. Denote

the response to item j by yj. A compensatory two-parameter multidimensional model is

P (yj = 1|θ, aj, bj) = F (aTj θ + bj), (1)

where F : R→ [0, 1] is a pre-specified nondecreasing function, aj = (aj1, ..., ajK)T and bj

are the item-specific parameters. In particular, aj is the discrimination parameter vector

and bj is the difficulty parameter. We define

A = (a1, ..., aJ), b = (b1, ..., bJ)T .

Furthermore, the local independence among the responses is assumed, that is, conditional

on θ, y1, ..., yJ are jointly independent.

There are two popular choices for F : the normal ogive model and the logistic model.

For the normal ogive model, F is chosen to be the cumulative distribution function

of the standard normal distribution (Bock et al., 1988), that is, P (yj = 1|θ, aj, bj) =
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∫ aTj θ+bj
−∞ (2π)−1/2e−

u2

2 du. For the logistic model, F is chosen to be the logistic function

(McKinley & Reckase, 1982), that is,

P (yj = 1|θ, aj, bj) =
exp (aTj θ + bj)

1 + exp (aTj θ + bj)
. (2)

We also consider the three-parameter model that further includes a guessing probability

cj, that is,

P (yj = 1|θ, aj, bj, cj) = cj + (1− cj)F (θTaj + bj). (3)

By setting cj = 0, the above model recovers (1). In addition, the latent trait vector θ

follows the multivariate normal prior distribution with zero mean vector and covariance

covariance matrix Σ that is assumed to be known in most discussions. Further discussion

on the case of unknown Σ will also be provided.

2.2. Latent Variable Selection via L1 Regularization

Estimation via L1 regularization for two-parameter models. As stated in the intro-

duction, we consider the matrix Λ = (λjk)J×K that is defined as

λjk = I(ajk 6= 0). (4)

Suppose that the responses of N examinees have been collected. Let θi be the latent

trait of examinee i, Y = (yij)N×J denote the data, yij be the response of the examinee

i to item j, and Yi = (yi1, ..., yiJ) be the vector of responses of examinee i. The latent

traits θ1, · · · ,θN are independently and identically distributed (i.i.d.) following the prior

distribution N(0,Σ) whose density is denoted by ϕ(θ). Given θ1, · · · ,θN , Y1, ..., YN are

further assumed to follow the two-parameter model (1). Then, the complete data (i.e.,
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observed data Y and missing data Θ = (θ1, ...,θN)) likelihood for the two-parameter

IRT model is

L(A,b; Y,Θ) =
N∏
i=1

ϕ(θi)
J∏
j=1

[
F (aTj θi + bj)

yij [1− F (aTj θi + bj)]
1−yij

]
. (5)

Furthermore, the log-likelihood of the observe data Y is given by

l(A,b; Y) = log
[ ∫

Θ∈RK×N
L(A,b; Y,Θ)dΘ

]
. (6)

In the exploratory factor analysis, one maximizes the log-likelihood function and obtains

the maximum likelihood estimator

(Ã, b̃) = arg max
A,b

l(A,b; Y).

The maximum likelihood estimator does not directly serve the purpose of variable selec-

tion. We further consider the L1 regularized estimator

(Âη, b̂η) = arg max
A,b

{
l(A,b; Y)− η‖A‖1

}
(7)

where η > 0 and

‖A‖1 =
J∑
j=1

K∑
k=1

|ajk|.

The regularization parameter η controls sparsity. By choosing η = 0, the L1 regularized

estimator (Âη, b̂η) recovers the maximum likelihood estimator that almost surely contains

all nonzero estimates of the a-coefficients and it corresponds to no sparsity. On the other

hand, by choosing η sufficiently large (for instance, η = ∞), the corresponding estimate

of the discrimination parameters are Â∞ = 0. In this case, any nonzero discrimination

parameter ajk would make the penalized log-likelihood negative infinity. Thus, η = ∞
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corresponds to complete sparsity. Generally speaking, the regularization parameter η

controls the sparsity and large values of η lead to more sparse estimates of A. Ideally,

we hope to find an appropriate η ∈ (0,+∞), under which the zero patterns of Âη are

consistent with the true loading structure.

Choice of regularization parameter η. We apply the Bayesian information criterion

(Schwarz, 1978) to choose the sparsity parameter η. In particular, each choice of η

results in an estimated matrix Λ that further corresponds to a BIC value. Then, we

choose the parameter η that leads to the smallest BIC value. More precisely, we let Λ(A)

be the incidence matrix corresponding to the zero-one pattern of the coefficient matrix

A according to (4). For each matrix Λ∗, the Bayesian information criterion is defined as

BICΛ∗ = −2 max
Λ(A)=Λ∗,b

l(A,b; Y) + ‖A‖0 logN. (8)

The above maximized likelihood is subject to the constraint that A is consistent with

the matrix Λ∗, that is, Λ(A) = Λ∗. Furthermore, the notation ‖A‖0 =
∑

j,k I(ajk 6= 0) is

the L0 norm.

The regularization parameter is chosen as follows. For each η, we first obtain the

estimate (Âη, b̂η) via (7). Next, we obtain from Âη an estimated matrix Λη = Λ(Âη).

We fit the multidimensional two-parameter IRT model based on Λη without penalty and

compute the BIC value as in (8), denoted by BICΛη . The regularization parameter η is

chosen to be the one admitting the smallest BIC value, that is,

η∗ = arg min
η
BICΛη .
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Remark 1. To guarantee parameter identifiability, some constraints need to be im-

posed on the item parameters. As summarized by Béguin and Glas (2001), there are

typically two ways to impose constraints. One is to set ajk = 0 for j = 1, · · · , K − 1

and k = j + 1, · · · , K (Fraser & McDonald, 1988), which is similar to the constraint of

Jöreskog (1969). The other is to set ajj = 1 and ajk = 0 for j = 1, · · · , K, k = 1, · · · , K,

and j 6= k. Note that for the former constraint, rotating the parameter space is usually

necessary for the interpretation of the factor patterns (Bolt & Lall, 2003; Cai, 2010).

In this paper, we adopt a similar approach as the second. In particular, each of

the first K items is associated with only one trait, that is aii 6= 0 and aij = 0, for

1 ≤ i 6= j ≤ K. This corresponds to the fact that a sub-matrix of Λ is known to be

the identity matrix (after appropriate reordering of the rows and the columns), but the

coefficients aii’s are not necessarily unity. We further restrict the variances of θi be unity.

In practice, one may impose different constraints on A or Λ to ensure identifiability.

In the simulation study and the real data analysis, we experimented two different sets of

constraints and found that the results are similar. The second constraint is as follows.

We identify K items (e.g. the first K items) and let aii 6= 0 for i = 1, ..., K. Unlike the

first constraint, we do not force aij (i 6= j) to be zero. Rather, we impose L1 penalties

on them. Thus, the penalty includes all elements in A except for aii for i = 1, ..., K.

In practice, the constraint on Λ relies on the priori knowledge of the items and the

entire study. It is usually formulated to meet specific needs. For instance, if we want

to define a factor (a skill or a mental disorder) by an item or multiple items, then these

items are naturally included in the constraints. We would like to raise a warning for
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readers that inappropriate constraints on Λ (equivalent, identifying wrong items for each

trait) may lead to misleading or noninterpretable results. We recommend trying different

constraints, checking if the results are consistent, and selecting the most sensible one.

Three-parameter models. We now consider the multidimensional three-parameter

model that is often employed to account for the possibility of guessing. The latent

variable selection method proposed for the two-parameter model (1) can be generalized

to the model in (3). An L1 regularized estimator can be obtain as

(Â, b̂, ĉ) = arg max
A,b,c
{l(A,b, c; Y)− η‖A‖1}, (9)

where l(A,b, c; Y) is the marginal log-likelihood based on the observed data Y.

Our empirical findings show that the estimator in (9) does not perform stably. This

is mostly due to the introduction of the guessing parameter c that is difficult to estimate

accurately. In the simulation studies in Section 3, we assume that the guessing parameters

for all items are known. From the practical point of view, if the items are multiple choice

exam problems, the guessing parameter may be set to one over the number of choices. We

emphasize that the estimation problem of the guessing parameter is not peculiar to our

method. It turns out to be a general issue for the three-parameter multidimensional IRT

models. For example, the softwares Noharm (Fraser & McDonald, 1988) and Testfact

(Bock et al., 2003) both require specifying the guessing parameters for the estimation

of the multidimensional three-parameter IRT models. Therefore, future investigations

are needed along this line and we will thus further improve our regularized estimator

piggybacking on the improvement of the estimation of the guessing parameter c.
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On the correlation among the traits θ. The regularized estimator is introduced as-

suming that the covariance matrix of θ is known. In case that Σ is unknown, we suggest

two treatments. One is to consider Σ as an additional parameter in the specification of

the log-likelihood function (6) and maximize it together with A. This approach typically

induces additional computation. In the subsequent analysis, we consider a second ap-

proach that estimates Σ through an exploratory analysis (without regularization on the

parameter A) under the constraints in Remark 1, with which Σ can be uniquely identi-

fied. Then, we rescale the variances in Σ̂ to be unity, treat it as the true, and proceed to

the regularized estimator (7).

2.3. Computation via Expectation-maximization and Coordinate Descent Algorithm

In this section, we proceed to the computation of the estimators in (7) for a given

sparsity parameter η. Notice that implementation in maximizing the regularized like-

lihood is not straightforward. We apply the expectation-maximization (EM) algorithm

(Dempster, Laird, & Rubin, 1977) that is developed to compute the maximum likeli-

hood estimator or posterior mode in presence of missing data. The EM algorithm is

an iterative algorithm. Each iteration consists of two steps. The E-step computes the

expected log-likelihood with respect to the posterior distribution of the missing data and

the M-step maximizes the expected log-likelihood computed from the E-step. Adapted to

our particular problem, the E-step is not in a closed form and we compute the expected

log-likelihood via numerical approximation. For the M-step, we use coordinate descent

that is developed for the computation of L1 regularized estimators for generalized lin-
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ear models (Friedman et al., 2010). More detailed computation scheme is described as

follows.

E-step. Let (A(t),b(t)) be the parameter values at the tth iteration. In order to evolve

to the (t + 1)th iteration, one first computes the expected complete data log-likelihood

with respect to the posterior distribution

Q(A,b|A(t),b(t)) = E[log{L(A,b; Y,Θ)}|A(t),b(t),Y]

where L(A,b; Y,Θ) is defined as in (5). The above expectation E{·|A(b),b(t),Y} is

taken with respect to Θ under the posterior distribution

p(Θ|A(t),b(t),Y) ∝ L(A(t),b(t); Y,Θ). (10)

The posterior expectation in the definition of the Q-function is not in a closed form. We

evaluate Q numerically as follows. First, we write

Q(A,b|A(t),b(t)) =
J∑
j=1

Qj(aj, bj|A(t),b(t))

where

Qj(aj, bj|A(t),b(t))

=
N∑
i=1

E
[
yij log{F (aTj θi + bj)}+ (1− yij) log{1− F (aTj θi + bj)}

∣∣∣A(t),b(t), Yi

]
.

The θi’s are independent under the posterior distribution that is given by

p(θi|A(t),b(t), Yi) ∝
J∏
j=1

F ((a
(t)
j )Tθi + bj)

yij [1− F ((a
(t)
j )Tθi + bj)]

1−yijϕ(θi)
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We approximate this integration by a summation. More precisely, we consider grid points

G ⊆ [−4, 4]K and approximate the posterior distribution by

p̂(θi|A(t),b(t), Yi) ∝


∏J

j=1 F ((a
(t)
j )Tθi + bj)

yij [1− F ((a
(t)
j )Tθi + bj)]

1−yijg(θi) if θi ∈ G

0 otherwise,

and
∑

θ∈G p̂(θ|A(t),b(t), Yi) = 1. Thus, Qj is approximated by

Q̂j(aj, bj|A(t),b(t))

=
N∑
i=1

∑
θi∈G

[
yij log{F (aTj θi + bj)}+ (1− yij) log(1− F (aTj θi + bj))

]
p̂(θi|A(t),b(t), Yi).

Thus, the Q-function is computed by

Q̂(A,b|A(t),b(t)) =
J∑
j=1

Q̂j(aj, bj|A(t),b(t)).

We choose G to be S × · · · × S, where S is the set of M = 21 (for K = 3) and 11 (for

K = 4) grid points on the interval [−4, 4].

M-step. With the Q-function computed in the E-step, we further perform the M -

step, that is,

(A(t+1),b(t+1)) = arg max
A,b
{Q̂(A,b|A(t),b(t))− η‖A‖1}. (11)

Notice that the function Q̂ factorizes to the sum of Q̂j’s. Each Q̂j is a function only of aj

and bj. Then, the above maximization can be reduce to maximizing each Q̂j separately,

that is,

(a
(t+1)
j , b

(t+1)
j ) = arg max

aj ,bj
{Q̂j(aj, bj|a(t)

j , b
(t)
j )− η‖aj‖1}. (12)

The above maximization is of a much lower dimension than that of (11). It is straight-

forward to verify that A(t+1) = (a
(t+1)
j : 1 ≤ j ≤ J) and b(t+1) = (b

(t+1)
j : 1 ≤ j ≤ J). For
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the optimization of the parameters for each item in (12), we use the coordinate descent

algorithm that is developed by Friedman et al. (2010). The detailed algorithm is de-

scribed in the appendix. The EM algorithm evolves according to (11) until convergence

that is monitored by certain criterion. For the three-parameter model, the regularized

estimators can be computed in a similar way via EM.

3. Simulation

In this section, we perform simulations to illustrate the performance of the proposed

method under various settings. As the main objective of the study is the Λ-matrix, we

mainly consider the correct estimation rate of the Λ-matrix that is defined as

CR =
1

K(J −K)

∑
K+1≤j<J,1≤k≤K

I(λ̂jk = λjk) (13)

where Λ̂ = (λ̂jk) is an estimate and Λ is the true matrix. In what follows, we investi-

gate the correct estimation rates of the L1 regularized estimator with the regularization

parameter η chosen according to the Bayesian information criterion under various model

settings. For the estimate of the A-matrix, we consider the mean squared error for each

entry.

3.1. Two-parameter Logistic Model

In this study, we consider the model in (2) for K = 3 and 4 respectively. For K = 3,

we consider two different A-matrices given as in Tables 1 and 2, denoted by A1 and A2.

We chose the A-matrices so that they contain some single-, double-, and triple-attribute

items. The difference between these two matrices is that the coefficients in A1 are larger
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and there are more single-trait items. Thus, A1 is considered as easier to estimate. For

K = 4, the matrix A3 is given in Table 3. Furthermore, the latent traits θ have variance

one and a common correlation ρ = 0.1 and Σ is considered as unknown. For each A-

matrix, we generate 50 independent data sets of sample size N = 2000 to evaluate the

Frequentist properties of our estimator.

The parameters are estimated via the algorithm described as in Section 2.3 with the

sparsity parameter η chosen according to BIC as in Section 2.2. To ensure identifiability,

we consider the following two sets of constraints on the parameters.

1 We designate one item for each factor and this item is associated with only that

factor. That is, we set sub-Λ-matrix corresponding to the K items to be identity.

This is the first constraint specified in Remark 1.

2 We designate one item for each factor. This item is associated with that factor for

sure and may also associated with others. That is, we set the diagonal elements of

the sub-Λ-matrix corresponding to the K items to be ones and off diagonal elements

have no constraint. Technically, the L1 penalty includes all coefficients except for

(a1,1, a10,2, a19,3) in the case of A1. Notice that this constraint is much weaker than

the first one, nevertheless still ensures identifiability as long as it is correctly specified

(due to the regularization on other coefficients).

We treat the covariance Σ as unknown and estimate it via a constrained exploratory

analysis as mentioned previously. The computation time of the estimator for the first η

is around 30 minutes. Once an estimate of A for some η is obtained, it is used as starting
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points for the computation of other η’s. Each additional η requires about 10 minutes.

To illustrate the performance, we investigate the correct estimation rates in (13)

from different aspects. First, Figure 1 shows the histograms of the correct estimation

rates over the 50 independent data sets for A1 under constraints 1 and 2. The overall

rates are well over 95%. We also consider the mean squared error for each aij and there

are 40× 3 = 120 MSE’s in total whose histograms are also shown in Figure 1.

As we mentioned, the regularization parameter is chosen to minimize the BIC value,

denoted by η∗. Its correct estimation rate is denoted by MR∗. As the true Λ-matrix is

known, we can further choose η to maximize the correct estimation rates that is denoted

by MR0. The first plot in Figure 2 shows the scatter plot of the pair (MR∗,MR0) for all

50 data sets. BIC is a reasonable criterion to select η in terms of maximizing the correct

estimation rate.

Furthermore, we investigate a data set that is randomly chosen from the 50 simulated

data sets to illustrate the performance of BIC in selecting the regularization parameters.

We standardize the BIC values as a function of η by some linear transformations such

that it sits well in the same plot as the mis-estimation rate that is the compliment of the

correct estimation rate. The second plot in Figure 2 shows BIC and the mis-estimation

rate as a function of η in the same plot. The BIC and mis-estimation curves both decrease

first and then increase. The decreasing slop of the BIC curve is induced by the logN

penalty. The minima of both curves coincide suggesting that BIC is a good criterion for

selecting η.

The correct estimation rates of Λ and MSE of A2 are given as in Figure 3. The
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correct estimation rates is lower (still mostly over 90%) because the magnitude of the

coefficients are smaller. The corresponding results for the 4-dimensional case A3 is given

in Figure 4. The results are similar.

3.2. Three-parameter Logistic Model

For the three parameter model (3), we only consider the cases that K = 2. The

A-matrix is given as in Table 4. The guessing parameters is set to be 0.1 and known.

The simulation results are summarized in Figures 5.

4. Real data analysis

The study records 824 females’ responses to the revised Eysenck Personality Ques-

tionnaire short scales. There are in total 36 items. Based on Eysenck’s idea, there

are three factors: P (Psychoticism), E (Extraversion), and N (Neuroticism) scales. The

study was originally a confirmatory analysis; see the initial work of Eysenck and Barrett

(2013) and subsequent analysis by Maydeu-Olivares and Liu (2015). In the pre-specified

Λ-matrix of the confirmatory analysis, each item is associated with only one factor. In

particular, items 1-12 are associated with “Psychoticism”; items 13 - 24 to “Extraver-

sion”; items 25 - 36 to “Neuroticism.” The specific questions are presented in Table 5.

Furthermore, the data set has been preprocessed so that the negatively worded items have

already been reversely scored (marked by “R” in Table 5). Thus, “yes” to a question is

coded as “0” if the question has been reversed.

In the analysis, we impose two sets of different constraints on Λ to ensure identifia-
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bility. They eventually lead to similar results.

1 We designate two items for each factor and these two items are associated with only

that factor. In particular, for “Psychoticism”, we select items 1 and 2 and set rows 1

and 2 of Λ to be (1, 0, 0); for “Extraversion”, we set rows 13 and 14 of Λ to be

(0, 1, 0); for “Neuroticism”, we set rows 25 and 26 of Λ to be (0, 0, 1).

2 We designate two items for each factor. These two items are associated with that

factor for sure but may also associated with others. More specifically, for

“Psychoticism”, we select items 1 and 2 and set rows 1 and 2 of Λ to be (1, ?, ?); for

“Extraversion”, we set rows 13 and 14 of Λ to be (?, 1, ?); for “Neuroticism”, we set

rows 25 and 26 of Λ to be (?, ?, 1). The question mark “?” means that this entry is to

be estimated. Technically, we do not penalize the coefficients

(a1,1, a2,1, a12,2, a13,2, a25,3, a26,3) and penalize all other aij’s.

We have also experimented with constraints on other items and the results are similar

and we only report the results of the above selection. For the covariance matrix of θ, we

estimate it by fitting a confirmatory model stated at the beginning of this section and

treat it as known. The rescaled estimate (to variance one) is

Σ̂ =


1.00 0.11 −0.03

0.11 1.00 −0.25

−0.03 −0.25 1.00

 .

For each set of constraints, we compute BIC for the regularization parameter for

η ∈ [0.00, 0.04]. The plots of the BIC values against η are showed in Figure 6. For
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constraint 1, the BIC selects λ = 0.030 and the coefficients are showed in Table 6. For

constraint 2, the BIC selects λ = 0.032 and the estimated coefficients are showed in

Table 7.

The nonzero patterns of the a-coefficients in both tables are very similar and so it is

with their estimated values. In fact, Constraint 1 is inconsistent with Table 7 on items 1,

13, and 25 that are forced to be single-trait items. But, the results on other unconstrained

items are similar. This also illustrates the robustness of the current method. According to

the A-matrix, most items remain associated with a single trait. There are some associated

with more than one traits. We examined those items and found that most of them are

very sensible. For instance, item 6 “Do you take much notice of what people think?” (a

reverse question) is also related “Neuroticism” that is symboled by anxiety, fear, worry,

etc. and its wording is similar to those of items 32 and 34; for item 9 “Do you enjoy

co-operating with others?” (a reverse question, originally designed for “Psychoticism”),

there is a good reason to believe that it is associated with “Extraversion”; item 27 “Are

you an irritable person?” is associated with both “Psychoticism” (aggressiveness) and

“Neuroticism.”

We further compare the above results to a classical method as follows. We first fit

an exploratory model on the data under the constraint 1 without the L1 penalty. The

estimated coefficients are given in Table 8. We then set aij to zero if |aij| < ε0. Table 9

shows the Λ-matrix for ε0 = 0.5 that yields the closest results to ours. We see that its

basic pattern is similar to that of Table 7, but the L1 regularized estimator does keep

some low magnitude coefficients nonzero, such as items 7, 25, 30, and 34.
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5. Concluding Remarks

A new method based on L1 regularization is proposed for the latent variable selection

for compensatory IRT models. The regularization parameter η is chosen according to the

Bayesian information criterion. Simulation studies show that the resulting estimator

admits a good frequentist property in identifying the underlying latent structure Λ. The

result of a real data analysis is also very sensible. We would like to provide some further

remarks.

First, this paper, to the authors’ best knowledge, is the first work estimating the con-

firmatory latent structure based on the data. The proposed method is an implementable

and computationally affordable procedure admitting good properties for compensatory

IRT models with binary responses. For other and more general model settings, such as

polytomous responses, non-compensatory IRT models, etc., a similar Λ-matrix can be

defined. The current method can be adapted to those models straightforwardly. The ba-

sic idea is to add a L1 penalty term to the log-likelihood and to select the regularization

parameter via BIC or other appropriate criteria. Certainly, further investigations (such

as simulations) on the properties of the resulted estimators are necessary.

Second, the regularization parameter η is selected according to BIC. As the simu-

lation study shows, this approach performs well. There are different ways to select the

regularization parameter other than BIC, such as splitting the entire data sets into train-

ing and testing data and using the out-sample prediction error as a criterion to select η.

We do not pursue along this line because the computation of cross-validation is intensive.

Lastly, we empirically find that the correct estimation rate of the Λ-matrix depends
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very much on the estimation accuracy of the item parameters, especially the discrimina-

tion parameters. This partially explains why the estimator for Λ-matrix admits better

performance for the two-parameter model than the three-parameter model.
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Appendix

The cyclical coordinate descent algorithm for solving the optimization (12) is intro-

duced as follows. For each item j, there are one difficulty parameter bj and K discrimi-

nation parameters aj = (aj1, ..., ajK). The algorithm update each of the K + 1 variables

iteratively according to the following updating rule. For the difficulty parameter, there

is no L1 penalty and it is updated by

b̂j = b∗j −
∂bjQ̂j(aj, b

∗
j |a

(t)
j , b

(t)
j )

∂2
bj
Q̂j(aj, b∗j |a

(t)
j , b

(t)
j )

,

where ∂Q̂j denotes derivative of Q̂j(aj, bj|a(t)
j , b

(t)
j ) with respect to bj or ajk as labeled

by the subscript and ∂2Q̂j is the second derivative. During the above update, the dis-

crimination vector aj takes its most up-to-date value. The above update employs an

local quadratic approximation of Q̂j(aj, b
∗
j |a

(t)
j , b

(t)
j ) as a function of bj with all the other

variables fixed. For each discrimination parameter ajk, an L1 penalty is imposed and it

is updated by

âjk = −
S
(
−∂2

ajkQ̂j(aj, b
∗
j |a

(t)
j , b

(t)
j )× a∗jk + ∂ajkQ̂j(aj, b

∗
j |a

(t)
j , b

(t)
j ), η

)
∂2

ajkQ̂j(aj, b∗j |a
(t)
j , b

(t)
j )

,

The function S is the soft threshold operator ((Donoho & Johnstone, 1995)):

S(δ, η) = sign(δ)(|δ| − η)+ =


δ − η, if δ > 0 and η < |δ|

δ + η, if δ < 0 and η < |δ|

0, if η ≥ |δ|

.

To obtain the above updating rule, we approximate a generic univariate function f(x) by

a quadratic function

f(x) ≈ f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2
(x− x0)2
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where f ′′(x0) is negative. Furthermore, the L1 penalized maximization with the approx-

imated function

sup
x
{f(x0) + f ′(x0)(x− x0) +

f ′′(x0)

2
(x− x0)2 − η|x|}

is solved at

−S(−f ′′(x0)x0 + f ′(x0), η)

f ′′(x0)
.

Table 1.

A1

Item
Latent trait 1 2 3 4 5 6 7 8 9 10
1 1.9 1.7 1.5 1.3 1.1 0.9 0.7 0.5 0.3 0.0
2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.9
3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Item
Latent trait 11 12 13 14 15 16 17 18 19 20
1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 1.7 1.5 1.3 1.1 0.9 0.7 0.5 0.3 0.0 0.0
3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.9 1.7

Item
Latent trait 21 22 23 24 25 26 27 28 29 30
1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.5 0.7
2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.1 1.3 1.5
3 1.5 1.3 1.1 0.9 0.7 0.5 0.3 0.0 0.0 0.0

Item
Latent trait 31 32 33 34 35 36 37 38 39 40
1 0.9 1.1 1.3 0.0 0.0 0.0 0.3 0.5 0.7 0.9
2 0.0 0.0 0.0 0.5 0.7 0.9 1.1 1.3 1.5 1.7
3 0.7 0.9 1.1 1.3 1.5 1.7 1.9 1.9 1.1 0.5
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Table 2.

A2

Item
Latent trait 1 2 3 4 5 6 7 8 9 10
1 1.2 1.0 0.8 0.6 0.4 0.2 0.1 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.2 1.0 0.8
3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Item
Latent trait 11 12 13 14 15 16 17 18 19 20
1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 0.6 0.4 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0 1.2 1.0 0.8 0.6 0.4 0.2

Item
Latent trait 21 22 23 24 25 26 27 28 29 30
1 0.0 0.8 0.6 0.4 0.2 0.8 0.6 0.4 0.2 0.8
2 0.0 0.2 0.8 0.6 0.4 0.2 0.0 0.0 0.0 0.0
3 0.1 0.0 0.0 0.0 0.0 0.0 0.2 0.8 0.6 0.4

Item
Latent trait 31 32 33 34 35 36 37 38 39 40
1 0.6 0.0 0.0 0.0 0.0 0.0 0.8 0.6 0.4 0.2
2 0.0 0.6 0.4 0.2 0.8 0.6 0.2 0.4 0.6 0.8
3 0.2 0.8 0.6 0.4 0.2 0.1 0.8 0.6 0.4 0.2

Table 3.

A3

Item
Latent trait 1 2 3 4 5 6 7 8 9 10
1 1.5 1 0.5 0.0 0 0.0 0.0 0 0.0 0.0
2 0.0 0 0.0 1.5 1 0.5 0.0 0 0.0 0.0
3 0.0 0 0.0 0.0 0 0.0 1.5 1 0.5 0.0
4 0.0 0 0.0 0.0 0 0.0 0.0 0 0.0 1.5

Item
Latent trait 11 12 13 14 15 16 17 18 19 20
1 0 0.0 0.5 0.5 0.5 0.0 0 0.0 0.5 0.0
2 0 0.0 1.0 0.0 0.0 1.0 1 0.0 1.0 1.5
3 0 0.0 0.0 1.5 0.0 1.5 0 1.5 1.5 1.0
4 1 0.5 0.0 0.0 0.5 0.0 1 1.5 0.0 0.5
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Table 4.

A4

Item
Latent trait 1 2 3 4 5 6 7 8 9 10
1 1.7 1.5 1.3 1.1 0.9 0.7 0.5 0.3 0.0 0.0
2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.7 1.5

Item
Latent trait 11 12 13 14 15 16 17 18 19 20
1 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.5 0.7 0.9
2 1.3 1.1 0.9 0.7 0.5 0.3 1.7 1.5 1.3 1.1
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Figure 1.

Histograms of the correct rates for Λ (row 1) and MSE of the estimate of the a parameters for A1 (row

2) under constraint 1 (left column) and constraint 2 (right column)
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Table 5.

The revised Eysenck Personality Questionnaire Short Scales

1 Would you take drugs which may have strange or dangerous effects?
2 Do you prefer to go your own way rather than act by the rules?
3 Do you think marriage is old-fashioned and should be done away with?
4 Do you think people spend too much time safeguarding their

future with savings and insurance?
5 Would you like other people to be afraid of you?
6(R) Do you take much notice of what people think?
7(R) Would being in debt worry you?
8(R) Do good manners and cleanliness matter much to you?
9(R) Do you enjoy co-operating with others?
10(R) Does it worry you if you know there are mistakes in your work?
11(R) Do you try not to be rude to people?
12(R) Is it better to follow society’s rules than go your own way?
13 Are you a talkative person?
14 Are you rather lively?
15 Can you usually let yourself go and enjoy yourself at a lively party?
16 Do you enjoy meeting new people?
17 Do you usually take the initiative in making new friends?
18 Can you easily get some life into a rather dull party?
19 Do you like mixing with people?
20 Can you get a patty going?
21 Do you like plenty of bustle and excitement around you?
22 Do other people think of you as being very lively?
23(R) Do you tend to keep in the background on social occasions?
24(R) Are you mostly quiet when you are with other people?
25 Does your mood often go up and down?
26 Do you ever feel ‘just miserable’ for no reason?
27 Are you an irritable person?
28 Are your feelings easily hurt?
29 Do you often feel ‘fed-up’?
30 Are you often troubled about feelings of guilt?
31 Would you call yourself a nervous person?
32 Are you a worrier?
33 Would you call yourself tense or ‘highly-strung’?
34 Do you worry too long after an embarrassing experience?
35 Do you suffer from ‘nerves’?
36 Do you often feel lonely?
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Table 6.

The model selected by BIC in constraint 1

A b A b A b
1 1.50 0.00 0.00 -2.58 13 0.00 1.89 0.00 1.14 25 0.00 0.00 1.50 1.10
2 1.44 0.00 0.00 0.55 14 0.00 2.55 0.00 2.01 26 0.00 0.00 1.10 0.70
3 1.23 0.00 0.00 -2.42 15 0.00 1.57 0.00 1.53 27 0.39 0.00 1.29 -0.83
4 0.74 0.00 0.00 -0.89 16 0.00 1.71 0.00 3.10 28 0.00 0.00 1.27 1.24
5 1.09 0.00 0.00 -3.07 17 0.00 1.40 0.00 0.61 29 0.00 0.00 1.53 0.08
6 0.87 0.00 -0.60 -1.23 18 0.00 2.56 0.00 -1.43 30 0.00 0.32 1.28 -0.04
7 0.96 0.27 -0.37 -2.49 19 0.00 1.76 0.00 3.20 31 0.00 -0.27 2.03 -1.12
8 1.13 0.00 0.00 -2.26 20 0.00 2.19 0.00 -0.60 32 -0.66 0.00 2.27 0.94
9 1.20 -0.63 0.00 -2.89 21 0.00 1.23 0.00 1.18 33 0.00 0.00 1.84 -1.46
10 0.87 0.00 0.00 -1.96 22 0.00 2.34 0.00 0.92 34 -0.66 -0.21 1.44 0.69
11 1.45 0.00 0.00 -3.09 23 0.53 2.62 0.00 0.68 35 0.00 0.00 2.05 -1.15
12 1.28 0.00 0.00 -0.16 24 0.00 2.21 0.00 1.29 36 0.00 0.00 1.19 -0.99

Table 7.

The model selected by BIC in constraint 2

A b A b A b
1 1.54 0.00 0.51 -2.68 13 0.00 2.04 0.37 1.17 25 0.00 0.28 1.63 1.13
2 1.44 0.00 0.00 0.56 14 0.00 2.54 0.00 2.01 26 0.00 0.00 1.13 0.71
3 1.21 0.00 0.00 -2.41 15 0.00 1.56 0.00 1.53 27 0.39 0.00 1.32 -0.84
4 0.74 0.00 0.00 -0.89 16 0.00 1.71 0.00 3.11 28 0.00 0.00 1.27 1.24
5 1.06 0.00 0.00 -3.05 17 0.00 1.40 0.00 0.61 29 0.00 0.00 1.54 0.08
6 0.87 0.00 -0.58 -1.23 18 0.00 2.51 0.00 -1.42 30 0.00 0.32 1.27 -0.04
7 0.96 0.28 -0.32 -2.49 19 0.00 1.75 0.00 3.20 31 0.00 -0.26 1.98 -1.11
8 1.13 0.00 0.00 -2.26 20 0.00 2.16 0.00 -0.60 32 -0.66 0.00 2.22 0.93
9 1.20 -0.64 0.00 -2.88 21 0.00 1.23 0.00 1.19 33 0.00 0.00 1.84 -1.46
10 0.88 0.00 0.00 -1.96 22 0.00 2.32 0.00 0.92 34 -0.66 -0.20 1.42 0.69
11 1.45 0.00 0.00 -3.08 23 0.54 2.62 0.00 0.69 35 0.00 0.00 2.01 -1.13
12 1.27 0.00 0.00 -0.16 24 0.00 2.21 0.00 1.30 36 0.00 0.00 1.19 -1.00
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Table 8.

The estimated A-matrix of the exploratory analysis.

A A A
1 1.61 0.00 0.00 13 0.00 2.00 0.00 25 0.00 0.00 1.64
2 1.34 0.00 0.00 14 0.00 2.57 0.00 26 0.00 0.00 1.14
3 1.29 -0.37 0.04 15 0.32 1.53 -0.16 27 0.21 -0.19 1.30
4 0.74 0.04 -0.09 16 0.08 1.70 -0.47 28 -0.45 -0.12 1.37
5 1.15 -0.14 0.28 17 0.14 1.38 -0.14 29 -0.13 -0.15 1.58
6 1.10 -0.24 -0.81 18 0.72 2.50 -0.32 30 -0.38 0.23 1.34
7 1.09 0.25 -0.53 19 -0.34 1.88 -0.14 31 -0.54 -0.47 2.12
8 1.27 -0.45 -0.27 20 0.48 2.11 -0.27 32 -1.12 -0.22 2.41
9 1.15 -0.68 0.11 21 0.02 1.24 -0.16 33 -0.04 -0.30 1.86
10 1.01 0.10 -0.36 22 0.23 2.36 -0.07 34 -1.00 -0.30 1.62
11 1.46 0.15 0.04 23 0.83 2.53 -0.38 35 -0.35 -0.28 2.07
12 1.22 -0.06 -0.19 24 0.20 2.16 -0.23 36 -0.02 -0.25 1.21

Table 9.

The Λ-matrix with threshold 0.5

Λ Λ Λ
1 1 0 0 13 0 1 0 25 0 0 1
2 1 0 0 14 0 1 0 26 0 0 1
3 1 0 0 15 0 1 0 27 0 0 1
4 1 0 0 16 0 1 0 28 0 0 1
5 1 0 0 17 0 1 0 29 0 0 1
6 1 0 1 18 1 1 0 30 0 0 1
7 1 0 1 19 0 1 0 31 1 0 1
8 1 0 0 20 0 1 0 32 1 0 1
9 1 1 0 21 0 1 0 33 0 0 1
10 1 0 0 22 0 1 0 34 1 0 1
11 1 0 0 23 1 1 0 35 0 0 1
12 1 0 0 24 0 1 0 36 0 0 1
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Figure 2.

Left: comparing the correct estimation rates selected by BIC and the optimal rates. Right: mis-

estimation rates and BIC against η.
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Figure 3.

Histograms of the correct rates for Λ (row 1) and MSE of the estimate of the a parameters for A2 (row

2) under constraint 1 (left column) and constraint 2 (right column)
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Figure 4.

Histograms of the correct rates for Λ (row 1) and MSE of the estimate of the a parameters for A3 (row

2) under constraint 1 (left column) and constraint 2 (right column)
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Figure 5.

Histograms of the correct rates for Λ and MSE of the estimate of the a parameters under constraint 1

for the three-parameter logistic model
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Figure 6.

The BIC and GIC values on the solution path for the EPQ-R data for constraint 1 (left) and constraint

2(right).


