
Aleks Jakulin

Attribute Interactions

in Machine Learning

Master’s Thesis

Second Edition

Advisor: Prof. Dr. Ivan Bratko

17th February 2003

University of Ljubljana

Faculty of Computer and Information Science

Noni Angeli

iii

Attribute Interactions in Machine Learning

Aleks Jakulin

Abstract

To make decisions, multiple data are used. It is preferred to decide on the
basis of each datum separately, afterwards joining these decisions to take all
data into consideration, for example by averaging. This approach is effective,
but only correct when each datum is independent from all others. When this is
not the case, there is an interaction between data. An interaction is true when
there is synergism among the data: when the sum of all individual effects is
smaller than the total effect. When the sum of individual effects is lower than
the total effect, the interaction is false. The concept of an interaction is oppo-
site to the concept of independence. An interaction is atomic and irreducible:
it cannot be simplified or collapsed into a set of mutually independent simpler
interactions.

In this text we present a survey of interactions through a variety of fields,
from game theory to machine learning. We propose a method of automatic
search for interactions, and demonstrate that results of such analysis can be
presented visually to a human analyst. We suggest that instead of special tests
for interactions, a pragmatic test of quality improvement of a classifier is suf-
ficient and preferable. Using the framework of probabilistic classifier learning,
we investigate how awareness of interactions improves the classification perfor-
mance of machine learning algorithms. We provide preliminary evidence that
resolving true and false interactions improves classification results obtained
with the näıve Bayesian classifier, logistic regression, and support vector ma-
chines.

Keywords

- machine learning, data mining

- classification, pattern recognition

- interaction, dependence, dependency

- independence, independence assumption

- constructive induction, feature construction

- feature selection, attribute selection, myopic, information gain

- naive Bayes, simple Bayes

- näıve Bayesian classifier, simple Bayesian classifier

- information theory, entropy, relative entropy, mutual information

iv

Acknowledgments

It was a true pleasure to work with my advisor, Professor Ivan Bratko. I am like a small
child, fascinated with every tree along the path, distracted by every bird passing above.
Ivan has a peerless feel for details, and he asks the kind of piercing questions that you
can never answer with mere hand-waving, sometimes without questioning your paradigm.
For example, the interaction gain formula would have never been explained, true and false
interactions never told apart, and the definition of interactions never distinguished from
a pragmatic test of interactions without his germane questions. He never let me down, in
spite of obstacles and my failures. To say that I am merely grateful would be rude.

During the past months, my parents, Boris and Darja, and especially my grandmother,
Angela, have virtually pampered me, alleviating me of everything they could do, running
errands for me every day.

Janez Demšar is an exemplar colleague, an outstanding object-oriented designer, and a
most witty writer. Many ideas in this work originated from conversations with Janez, and
much of my work derives from and is built upon his. The Orange toolkit he co-authored
with Blaž Zupan saved me much strain and programming effort. Blaž has introduced me
both to machine learning research and to the problem of constructive induction, which
he himself laid the cornerstones of with function decomposition. The breeding ground for
the concept of interactions was function decomposition. My work was also affected by his
fondness for visualization and his attentiveness towards the human analyst, the true user
of machine learning tools.

Marko Robnik Šikonja patiently advised me on many occasions and provided much
feedback and expert advice. Daniel Vladušič was always very friendly and helpful: most
of the experiments were performed on his computer. Dorian Šuc reviewed drafts of this
text, and suggested many improvements. I am grateful to Dr. T. Čufer and Dr. S. Borštner
from the Institute of Oncology in Ljubljana, who have contributed the ‘breast’ data set,
and to Doc. Dr. D. Smrke from the Department of Traumatology at the University Clinical
Center in Ljubljana for the ‘HHS’ data set.

For many gratifying conversations, I would like to thank my colleagues, Aleksander
Sadikov, Peter Juvan, Matjaž Bevk, Igor Kononenko, Ljupčo Todorovski, Marko Grobel-
nik, Janez Brank, Andrej Bauer. For many happy moments, I thank my friends, Mojca
Miklavec, Miha Peternel, Jože Jazbec, Mark Sylvester, Jernej Starc, Aljoša Blažič, Janja
Jereb, Matija Pajer, Iztok Bajec, and the idlas from #coders and #sezana.

Finally, this work would have never been performed without generosity of Slovenia’s
Ministry of Education, Science and Sport that supported me financially through the past
30 months. I am also grateful to Marcelo Weinberger, Gadiel Seroussi and Zvonko Fazarinc
from Hewlett-Packard Labs, who introduced me to the world of research, with support
from Hermes Softlab. I was strongly influenced by my inspiring secondary school teachers:
Mark Sylvester, Manuel Fernandez and Bojan Kranjc.

Sežana, Aleks Jakulin

January 2003

CONTENTS

1 Introduction 1

1.1 Contributions . 3

1.2 Overview of the Text . 4

2 Foundations 5

2.1 Machine Learning . 5

2.2 Attributes and Labels . 6

2.3 Classifiers . 8

2.4 Uncertainty . 8

2.4.1 Probabilities and Decision Theory 9

2.4.2 Gambling . 10

2.4.3 Probabilistic Evaluation . 11

2.4.4 Probability of a Probability . 12

2.4.5 Causes of Probability . 13

2.4.6 No Free Lunch Theorem . 13

2.5 Estimating Models . 14
2.5.1 Bayesian Estimation . 15

2.5.2 Estimation by Sampling . 15

2.6 Classifier Evaluation . 16

2.6.1 Generator Functions . 16

2.6.2 Evaluation Functions . 16

2.7 Constructing Classifiers . 22

2.7.1 Building Blocks . 22

3 Review 27

3.1 Causality . 27

3.2 Dependence and Independence . 28

3.2.1 Marginal and Conditional Association 30

3.2.2 Graphical Models . 32

3.2.3 Bayesian Networks . 33

3.2.4 Generalized Association . 34

Contents vi

3.3 Interactions in Machine Learning . 35

3.4 Interactions in Regression Analysis . 36

3.4.1 Interactions and Correlations . 37

3.4.2 Problems with Interaction Effects . 38

3.5 Ceteris Paribus . 38

3.6 Game Theory . 39

4 Interactions 41

4.1 Näıve Bayesian Classifier . 41

4.1.1 Näıve Linear Regression . 42

4.1.2 NBC as a Discriminative Learner . 43

4.2 Improving NBC . 44

4.3 Interactions Defined . 47

4.3.1 Interaction-Resistant Bayesian Classifier 48

4.3.2 A Pragmatic Interaction Test . 49

4.4 Types of Interactions . 50

4.4.1 True Interactions . 50

4.4.2 False Interactions . 51

4.4.3 Conditional Interactions . 53

4.5 Instance-Sensitive Evaluation . 54

5 Finding 3-Way Interactions 57

5.1 Wrapper Probes . 58

5.2 Constructive Induction . 58

5.3 Association Probes . 60

5.3.1 Cochran-Mantel-Haenszel Statistic 60

5.3.2 Semi-Näıve Bayes . 60

5.4 Information-Theoretic Probes . 61

5.4.1 3-Way Interaction Gain . 61

5.4.2 Visualizing Interactions . 64

5.4.3 Related Work . 65

6 Practical Search for Interactions 69

6.1 True and False Interactions . 71

6.2 Classifier Performance and Interactions . 72

6.2.1 Replacing and Adding Attributes . 72

6.2.2 Intermezzo: Making of the Attribute Structure 75

6.2.3 Predicting the Quality Gain . 75

6.2.4 Myopic Quality Gain . 76

6.3 Non-Wrapper Heuristics . 76

6.3.1 Interaction Gain . 76

6.3.2 Cochran-Mantel-Haenszel Statistic 76

6.4 Heuristics from Constructive Induction . 82

6.4.1 Complexity of the Joint Concept . 82

6.4.2 Reduction in Error achieved by Joining 85

6.5 Experimental Summary . 85

Contents vii

7 Interaction Analysis and Significance 87

7.1 False Interactions . 88
7.2 True Interactions . 90

7.2.1 Applicability of True Interactions . 90
7.2.2 Significant and Insignificant Interactions 92

7.3 Experimental Summary . 92

8 Better Classification by Resolving Interactions 97

8.1 Implementation Notes . 98
8.2 Baseline Results . 99
8.3 Resolution of Interactions . 101
8.4 Attribute Reduction . 102
8.5 Resolving False Interactions . 103
8.6 Resolving True Interactions . 106
8.7 Experimental Summary . 107

9 Conclusion 111

10 Interakcije med atributi v strojnem učenju 117

10.1 Uvod . 118
10.2 Negotovost v strojnem učenju . 119

10.2.1 Negotovost . 120
10.2.2 Vrednotenje klasifikatorjev . 120
10.2.3 Gradnja klasifikatorjev . 121

10.3 Interakcije . 122
10.3.1 Vzročnost . 122
10.3.2 Odvisnost . 122
10.3.3 Omejitve klasifikatorjev . 123
10.3.4 Teorija informacije . 124

10.4 Vrste interakcij . 125
10.4.1 Sodejavnosti . 125
10.4.2 Soodvisnosti . 127

10.5 Uporaba interakcij . 128
10.5.1 Pomembnost interakcij . 128
10.5.2 Interakcije in struktura atributov . 128
10.5.3 Odpravljanje interakcij . 129

A Additional Materials 131

A.1 Clustering . 131
A.1.1 Partitioning Algorithms . 132
A.1.2 Hierarchical Algorithms . 132
A.1.3 Fuzzy Algorithms . 133
A.1.4 Evaluating the Quality of Clustering 133

A.2 Optimal Separating Hyperplanes . 133

References 135

Index 143

Contents viii

CHAPTER 1

Introduction

An engineer, a statistician, and a physicist went to the races one Saturday

and laid their money down. Commiserating in the bar after the race, the

engineer says, “I don’t understand why I lost all my money. I measured all

the horses and calculated their strength and mechanical advantage and figured

out how fast they could run. . . ”

The statistician interrupted him: “. . . but you didn’t take individual vari-

ations into account. I did a statistical analysis of their previous performances

and bet on the horses with the highest probability of winning. . . ”

“. . . so if you’re so hot why are you broke?” asked the engineer. But before

the argument can grow, the physicist takes out his pipe and they get a glimpse

of his well-fattened wallet. Obviously here was a man who knows something

about horses. They both demanded to know his secret.

“Well,” he says, between puffs on the pipe, “first I assumed all the horses

were identical, spherical and in vacuum. . . ”

Adapted from [Ver02]

When people try to understand data, they rarely view it as a whole. Instead, data is
spliced, diced, cut, segmented, projected, partitioned and divided. Reductionism is the
foundation of most machine learning algorithms. It works.

But there are pieces of knowledge and patterns of nature that spill and vanish if
you slice them apart. One has to treat them holistically. But again, reductionism and
simplification are crucial to our ability to generalize from the known to the undetermined.
Why take blood samples if we know we can diagnose a flu by merely measuring the body
temperature?

To resolve this eternal dilemma, a notion of interactions might be helpful. Interactions
are those pieces of information which cannot be conquered by dividing them. As long as
we do not cut into interactions, we are free to slash other data in any way we want.

Imagine a banker on Mars trying to classify customers in three basic classes: cheats,
averages, and cash cows. The banker has a collection of the customer’s attributes: age,
profession, education, last year’s earnings, this year’s earnings, and debt.

2

The banker employs a number of subordinate analysts. He would like to assume that
all these attributes are mutually independent, but dependent with the customer class. In
the Caesarean style of “Divide et impera,” the banker would assign each attribute to an
individual analyst. Each analyst is an expert on the relationship between his attribute
and the customer class, experienced from a number of past cases.

Once the analysts rush off with the data, they do not communicate with one another.
Each analyst investigates his attribute, and on the basis of that attribute alone, he decides
what class the customer is most likely to be in. Eventually, the banker calls all the analysts,
and tells them to cast votes. Analysts who feel that they did not have enough information,
may abstain from voting. He picks the class that got the most votes. If there is a tie, the
banker picks assigns the customer to the worst class from those tied: it is better to treat
a cash cow like a cheat, than a cheat like a cash cow, after all.

Unfortunately, there are two problems. First, several analysts may work with the same
information. For example, once we know the profession, the education will not give us
no additional information about the customer. That information becomes overrated in
the voting procedure. We call these false interactions. False interactions indicate that
the information about the label provided by the two attributes is overlapping: the same
information is part of both attributes’ deliveries. The sum of individual effects of falsely
interacting attributes will exceed the true joint effect of all attributes. A concrete example
of false interactions are correlated attributes.

Second, this year’s earnings alone, and last year’s earnings alone will not provide as
much information as both earnings together. Namely, cheats tend to be those whose
earnings suddenly drop, while they have to cope with retaining their former standard of
living. We refer to these as true interactions. A truly interacting pair of attributes contains
information about the label which can only get uncovered if both attributes are present.
The most frequently used example is the exclusive-or (XOR) problem, where an instance
is in class zero if the values of both binary attributes are identical, and in class one if the
values are different. The sum of individual influences of truly interacting attributes is less
than their joint influence. There is synergy among truly interacting attributes.

Therefore, we can describe interactions as situations in which the analysts should com-
municate with one another, as to improve the classification results. More realistically, the
analyst who receives a pair of interacting attributes would derive a formula which unifies
both attributes. For example, he would replace the two income figures with a new at-
tribute describing the drop in income expressed as a percentage of last year’s income. If
we consider the value of that formula to be a new attribute, the analyst then forms his
opinion merely on the basis of the relative reduction of income. The process is not much
different with false interactions, where we try to filter out the hidden but relevant informa-
tion shared by multiple attributes: for example by averaging multiple noisy measurements
as to approach the true quantity measured.

Our example quite realistically describes the workings inside a computer when analyz-
ing data, and arguably also inside the human brain when making decisions. The banker’s
procedure is similar to the näıve Bayesian classifier, and the source of its näıveté is in
assuming that there are no interactions. Interactions are infrequent, so experts have long
been fascinated by the surprisingly good performance of this simple method in face of so-
phisticated non-linear multi-dimensional hierarchical adaptively partitioning opposition.
Namely, if there are no interactions, the näıve approach is optimal.

1.1. Contributions 3

Our study will focus on the natural problem of identifying true and false interactions
in a given classification problem. If we succeed, the banker will first invoke our procedure
to decide which attributes are truly and which attributes are falsely interacting. With
that information, he will be able to better divide up the work among the analysts. Our
primary objective is therefore to visually present interactions to the human analyst, and
assure they are insightful.

Such a procedure would also be useful to machine learning procedures. Once we
discover what are the nasty interacting subproblems, we blast them away with the heavy
multivariate artillery. But we only swat the simple subproblems with simple techniques.
We will later see that simple techniques have advantages beyond their mere simplicity:
because we take fewer assumptions and because the data is not as chopped up, we are
able to obtain more reliable probability estimates. Therefore, our secondary objective will
be to attempt improving the objective quality of probabilistic classifiers, as measured by
evaluation functions.

In addition to that, we will briefly touch upon a large variety of endeavors that either
cope with interactions, or might be benefitted by knowledge about them.

1.1 Contributions

� A framework for probabilistic machine learning, based on four elementary functions:
estimation, projection, segmentation, and voting. A survey of evaluation methods
of probabilistic classifiers.

� An interdisciplinary survey of interactions in machine learning, statistics, economics
and game theory.

� A definition of an interaction in the above framework, using the notion of the segmen-
tation function. A suggestion that an appropriate significance test of an interaction
in machine learning should be associated with testing the significance of a classifier’s
improvement after accounting for the existence of an interaction, as estimated on
unseen data.

� A classification of interactions into true and false interactions. Discussion of inter-
actions in the context of supervised learning.

� An experimental survey of methods for detection of 3-interactions, with discussion
of the relationship between an interaction and a taxonomy.

� A novel 3-way interaction probe, interaction gain, based on the concepts of infor-
mation theory, which generalize the well-established notion of information gain.

� A proposal for visual presentation of true and false interactions, intended to provide
insight to human analysts performing exploratory data analysis.

� An experimental study of algorithms for resolution of interactions, as applied to the
näıve Bayesian classifier, logistic regression, and support vector machines.

1.2. Overview of the Text 4

1.2 Overview of the Text

In Chapter 2, we discuss a particular view of machine learning, based on uncertainty.
We provide the mathematical skeleton onto which we later attach our contributions. Our
survey of the concept of interactions is contained in Chapter 3. The reader may be
intimidated by breadth, but it was our sly intention to demonstrate how fundamental the
problem of interactions is.

Once we have run out of bonny distractions, we begin to chew the definition of inter-
actions in Chapter 4. In accordance with the pragmatic Machiavellian philosophy (“Ends
justify the means.”) we propose that interactions are only significant if they provide an
objective benefit. To be able to deal with objective benefit, we call upon a particular type
of a learning algorithm, the näıve Bayesian classifier, and tie the notion of interaction with
the notion of a segmentation function from our skeleton.

Since general k-way interactions are a tough nut to crack, we focus on interactions
between three attributes in Ch. 5. We list a few traditional recipes for discovery of patterns
which resemble interactions, and then provide our own, built on information theory. We
conclude with a few schematic illustrations indicating how to visually present different
types of interactions in the context of the set metaphor of information.

Our first stage of experiments is described in Chapter 6, where we focus on tying to-
gether all the definitions of interactions. The second batch of experiments in Chapter 7
explores how to present interactions in the domain to the user, and some practical ben-
efits of being aware of interactions. Finally, we show in Chapter 8 that being aware of
interactions in a domain helps improve classifier’s performance. We make use of attribute
reduction techniques as an improvement of Cartesian product for joining interacting at-
tributes. We succeed in clogging the kitchen sink by listing a few unrelated notes and
techniques in the Appendix A.

CHAPTER 2

Foundations

The question of whether computers can think is like the question of whether

submarines can swim.

Edsger W. Dijkstra (1930–2002)

In this chapter, we will investigate the fundamentals of machine learning as applied
to classification problems with nominal attributes. A strongly probabilistic approach to
classification is endorsed. We explain how probabilities emerge, what they mean, and
how we estimate them. We suggest a generalization of a probability in form of higher-
order probabilities, where probabilities are assigned to probabilities. We list a number of
important methodological guidelines.

Using the metaphors of uncertainty, gambling and decision-making, we show the use-
fulness of probabilistic classifiers. These metaphors provide us with foundations for eval-
uating probabilistic classifiers. We review a part of machine learning methodology and
attempt to extract the few crucial procedures, the bricks most learning algorithms are
built from. The reader should beware, because our view is both opinionated and obnox-
iously abstract. This chapter requires some background in machine learning, statistics,
and probability theory.

2.1 Machine Learning

One of the most active fields within machine learning is attribute-based supervised induc-
tive learning. Given a set of instances, each of them described by a set of attributes, we
try to predict the label of each instance. If the label is an element of a finite set of values,
the problem is classification. If the label is a numeric quantity, the process is regression.
In successive pages, we will focus on classification, but the concepts are also applicable to
regression. The reader should note that when we mention ‘machine learning’ in this text,
we normally mean attribute-based propositional supervised inductive learning.

The most frequently used measure of success of machine learning is classification ac-
curacy, along with other objective measures of classification performance. Simplicity and

2.2. Attributes and Labels 6

understandability of knowledge are important features, should we try to help users under-
stand their problem domain.

Simplicity is an intrinsic quality, in accordance with the Ockham’s razor [Ock20] “Plu-
rality should not be posited without necessity.” Ockham’s razor is predated by a Roman
proverb “Simplicity is the hallmark of truth,” which perhaps refers to the unlikely con-
traptions the liars need to construct to make their theories consistent. In his Physics,
Aristotle wrote “For the more limited, if adequate, is always preferable,” and “For if the
consequences are the same, it is always better to assume the more limited antecedent”
[Ell]. Finally, Albert Einstein highlighted the razor’s link with truth as “Everything should
be made as simple as possible, but not simpler.”

Correctness is not caused by simplicity, it is merely correlated with it. The latent
causes of both correctness and simplicity are inherent complexity of noise, and high prior
probabilities of often used models and methods, resulting in their subsequently short
descriptions: ‘a’ is a short frequent word, while the length of ‘electroencephalographically’
is only tolerable because the word is so rare; compare ‘+’, ‘ln’ and ‘arctan’ in mathematics.
Extensive and lengthy treatment of special cases is a hallmark of contrived theories.

Black box learning methods, such as neural networks, represent knowledge cryptically
as a set of numeric weights. For that reason, they are referred to as subsymbolic learning
algorithms. On the opposite side, symbolic learning methods, which arose from earlier
work in artificial inteligence, focused on logical representation of knowledge. In parallel,
many similar methods were developed in statistics, often predating similar ones developed
in machine learning. Statistics has traditionally tried to describe knowledge to people,
but its approach was more numeric than symbolic.

Initially, rules and classification trees were thought to provide the users with the most
insightful view of the data. Symbolic learning was defended on the grounds of inter-
pretability, as it often could not match the classification performance of subsymbolic and
statistical techniques on the problem domains the methods were usually applied to.

Later, it was realized that simple numeric methods such as the näıve Bayesian clas-
sifier, based on additive effects and probabilities, are often preferred by users, especially
if visualized with a nomogram. Visualization bridges the gap between symbolic and sub-
symbolic methods, providing insight through a powerful representation without giving up
much classification performance.

2.2 Attributes and Labels

In this section we will examine how a typical classification problem is presented to a
classifier. This representation appears to be narrow, especially from an idealistic artificial
intelligence perspective, but it is useful and practically applicable.

Both learning and classification are performed on instances. Each instance has a
number of attributes and a label. Each attribute may take a number of values. When
an attribute is numerical, we refer to it either as a discrete or as a continuous numeric
attribute. The set of values of a discrete numeric attribute is the set of integer numbers
Z, whereas the set of values of a continuous or real numeric attribute is the set of real
numbers R.

When an attribute takes only a discrete number of values, and these values are ordered,
the attribute is ordinal. When an attribute’s set of values is not ordered, we refer to it as

2.2. Attributes and Labels 7

a nominal attribute. Type of an attribute is not naturally derived from type of data, it
is chosen. The type determines how an attribute will be treated, not what an attribute is
like.

By form, the label appears to be another attribute, but its role distinguishes it. In fact,
attributes are sometimes called non-categorical attributes, while the label is a categorical
attribute, but we will not adopt these two terms: ‘categorical’ is sometimes synonymous
with ‘nominal’. Since we are dealing with classification, a label value will be called a class.
The objective of classification is to assign an unlabeled instance to an appropriate class,
having the knowledge of the instance’s attributes. The objective of learning is to construct
a classification procedure from labeled instances of the training set. In the training set,
both an instance’s attribute values and its class are known. It is important, however, that
the classification procedure is applicable to previously unseen unlabeled instances from
the test set: learning is more than rote.

In this text, we will focus on those learning problems where both the label and the
attributes are nominal. We will assume that all the attribute values and classes are
separate and independent from one another, and avoid any assumptions on how different
attribute values and classes could be dependent on one other. Neither will we assume that
attributes are in a hierarchy, in contrast to multilevel modeling. We assume no hierarchy
of, or any other relationship between attribute values.

Assumption of dependence is often justified and normally takes the inconspicuous form
of a value metric: body temperature of 37

�

C is more similar to 37.1
�

C than to 41
�

C. We
cannot effectively treat continuous attributes without a value metric. Several authors
claim that a metric should be learned and not assumed or chosen, e.g., [SW86, Min00,
Bax97, KLMT00]. Recently, a lot of work has been invested in kernel-based learning
methods. Kernels and metrics have a lot in common, and work was done kernel learning
[LCB+02].

In formal treatment of these concepts, we will use the following denotation: A clas-

sification problem is a tuple P = (A, C), composed of a set of attributes A and a label
C. An instance i is an element of a world of instances I. Every attribute A ∈ A and the
label C are maps. They map an instance I into an attribute value a: A : I → DA, where
A(i) = vA,i, vA,i ∈ DA. The codomain of the attribute A is DA, as is DC the codomain of
the label C.

Sometimes we refer to instances and attributes by their indices in respective setsA or I,
e.g., for an attribute value of a specific instance: vi,j, i = 1, 2, . . . , |A|, j = 1, 2, . . . , |DAi

|.
The values of attributes X,Y for an instance ij are X(ij), Y (j). If we are interested in
an attribute value regardless of an instance, we refer to it as xk, k = 1, . . . , |DX |, so k
is an index of the value in the codomain, sometimes just as x. For an attribute Ai, its
value with index k would also be (ai)k. Sometimes, the value of an attribute X may be
undefined for an instance ij . We choose to assign it index 0 and then refer to it in several
possible ways, depending on the context: {x0,X(ij), vX,ij , vX,j , vi,j}, if X = Ai.

When we refer to probabilistic concepts, we will use a slightly ambiguous but more
compact notation, in which the attributes are x1, x2, . . . , xn, or represented all at once
with a n-dimensional vector x, while the label is y. When we use expressions with such
notation, we refer to the properties of an idealized domain, without having to assume a
particular set of instances.

There is no general consensus on terminology for these concepts [Sar94]. In neural

2.3. Classifiers 8

networks, attributes are inputs, and labels are outputs. In statistics, attributes are inde-
pendent, controlled or explanatory variables, predictors, regressors, sometimes attribute
variables, while a label is a dependent or a predicted variable, an observed value, a re-
sponse. The instances are sample values, training data is a sample or a contingency table,
while an instance world is a population. In pattern recognition, attributes are features,
instances of the training set are input vectors, and labels are outputs. In data mining,
instances are records or rows, attributes are sometimes simply columns, and the set of in-
stances is a database. Within artificial intelligence, a label is sometimes named a relation,
or a goal predicate, the label is a classification, attributes may be properties, instances
may be examples. In probabilistic approaches to learning, attributes are sometimes ran-
dom variables. Numeric attributes are sometimes called real-valued or continuous. This
tiny survey remains incomplete.

2.3 Classifiers

Although we have defined parameters to a classification problem, we have not yet defined
the purpose and the form of learning. A deterministic learning algorithm is LD : (P,W)→
CD, where W is a universe of instance worlds (I ∈ W), P is a classification problem as
defined in Sect. 2.2. d ∈ CD is a classifier, a target function, or a discriminant function,
d : I → DC . CD is the world of possible classifiers.

We learn by invoking a learning algorithm: LD(P,T) = d, d ∈ C, where T ⊆ I is
a training set, a subset of the world of possible instances. A classifier maps an instance
to its predicted class. With the term knowledge we will refer to the description of the
classifier, while a classifier is the functional implementation.

The above formalization of learning is sometimes referred to as discriminative learning,
while probabilistic discriminative learning refers to direct modeling of the posterior proba-

bility distribution of the label. Informative learning refers to modeling the label posteriors,
roughly P (i|C(i)], and priors, P (C(i)|i), with which we can arrive to the label posteriors
via the Bayes rule.

Unsupervised learning, clustering, density estimation, hidden Markov models, and
Bayesian networks are specific examples of generative learning. In generative learning
there is no attribute that would have the distinguished role of the label. In association
rule induction, we try to predict one set of attributes attributes from other attributes. In
crisp clustering, we try to invent a new attribute which can be efficiently used to predicts
all the others attributes. In Bayesian classification theory, generative learning refers to
modeling of the joint probability distribution, P (i).

2.4 Uncertainty

Now that we have defined classifiers, we will show why simple measurement of classification
accuracy is often problematic, and why probabilistic approaches work better. We will also
describe appropriate experimental methodology.

Instances of the test set or the evaluation set are E ⊆ I. It is not fair to evaluate a
classifier on the data we trained it on, as it may simply remember all instances without
gaining any ability to generalize its knowledge to unseen instances: we are not looking
for trivial rote classifiers such as d(i) = C(i). Of course, an instance world may be

2.4. Uncertainty 9

deterministic, and we might have all the instances available and labeled. A rote classifier
is then feasible, and in some sense optimal. Unfortunately, most domains are subject to
uncertainty.

We should therefore evaluate a classifier on the test set E , so that there is no overlap
between the training set T and E : E ∩ T = ∅. In practice, we do not have a separate
test set, and there are several good techniques for repeated splitting of the available set of
instances into a training and a test set. The most frequently used method is the 10-fold
cross-validation (10cv). Such techniques provide superior estimates of classifier quality
in comparison with a single arbitrary training/test split. There are also non-empirical
model-based methods, which assume that the data is generated in accordance with certain
assumptions. But, as with metrics, we prefer to assume as little as possible.

The most frequent approach for evaluating a classifier is classification accuracy: on
the test set, how many times out of total has classifier d correctly identified the class?
Unfortunately, some domains’ class distribution is unbalanced. For example, a classifica-
tion problem may require deciding whether a particular transaction is fraudulent. But in
our training data, only 1% of instances refer to fraudulent transactions. A dumb majority
class classifier, which always predicts the most frequent class, will have 99% classification
accuracy, but will miss all the frauds.

To avoid this, we introduce cost-based learning where mistakes may incur proportion-
ally greater costs. We define a |DC | × |DC | cost matrix M. The cost of a particular act
of classification of instance i is M(d(i), C(i)). A learning algorithm attempts to minimize
its classifier’s cost on a test set, knowing the M. The trouble with this approach is that d
depends on M, while we are sometimes not sure what M is. The simplest cost matrix is
0-1 loss, where

M(ci, cj) =

{

0 if i = j,

1 if i 6= j.

Minimizing zero-one loss is equivalent to maximizing classification accuracy. In a given
transaction, we may have multiple costs and multiple benefits. Eventually, we either end
up with a gain or with a loss.

2.4.1 Probabilities and Decision Theory

Instead of learning a set of classifiers dM, for all imaginable M, we may view d stochastically.
Instead of being interested solely in d(i), we instead consider a stochastic classifier, which
samples its deterministic responses randomly, according to some label probability density

function (PDF). Pr{d(i) = ck}, k = 1, . . . , |DC | can be seen as an approximation of the
posterior probability distribution P (C(i) = ck|i).

Later we will define probabilistic classifiers which explicitly present the probability
density function to the decision-maker, instead of sampling their responses randomly.
Stochastic and probabilistic classifiers are so similar that we will often pretend they are
the same: a stochastic classifier is nothing else than a dice-throwing wrapper around a
probabilistic classifier. Not to be too verbose, we will use the word ‘classifier’ instead of
probabilistic classifier from now on. If a deterministic classifier accidentally enters the
stage, we will pretend that it confidently assigns the probability of 1 to its one prediction.
If a stochastic classifier comes in, we will pretend that its responses are sampled until a

2.4. Uncertainty 10

probability distribution of its responses for a given instance is obtained, and presented to
the user.

Given a cost matrix M and the label probability distribution, we pick the class co which
minimizes the predicted expected loss, or predicted risk :

co = arg min
c̃∈DC

∑

ĉ∈DC

Pr{d(i) = ĉ}M(c̃, ĉ).

This is similar to minimizing the conditional risk [DH73], or expected conditional loss,
defined as Risk(c̃|i) =

∑

ĉ∈DC
P (C(i) = ĉ|i)M(c̃, ĉ). It is easy to see that results are

optimal if the estimate of the probability distribution matches the true one. The optimal
choice of class has the minimum conditional risk, and this risk is called Bayes risk.

We can compare the concept of risk to utility, a concept from decision theory [Mac01]:
in an uncertain k-dimensional state of the world x, the best action ao will maximize the
value of the utility function U(x, a):

ao = arg max
a

∫

dkxU(x, a)P (x|a).

Generally, utility is a subjective perception of quality. In the process of decision-making,
we are trading benefits for costs, consequently ending up with net gains or losses, and
evaluating these through positive or negative utility.

Similar computations are normally embedded inside cost-sensitive classification learn-
ers, whose classifications are adjusted to minimize risk for a specific M. If possible, it
is better to separate these two operations into two independent modules that follow one
another: one focusing on quality estimates of label posteriors, the other on deciding the
least costly class.

Probabilistic knowledge is more complex than ordinary knowledge, but users prefer
class probability to be shown than to be hidden. If simplicity is our goal, and if we know
the probability cut-off, we can always extract a simpler representation of knowledge. Even
without knowing M we can extract informative rules from knowledge, just like they they
can be extracted from neural networks, should we fail to find suitable visual knowledge
representations.

2.4.2 Gambling

We will use gambling examples to illustrate the preferences we might have for different
estimates of a probability distribution, without assuming a particular cost matrix and
without being excessively abstract. They also provide means of concretely computing the
costs caused by erroneous posterior probability distribution estimates. And they are as
ad hoc as anything else.

Assume a gambling game, with n possible outcomes. We estimate the probability of
each outcome with pi, i = 1, 2, . . . , n. We place a bet of mri coins on each outcome. Once
the outcome is known to be j, we get nrj coins back. How should we distribute the coins,
if our knowledge of the distribution is perfect?

We have m coins. Because we cannot incur a loss in this game if we play properly, it
pays to use all of them. Let’s bet m coins on the outcomes from O = {i : pi = maxj pj},
so that ∀j /∈ O : rj = 0. If this was not an optimal betting, there would exist k coins that

2.4. Uncertainty 11

should be moved from an outcome i ∈ O to an outcome j /∈ O, so that we would earn
more. We would then earn on average nkpj − nkpi coins more. But since no j /∈ O has
a larger or equal probability, we always make a loss. Such a bet is thus at least locally
optimal, and optimal for n = 2. This is a bold strategy. The average profit made by the
bold strategy in a game is −m + nm maxj pj. The expected return on investment (ROI)
given a particular probability distribution is n maxj pj · 100%, which is maximum, so the
bold strategy is max-optimal.

If we are ignorant about the probability distribution, we bet m/n coins on all outcomes,
ri = 1/n. Whatever the outcome, we never lose money, and our earnings in the worst
case are n, implying ROI of 0%. Proportional betting is minimax-optimal, as we have
a guaranteed bottom bound. In such proportional betting, we pay no attention to the
probability distribution.

We could try a timid betting strategy, which takes the probability distribution into
account: we bet on the proportion ri = pi of m coins on outcome i. We thus spend all the
coins, since the probabilities sum up to 1. The expected ROI is n

∑

i p2
i .

We can see, that the bold strategy and the timid strategies ROI is a function of the
probability distribution. We can thus judge potential profitability of these distributions.
Later we will judge the cost of mistakes in estimating the probability distributions.

Let us try to find a strategy which will maximize our expected earnings in the long run,
after several repetitions of the game. Our capital in (k + 1)-th game is what we obtained
in the k-th. According to [Grü00], long-term capital is exponentially larger for a strategy
whose Ep[ln r] =

∑

i pi ln ri is maximized, in comparison with any other strategy, for a
sufficiently large number of game repetitions. It is easy to see that p = arg maxr̂ Ep[ln r̂].
If we are unsure about p, merely knowing that p ∈ P, we should pick the strategy r∗ which
maximizes

min
p∈P

Ep[ln r∗].

2.4.3 Probabilistic Evaluation

Let us now focus on evaluation of probabilistic classifiers. We evaluate the quality of a
classifier with an evaluation function q : (C,W)→ R, which provides an ideal evaluation of
a classifier in some world, and whose value we want to maximize. In real life, we invoke the
evaluation function on some instance set, usually the evaluation set E , which we may stress
by denoting the evaluation function as qE . In this definition, we have chosen to neglect
the cost of learning, as well as the cost of obtaining instances, attribute values, and other
pieces of information: these would only be subtracted from the above quality-as-reward.
We will also leave out the world parameter, and refer to the evaluation function briefly as
q(d).

An evaluation function can be seen as a measure of returns actually obtained when
using d to choose our actions in a decision theoretic framework. It is easy to perform such
an evaluation of a classifier on unseen data, and most methods perform something similar.
A classifier that outputs realistic probabilities rather than deterministic most-likely-class
predictions will perform better as measured by the evaluation function in this situation.

We temporarily ignore any kind of comprehensiveness of the classifier: for that purpose
we should use a wholly different evaluation function that rewards the amount of insight
gained by the decider given the classifier.

2.4. Uncertainty 12

2.4.4 Probability of a Probability

A first order probability distribution is P (Pr{d(i) = ck}), k = 1, . . . , |DC |. It is an es-
timate of the probability distribution of the zero-order approximation of posterior class
probabilities by a stochastic classifier d. We can similarly define second-, third-, and so
on, order probability distributions.

The zero-order estimate helped us pick the least costly outcome for a given cost matrix.
A first order estimate would help us find the zero-order estimate which is on average least
costly, or has another desirable property, like the minimum possible risk. We can work
from the other direction and obtain the least costly cost matrix, in case the probability
distribution of cost matrices is known.

Several methods resemble the one above: [DHS00] mentions minimax risk: from a set
of permissible priors, we choose the prior for which the Bayes risk is maximum. MaxEnt
[Grü98] selects in some sense the least costly zero-order probability distribution estimate
given a certain range of acceptable zero-order estimates. Both methods avoid dealing
with non-zero-order probability explicitly, implicitly assuming a first-order probability
distribution estimate in which a certain subset of zero-order estimates are assumed to be
equally likely.

Estimating first-order probability distributions is not hard conceptually: we learn from
several samples of the training set, and examine the distribution of zero-order estimates.
Examples of schemes for such estimates are cross-validation, and leave-one-out or jackknife.

We might relax our assumption that the training set is identically and independently
sampled from the world. In such a case, we have to assume what else could be happening.
For example, we can sample with replacement (bootstrap), pick samples of differing sizes,
or introduce various kinds of counter-stratification in sampling. Such actions will probably
increase the timidity of eventually obtained least costly zero- or higher-order probability
estimates.

The sampling methods are time consuming, but sampling is not a necessary require-
ment. In estimating zero-order uncertainty we avoid resampling by fitting parametric
probabilistic models directly to data. Similarly, if we accept the bias, we can use var-
ious maximum likelihood or maximum a posteriori parameter estimation methods with
higher-order probability distributions.

Let us now provide a semi-formal coverage of the concept. We are already familiar
with a 0-order PDF: fX

0 : X → [0, 1], so that fX
0 (X) = P (X),X ∈ X . X is a set of

mutually exclusive events, and we require probability of an event to be greater or equal to
0, fX

0 (X) ≥ 0, for all X ∈ X . We also require that the probabilities for all events sum up
to 1,

∑

X∈X fX
0 (X) = 1, in line with normalization and positivity conditions for density

functions. Any discrete event E should be represented with a set XE = {E,¬E}, to be
appropriate for density functions.

A m-order PDF is fX
m : X → FX

m−1. It maps an event into a (m − 1)-order density
function, and we keep these in FX

m−1 for convenience. The intermediate k-order, m > k >
0, density function fk ∈ Fk is a mere mediator: fk : [0, 1] → Fk−1. The final, 0-order
density function maps to a real value interval [0, 1]: fk : [0, 1] → [0, 1], representing a
concrete probability.

The 1-order density function for an event E ∈ XE would thus map the base outcome
into a density function f0 which describes the density function of the probability itself.
Thus (f1(E))(p) = Pr{P (E) = p}. The 2-order density function merely extends this

2.4. Uncertainty 13

to ((f1(E))(p1))(p2) = Pr{Pr{P (E) = p1} = p2}. We need not be intimidated: we
are usually satisfied with 0-order probability functions. Now we have something more
general. This system of high-order probability density functions can be seen as a possible
formalization of the idea of imprecise probabilities.

2.4.5 Causes of Probability

We should distinguish uncertainty, ignorance and unpredictability. When we obtain a prob-
ability of an outcome, the probability may be there due to uncertainty, due to ignorance,
or because of inherent unpredictability. Uncertainty is a subjective estimate, provided by a
probabilistic classifier. Ignorance and unpredictability are objective properties. Ignorance
is a consequence of limited information. Unpredictability is a consequence of inherent
unpredictability and unknowability of the world, and a big philosophical dilemma: If we
throw a dice, the outcome may either be due to inherent unpredictability of the dice, or it
may be because of our ignorance of the weight, shape, position, speed, acceleration, etc.,
of the dice. To avoid dilemmas, we will only refer to ignorance while accepting that un-
predictability may be a part of ignorance. All three can be represented with distribution
functions and probabilities.

Our predicted probability of falling sick p can be seen as a measure of uncertainty:
it is a measure of how serious our current health situation is. We have little way of
knowing what will actually happen, and we are ignorant of all the details. Nevertheless,
uncertainty is useful directly as information: far fewer unfavorable events are sufficient to
push a p = 0.6 healthy person into disease than a p = 0.9 healthy person. Similarly, the
expiration date on supermarket food signifies that from that date onwards the uncertainty
that the food is spoiled is above, e.g., p = 0.1.

The objective of learning is to minimize probability due to uncertainty, taking advan-
tage of attributes to reduce its ignorance. Noise is the ignorance that remains even after
considering all the attributes. The lesser the uncertainty, the better the results with most
decision problems: we earn more in betting games.

An ideal classifier’s uncertainty will match its objective ignorance exactly. There are
two dangers in learning, both are tied to subjective uncertainties mismatching objective ig-
norance: overfitting refers to underestimating the subjective uncertainty, below the actual
level of objective ignorance; underfitting refers to a timid learner’s uncertainty overesti-
mating its objective ignorance.

2.4.6 No Free Lunch Theorem

If we assume nothing, we cannot learn [WM95, Wol96]. Not even timid predictions are
acceptable: we have to be timid about our uncertainty: from all outcomes are equally
likely, through all outcome distributions are equally likely, to all distributions of outcome
distributions are equally likely, and so ad infinitum.

If learning is hard, it is hard for everyone. Nevertheless, some learners sometimes
manage to learn better than others, and make better decisions. In an imperfect world,
where only a number of possible situations occur, some learners will always be empirically
better than others.

We could assume that a domain has a particular level of inherent ignorance, that it
is generated by a particular model, and we could even assume that it is deterministic.

2.5. Estimating Models 14

But we choose to only assume that we can generalize from a subset to the whole set:
we investigate the learning curves to ascertain ourselves. In a learning curve, we plot
the value of the evaluation function with respect to the proportion of data used to train
the classifier. Should they not converge, we question our trust in the predictions, and
represent the distrust with higher-order uncertainty. Lift charts and cumulative gains
charts are largely synonymous to the learning curves.

2.5 Estimating Models

Earlier, we referred to a probabilistic learner indirectly: we studied the probability dis-
tribution of the stochastic classifier’s predictions. Such an approach requires sampling at
best, and is generally impractical. An alternative approach is to use models. Models are
functions that map some representation of an instance i into the k-order probability den-
sity functions of the label given an instance i. In this text, we only consider closed-form
functions as models.

Models are a concrete form of Bayesian posteriors, and they can be used by a prob-
abilistic classifier to provide predictions. Practical probabilistic classifiers should return
density functions rather than behave stochastically. Probabilistic classifiers’ predictions
are density functions. For that reason we will denote the k-order density function, the
codomain of model Hk

i , as fDC

k (c) = MHi

k (c|i,w), where c ∈ DC is a label value. As
earlier, i is an instance whose class we want to know, and w are the parameters — results
of fitting a model to the data. Our definition is intentionally lax, and not even a proper
function, but we do not want to fix exact operations performed on data in the model
definition itself.

Having the concept of a model, we can define a probabilistic learner, no longer having
to resort to stochastic classifiers: L : (P,W) → C, where W is a universe of instance
worlds (I ∈ W), P is a classification problem as defined in Sect. 2.2, and C is a set of
probabilistic classifiers. pc ∈ C is a probabilistic classifier, pc : I → FDC , where FDC is
the world of label (C) distribution functions of some order.

Therefore, a probabilistic classifier is a map from an instance description to some prob-
abilistic model. The probabilistic learner determines appropriate models, transforms the
instance into parameters, estimates one or more models with respect to these parame-
ters on the training data, and returns a label probability function. The details of these
operations will be explored in the coming sections.

The first natural problem is adjusting model’s parameters to fit data (estimation, or
model fitting), and the second is choosing a model (model testing or model comparison).
Estimation is the process of obtaining a concrete model or its parameters by estimating the
label probability distribution. One can simply pick the most likely class, and assign it the
probability of 1. With more sophistication, one can fit probability models via maximum
likelihood or maximum a posteriori methods, or can perform less biased estimates via
resampling, perhaps even modeling higher-order uncertainty.

We now focus on procedures for estimating models. Their task is to determine the
parameters of a given parametric model function to fit the data.

2.5. Estimating Models 15

2.5.1 Bayesian Estimation

Let us recall the Bayes rule:

posterior =
likelihood × prior

evidence
,

where likelihood = P (y|x), prior = P (x), posterior = P (x|y), and evidence = P (y).
Bayesian inference is built upon this rule and provides a framework for constructing models
which provide zero-order probability estimates.

Should we assume a model Hi is true, we infer its parameters w, given data D, by
proceeding as follows:

P (w|D,Hi) =
P (D|w,Hi)P (w|Hi)

P (D|Hi)
.

This step is called model fitting. The optimal w has maximum posterior, and can be
obtained with gradient descent. The curvature of the posterior can be used to obtain the
error bars of w, but these error bars should not be mistaken for first-order posteriors. The
evidence is often ignored, as it can merely be a normalizing factor. But MacKay [Mac91]
names it ‘evidence for model Hi.’

2.5.2 Estimation by Sampling

Estimation can be seen as nothing other than frequency count gathering through sampling.
From these counts we obtain probabilities, and use them in the classifier. We do not try to
optimize anything in this process of estimation, as this would induce bias in our estimates.
Reliability of estimates should be the burden of the learning algorithm, and estimation a
module the learning algorithm uses like a black box.

With sampling, a model becomes nothing else than a non-parametric empirically-fitted
distribution function, and we sample the data repeatedly to arrive to the distribution func-
tion from the gathered frequencies, as we described in Sect. 2.4.4. We assumed nothing,
and our estimates of uncertainty are less biased. In reality, we will use several such models,
joining their predictions. Furthermore, not all models are equally useful to the decision-
maker: but this is a problem of learning, not of modeling. Our models may consequently
be biased.

Model fitting by sampling is inefficient, but we can fit higher-order distribution func-
tions quite easily. If we model higher-order uncertainty, we also avoid having to define
ad hoc preferences for uncertainty distributions, as it is described in Sect. 2.4.5. Thus, if
we successfully model uncertainty, we will be able to pick the optimal decision without
having to burden ourselves with assuming detailed properties of risk and utility in the
model itself.

With sampling we must especially mind computational economy : the benefit of better
estimates may be obsoleted by changes through time, or may provide no gain once the
costs of computation are subtracted. Finally, as we cannot possibly evaluate all models,
we normally end up with imperfect ones. Many of these dangers should be managed
by the decision-maker who has more information than the learner does. However, the
learner should nevertheless be aware of uncertainty orders, computational economy, and
be thorough with respect to supported models.

2.6. Classifier Evaluation 16

2.6 Classifier Evaluation

The learner should provide the best classifier it can create. We could choose the model
functions randomly from some set, estimate their parameters, and if we had means of
evaluating their worth, we would already have a working learning procedure.

There are two essential paradigms to classifier evaluation. First, we may assume that
the model function is identical to some hypothetical ‘function’ that ‘generated’ the data.
The second paradigm is pragmatic, and there we seek to maximize the benefit of the
classifier’s user, as measured by some evaluation function.

2.6.1 Generator Functions

We can assume that our knowledge and models are truly identical to ones that ‘generate’
data in real world and then estimate the probability — likelihood — that the particular
sample was generated by a certain model. We effectively assume that P (D|H) = P (H|D).

But the data might have been ‘generated’ by a set of ‘functions’. We thus introduce
expectations about this set of functions. For example, we may assign prior probabilities
to individual models, which weigh the likelihood with the function prior. Or we may
employ regularization, which penalizes certain parameter values: in the sense that certain
parameters are more probable than others.

For Bayesian inference, MacKay estimates the plausibility of the model via

P (Hi|D) ∝ P (D|Hi)P (Hi).

We could either assume such evidence (subjective priors), or integrate evidence over all
possible parameter values, thus penalizing the size of parameter space, in semblance of
(but not equivalence to) VC dimension:

P (D|Hi) =

∫

P (D|w,Hi)P (w|Hi)dw,

or we could infer it from a number of diverse classification problems, just as the length of
an expression in natural language is a result of natural language being applied to many
real sentences in human life.

MacKay suggests the second possibility, and approximates it as evidence ' best fit
likelihood × Ockham factor :

P (D|Hi) ' P (D|wMP,Hi)P (wMP|Hi)∆w,

where ∆w is the posterior uncertainty in w, a part of the Ockham factor. He suggests
approximating it for a k-dimensional w with a Gaussian as:

∆w ' (2π)k/2 det−1/2(−∆∆ log P (w|D,Hi)).

2.6.2 Evaluation Functions

Pragmatic learners instead try to find classifiers that would be evaluated as positively as
possible by the decision-maker. The trouble is that we may achieve perfect performance
on the training data, because it has already been seen. The evaluation methods should
therefore examine the ability of the learner to generalize from a sample to the whole

2.6. Classifier Evaluation 17

population. It is not easy, because the learner has no way of knowing how the data was
collected, but it is equally hard for all algorithms.

A learning algorithm may try to explicitly maximize the value of some decision-
theoretic evaluation function q, but it is only provided a sample of the instances and
no insight about the decision-maker. Not only has it to approximate the instance label,
it also has to approximate the decision-maker’s evaluation function. We will not discuss
this issue, and simply assume that an evaluation function q is given. Sect. 2.6.2 surveys a
number of evaluation functions.

We employ two families of techniques. One group of approaches work with the seen
data, use heuristic measures of classifier quality, and infer the the estimated classifier
quality from the sample size and classifier complexity. With respect to the evaluation
function, they also moderate the confidence of classifier’s predictions with respect to the
expected classifier performance.

Validation set methods simulate how a decision-maker would use a classifier: they
evaluate the classifier on unseen data. Because all their data is essentially ‘seen’, they
simulate leaving out a portion of the training data. Once they determine the properties
of the classifier that worked best on portions of the training data, they train this winner
with all the training data.

Evaluating Classifiers on Unseen Data

Because we cannot be given unseen data, we pretend that a part of the training data
has not been seen. The training set T is thus split into a validation set V ⊂ T and the
remainder set R = T \ V. The classifier is trained on the remainder set and evaluated on
the validation set. Normally, multiple splits of the training set are performed (e.g., via
10-fold cross-validation) to obtain more reliable quality estimates.

The method is often called internal cross-validation, and we will refer to it as internal
evaluation. Wrapper methods [Koh95] use the observations obtained in internal evaluation
to adjust the parameters of the final classifier. The final classifier is is trained on the
whole training set, but uses the same algorithm and the same parameters that were used
in internal validation.

The core problem is that the method may be overly conservative since we generalize
knowledge obtained from a portion of the training data to the whole training data. For
example, if we are given exactly as many instances as there are needed to understand the
domain, the splitting into the validation set will cause the estimates to underestimate the
model, on average. On the other hand, we have no idea about how the model will be used,
so extra fuss about this issue is unneeded.

The learning algorithm can, however, investigate the relationship between the label
probability function with respect to differing size and differing sampling distribution in-
side the training data, in a meta-learning style. If the dependence does not disappear
with larger and larger proportions of training data, meaning that the classifier does not
appear to converge, the learning algorithm should wonder about whether there is enough
data, and should increase its uncertainty estimates. With more sophistication, the de-
pendence of uncertainty on the amount of training data can be estimated via learning
curve extrapolation, as described in [Koh95, CJS+94, Kad95]. Apart from resampling the
training data, we can use background knowledge, which can result from meta-learning on
a number of domains.

2.6. Classifier Evaluation 18

Once the amount of ignorance has been estimated, moderating procedures can be
represented as an additional timid maximin gain-optimizing model. The final result of
the classifier is obtained by voting between this timid model, weighted with the estimated
amount of ignorance, and the trained reward-maximizing ignorance-minimizing model.
Alternatively, we can skip the ignorance estimation stage, and represent this dependence
in form of higher-order uncertainty, obtained by estimating the models on a number of
instance samples drawn from the training set, as described in Sect. 2.4.4.

Evaluation Functions Surveyed

Because we do not know the true label probability distribution for a given instance, we
pretend that the test instance’s class is always deterministic, even if there are multiple
class values for the same set of attribute values. For an instance i, P̂ is our approximation
to the true probability distribution, and is defined as

P̂ (C(i) = c) :=

{

1 if C(i) = c,

0 if C(i) 6= c.
(2.1)

Gambling Assume that each test instance is a short-term betting game. Our capital’s
growth rate in a game on an instance i with deterministic class C(i) is Pr{d(i) = C(i)}.
If the class is also probabilistic, the growth rate is

∑

c∈DC
P (c|i)Pr{d(i) = c}. The ideal

classifier should try to maximize this growth rate. Classification accuracy or 0/1-loss is
a special case of this measure when both the class and the classifier are deterministic.
We can modify our heuristic if we have more information about the utility, or risk-averse
preferences.

Description Length Data compression can be seen as an exercise in gambling. The
decompression module predicts the distribution of symbols. When a symbol comes, it is
compressed using the predicted distribution. If we use optimal arithmetic entropy coding,
the symbol ci will consume exactly log2 Pr{d(i) = ci} bits, and this is description length,
the quantity we want to minimize. In data compression, there are further requirements:
the decompressor originally has no information about the problem domain, or the classifier.
We can thus either transfer the model beforehand (and incur a loss because of transfer-
ring the model), or we can transfer instances one by the other, having the decompressor
infer the model. Although there are some similarities, especially with respect to general
undesirability of overly confident predictions, data compression is not decision-making.

Relative Entropy In similarity to the reasoning from [Grü98], a classifier d is optimal
when it minimizes relative entropy or Kullback-Leibler divergence [KL51], also known as
KL distance, relative entropy, and cross entropy. KL divergence is measured between two
probability distributions, the actual distribution of label P = P (C(i)|i) and the predicted

distribution of label Q = Pr{d(i)}:

D(P ||Q) :=
∑

c∈DC

P (C(i) = c) log
P (C(i) = c)

Pr{d(i) = c}
. (2.2)

Relative entropy is a heuristic that rewards both correctness and admittance of ignorance.
It can also be used to choose a posterior distribution Q given a prior distribution P . KL

2.6. Classifier Evaluation 19

divergence can be understood as an increase in description length incurred by the imperfect
probability distribution estimate in comparison with the description length obtained by
the actual probability distribution.

The logarithm of the probability can be seen as a logarithmic utility function. It was
already Daniel Bernoulli who observed diminishing marginal utility in human decision-
making, and proposed logarithmic utility as a model in 1738 [Ber38, FU]. In concrete
terms, he observed that happiness a person increases only logarithmically with his earn-
ings. Entropy can be seen as a particular utility function.

Because the real P is often unknown, we have to approximate it for each instance, for
example with P̂ (2.1). If there are n instances whose classes are distributed with P , and
we try to sum the divergence for all instances as an output of our evaluation function, the
result will not be nD(P ||Q). If there are k outcomes (|DC | = k), we will instead obtain
have nD(P̂ ||Q) =

∑k
i=1 nP (ci)D [P (ci) = 1||Q]. The deviation is nD(P ||Q)−nD(P̂ ||Q) =

n
∑k

i=1 P (ci) log P (ci) = −nH(P). It is fortunate that this deviation is independent of Q,
so a comparison between different classifiers on the same data will be fair.

Testing Goodness of Fit As a side note, examine the expression for Pearson’s X2

statistic from 1900, which compares an observed distribution with an empirical one, per-
formed on N instances V = {i1, i2, . . . , iN} [Agr90], rewritten with our symbols:

X2 = N
N
∑

i=1

∑

c∈DC

(P (C(ii) = c)− Pr{d(ii) = c})2

Pr{d(ii) = c}
.

It has approximately a χ2 null distribution with degrees of freedom equal to (N−1)(|DC |−
1). Also compare KL divergence with Wilks’s likelihood ratio statistic from 1935:

G2 = 2N
N
∑

i=1

∑

c∈DC

P (C(ii) = c) log
P (C(ii) = c)

Pr{d(ii) = c}
.

It is also distributed with χ2 distribution with df = (N − 1)(|DC | − 1). This way, we
can also use KL divergence as the basic statistic for determining the significance of model
differences.

X2 usually converges more quickly than G2, as G2 fits poorly when N/df < 5, whereas
X2 can be decent even when N/df > 1, if frequencies are not very high or very low. The
original form of both statistics refers to sample counts, not to probabilities. To obtain the
count formula, remove the N multiplier from the beginning of both expressions, and use
class- and instance-dependent counts everywhere else instead of probabilities.

There are several other goodness-of-fit tests that we did not mention. For example,
Kolmogorov-Smirnov and Anderson-Darling tests are well-known, but are primarily used
for comparing continuous distributions.

Information Score It has been suggested in [KB91] that an evaluation of a classifier
should compare it to the timid classifier dt, which ignores the attributes and offers merely
the label probability distribution as its model: Pr{dt(i) = c} = P (c). A more complex
classifier is only useful when it is better than the timid learner. If it is worse than the

2.6. Classifier Evaluation 20

timid learner, its score should be negative. For a given instance i of deterministic class
C(i), the information score IS of a classifier d is defined as:

IS :=

{

log2 Pr{d(i) = C(i)} − log2 P (C(i)) Pr{d(i) = C(i)} ≥ P (C(i)),

− log2 (1− Pr{d(i) = C(i)}) + log2 (1− P (C(i))) Pr{d(i) = C(i)} < P (C(i)).

(2.3)
Information score is closely related to Kullback-Leibler divergence. We are subtracting

the divergence achieved by the classifier d from divergence achieved by the timid classifier
dt. If the classifier d is worse than the timid classifier, the score is negative. Kullback-
Leibler divergence strongly penalizes underestimation of ignorance, unlike information
score. Consequently, it may happen that a classifier that correctly estimates its ignorance
will obtain a lower score than a classifier that incorrectly estimates its ignorance.

Regret Regret or opportunity loss is a concept used for evaluating decision-making in
economics [LMM02]. It is the difference between what a decision-maker could have made,
had the true class probability distribution and the true cost matrix been known, and what
he actually made using the approximations. We take the optimal decision with respect
to the classifier’s probabilistic prediction, and study the opportunity loss caused by the
classifier’s ignorance:

Lo(d, i) =

∑

c∈DC

P (C(i) = c)M

arg min
c̃∈DC

∑

ĉ∈DC

Pr{d(i) = ĉ}M̂(c̃, ĉ)

 , c

−

min
c̃∈DC

∑

c∈DC

P (C(i) = c)M(c̃, c).

(2.4)

Here the M̂ is our approximation to the cost matrix which we use to make a decision. It is
not necessarily equal to the true (but possibly unknown) cost matrix. The formula appears
complex partly because we assumed intrinsic ignorance about the class: we compute
the expected loss over all possible outcomes. It would be easy to formulate the above
expressions for minimax loss, or with utility or payoff instead of cost.

In case there is no unpredictability, merely ignorance, we can introduce the concept of
the expected value of perfect information or EVPI:

EVPI = M(d(i), C(i))−M(C(i), C(i)),

where d(i) represents the optimal decision we have made with the available information
and the available cost matrix, while C(i) is the actual outcome.

Receiver Operating Characteristic Receiver Operating Characteristic (ROC) anal-
ysis [PF97] was originally intended to be a tool for analyzing the trade-off between hit rate
and false alarm rate. ROC graphs are visualizations of classifier performance at different
misclassification cost settings. Of course, if we have an universal probabilistic learner,
we are not forced to re-train the classifier for each setting, although we have shown that
this could pay off. ROC can be used to switch between multiple classifiers, depending
on the desired cost function, thus achieving a characteristic approximately represented by
the convex hull over all the classifiers’ characteristics. Choosing a classifier using ROC

2.6. Classifier Evaluation 21

can be viewed as a multiobjective optimization problem: we only retain Pareto optimal
classifiers, and dispose of the others. For example, if one classifier’s ROC is fully below
another ROC, we can say that it is dominated. We have no need for dominated classifiers.
For a k-class classification problem the ROC visualization is k-dimensional. Area under
the ROC (aROC) is a univariate quantitative measure used for comparing classifiers, with
the assumption of uniform distribution of cost functions.

Evaluating Classifiers on Seen Data

Two essential elements of training classifiers have been always kept in mind: bold pursuit
of confident predictions, and timid evasion from overfitting. The former is achieved by
impurity-minimizing partitioning or merging, and model-fitting. The latter is embodied
in pruning, model priors, penalized complexity, cross-validation, hypothesis testing, regu-
larization, moderation. There are many expressions for this notion, timidity = avoiding
bias, boldness = avoiding variance; timidity = avoiding overfitting, boldness = avoiding
underfitting; timidity = minimax profit, boldness = max profit; timidity = maximum
uncertainty, boldness = minimum uncertainty.

Should we evaluate the models merely on training data, we have to balance boldness
and timidity. Here we present evaluation functions that operate merely with uncertainties,
without knowledge of the exact utility function. But we do have knowledge of the decider’s
strategy, as it can either be long-term or short-term.

It is easy to modify the measures below to account for utility: an error in estimating
the probability of the action that will be chosen by the decider has greater importance
than error in the probabilities of other outcomes. To phrase it more precisely, errors
in those probabilities which are unlikely to change the decision are less important than
those errors that would cause the decision to deviate from the optimal. Awareness of this
somewhat justifies cost-based learning. However, our uncertainty-based approach reduces
the problem in comparison with other measures such as classification accuracy that become
very brittle with class-unbalanced data.

Boldness We might not want to expose the exact utility function and parameters of the
decision strategy (e.g., the degree of risk aversion) to the learner. Instead, we might want
to merely operate with uncertainties while learning, according to our above definition
of LP . We are encouraged by the conclusions of Sect. 2.4.2: the lower the measure of
uncertainty, the greater the maximum returns.

Timidity However, sometimes we require the opposite - a classifier that would be least
risky: We can use entropy in the following way [Jay88]: should there be several permissible
probability functions, we should pick one that has the maximum entropy. This is the
‘safest’ probability distribution. Entropy [Sha48] is a measure of information content of
an information source, and is defined as

H(Pr{d(i)}) = −
∑

ĉ∈DC

Pr{d(i = ĉ)} log Pr{d(i) = ĉ}. (2.5)

It can be measured in bits, when 2 is the logarithmic base, or in nats when a natural
logarithm is used.

2.7. Constructing Classifiers 22

When we are playing to maximize returns over the long run, we prefer entropy-like
measures. When we play to maximize returns in a single run, we are interested in maxi-
mizing the probability of the most likely outcome.

The MaxEnt principle is a generalization of Laplace’s prior. Of course, MaxEnt is
merely a heuristic that embodies the preference for the most timid of the available equally
likely distributions. It is interesting to observe the contrast between the MaxEnt heuristic,
and that of seeking classifiers that yield minimum entropy (let us call them MinEnt).

MinEnt is the process of seeking most profitable classifiers, while MaxEnt is a procedure
of seeking classifiers that minimize loss in long-term gambling. For short-term gambling,
entropy is no longer desirable: if we were given several acceptable models, we would pick
the model that maximizes maxc∈DC

(1− Pr{d(i = c)}) instead of one that would maximize
entropy.

2.7 Constructing Classifiers

Models are a powerful mechanism for managing uncertainty, and we know how to estimate
them. We also know how to choose classifiers, but we do not yet know how to bridge the
gap between the two. In this section, we will discuss how we construct classifiers from a
set of robust model functions, and a set of utility functions that link different models.

It is futile for the learner to continuously serve unprofitable models. As general func-
tions are a gigantic model space, we should try to be more specific. The learner’s true
objective is to provide models which get chosen by the decision-maker, both for their
prediction performance as well as for their computational efficiency.

It is obvious that this creates a market of learners, where it is hard to point a finger
on the best one. There are many niche players. Still, we can investigate the optimization
process of the learner intelligently and actively trying to maximize its odds of getting
chosen by the decision maker, rather than stupidly using and fitting the same model over
and over again. We apply two concepts from good old-fashioned artificial intelligence:
heuristics and search. Search helps us try several models, before we pick the best one, and
heuristics help us efficiently search for the best one.

We thus seek useful families of models, those that are more likely to be chosen as
optimal by the decision-maker, and only eventually those that are less likely to optimal.
Should we interrupt the execution of the learner at some point, it would be ideal if it
could immediately present a good model: a decision-maker interested in efficiency could
use this interruption mechanism to maximize its computational economy criterion.

In this section, we only focus on well-known families of models that have proven to work
well. In constructing classifiers, there are four most important building blocks: we have
already discussed estimation of non-parametric and parametric models in Sect. 2.5, and
now we present construction of descriptors from instances, segmentation of instances, and
voting between models. By manipulating these blocks, we quickly build useful classifiers.

2.7.1 Building Blocks

Remember that the engine of uncertainty estimates are models. Models map instance
descriptors to uncertainty estimates. Although an instance’s attributes could be its de-
scriptors as a model’s domain, this is neither necessary nor desirable. The descriptors

2.7. Constructing Classifiers 23

should be simpler than attributes. We prefer to apply multiple simple models rather than
a single complex and unwieldy one with many descriptors.

The n descriptors to a model span n dimensions. High dimensionality is a tough prob-
lem. People constantly try to diminish the number of descriptors to the minimum feasible
amount. Our ability of visualizing data is too limited by its dimensionality. Percep-
tion is two-dimensional, while imagination has difficulty even with full three dimensions.
Our visual minds have evolved to solve problems in colorful two-and-a-half dimensional
landscapes. We are able to reach higher only by finding intelligent ways of projecting
problems to two dimensions. Although computers cope with more dimensions than peo-
ple, the phrase curse of dimensionality implies that computers too get burdened by extra
dimensions.

Most learning methods try to diminish the dimensionality of the problem by reducing
the number of descriptors in a probabilistic model. The first phase in learning converts
attributes into descriptors, and it precedes model estimation. Descriptors may be con-
tinuous numbers (projections), or subsets of the training set of instances (segmentation).
There can be several models, each with its own set of descriptors and its own set of train-
ing instances. There is no curse of dimensionality if we treat the descriptors one by one,
it only occurs when multiple descriptors are to be treated at once. In the simplest model,
there are zero descriptors, and we may use multiple models.

In the second phase, we use estimation methods, which we already discussed in Sect. 2.5,
to estimate the class distribution function given the descriptor values. For an instance,
we only know its class and its descriptor values.

If multiple models were created, their predictions are joined. Sometimes models do
not overlap: for a given instance only a single model is used, and its output is the output
of the whole classifier. If multiple models provided predictions for the same instance, but
with different descriptors, we may apply voting to unify those predictions. Voting is not
necessarily a trivial issue. If one of the models is duplicated, its predictions would carry
twice the previous weight.

There are several trade-offs with respect to these methods, and they emerge in the
process of estimation. The severity of the curse of dimensionality rises exponentially with
the number of descriptors used in estimating one model. Besides, the more descriptors we
use, the greater the sparseness of the probability function, and the lower the effectiveness
of estimation procedures. The more instances we use to estimate each model, the more
reliable and representative are its estimates, but the lower is the reduction of our ignorance.
Voting between overlapping models helps us address the above two trade-offs, but voting
itself carries certain problems which will be discussed later.

We will now examine each of these three techniques in more detail.

Projection

A projection involves acquiring a small number of numeric descriptors x̂ for a given in-
stance, by transforming attribute values. For any i ∈ I, we can compute the m-descriptor
projection as x̂i = W (i),W : I → Rm. These models’ codomains are the descriptor spaces.
Descriptors are computed from an instance’s attributes.

The training procedure should attempt to find the most informative descriptor spaces,
while keeping them low-dimensional. A hyperplane in n dimensions is a linear projection
of the whole attribute space onto a single informative descriptor dimension. The sole

2.7. Constructing Classifiers 24

descriptor of an instance is its distance to the hyperplane.

The abstract notion of distance descriptor is converted to a zero-order probability
distribution with a link function, for example a step/threshold/Heaviside function (linear
discriminant), or with a logit link (logistic regression). As there are several possible
hyperplanes, the choice of one is determined by desirable properties of the probability
distribution’s fit to the training data in logistic regression. This should be contrasted
to Vapnik’s maximum-margin criterion [Vap99] for linear discriminants. Instance-based
learning and kernel-based learning can be seen as families of models where the descriptors
are distance functions between pairs of instances.

Segmentation

Segmentation is the process of dividing the training data into multiple segments. These
segments partition the whole instance world I, so for any i, even if previously unseen,
we can determine the segment it belongs to. Segmentation can be seen as a special case
of projection, where the descriptor is a discrete number identifying the segment of an
instance. The set of segments is a finite set S: WS : I → S, and we use a single zero-
descriptor model for each segment. If we apply segmentation to descriptors themselves,
we implement non-parametric estimation of models with continuous descriptors.

A timid learner, which considers no attributes, can be seen as using a single 0-order
0-descriptor model with a single segment containing all the instances. An almost natural
approach to segmentation is present in the näıve Bayesian classifier: every attribute value
is a separate segment with its own zero-descriptor zero-order probability model.

In classification trees and rules we recursively partition the data with hyperplanes,
which are usually orthogonal or axis-aligned, obtaining a set of data segments. For each
segment of the data, a zero-order zero-descriptor probability model is estimated. For a new
instance, we can determine the segment to which the instance belongs, and that model’s
distribution function is offered as output of the classifier. We can imagine a classification
tree as a ‘gate’ which, for a given instance, selects the prediction offered by the single
predictor, chosen as the most informative depending on the instance’s attribute values.
The choice of the predictor depends on the attribute values.

Voting

When we end up with multiple constituent models for a given instance, we need to unify
their proposed distribution functions in a single distribution function. A simple example
is the näıve Bayesian classifier. We can imagine it as a set of zero-order zero-descriptor
models, one for each attribute-value pair. The models corresponding to attribute values
present in the instance are joined simply by multiplication of individual models’ distribu-
tion functions: a fixed formula which only functions properly when the constituent models
are independent.

Learning can be applied to the problem of voting, and this often takes the form of es-
timating the final model on the basis of descriptors or segments derived from constituent
models’ distribution functions. In a simple case, if we choose to use the product of dis-
tribution functions as the result of voting, we can weigh each distribution function. This
alleviates the problem of model duplication, but it is uncertain how well it functions with
other artifacts.

2.7. Constructing Classifiers 25

A lot of work has been done in the domain of ensemble learning [Die00]. An ensemble
is a collection of separate classifiers, whose predictions are eventually joined by voting.
Specific examples of ensemble learning methods are Bayesian voting, bagging, boosting,
and others. In the above examples, the views were always disjunct, but it has been
observed that relaxing this requirement improves results.

2.7. Constructing Classifiers 26

CHAPTER 3

Review

Mathematics is cheap: all it takes is paper, a pencil and a dustbin.

But philosophy is cheaper, you need no dustbin.

In this chapter, we provide an overview of topics from a multitude of fields that cover
the issue of interactions. A reader should merely skim through these sections, and perhaps
return later when seeking explanation of a certain concept. We do not attempt to define
interactions, as there are many different definitions. It will be helpful to the reader to
imagine interactions in the literal sense of the word, and perceive the differences between
approaches. Our objective will be fulfilled if the reader will notice the great variety of
human endeavors in which the concept of interactions appears.

3.1 Causality

To understand what abstract interactions could represent in real world, we might approach
the issue from the viewpoint of causality. According to [JTW90], there are six types of
relationships, illustrated on Fig. 3.1, that can occur in a causal model:

A direct causal relationship is one in which a variable, X, is a direct cause of another
variable, Y .

An indirect causal relationship is one in which X exerts a causal impact on Y , but only
through its impact on a third variable Z.

A spurious relationship is one in which X and Y are related, but only because of a
common cause Z. There is no formal causal link between X and Y .

A bidirectional or a reciprocal causal relationship is one in which X has a causal
influence on Y , which, in turn, has a causal impact on X.

An unanalyzed relationship is one in which X and Y are related, but the source of
relationship is not specified.

3.2. Dependence and Independence 28

A moderated causal relationship is one in which the relationship between X and Y is
moderated by a third variable, Z. In other words, the nature of the relationship
between X and Y varies, depending on the value of Z. We can say that X,Y and
Z interact.

Direct Causal Relationship Indirect Causal Relationship

A B A C B

Spurious Relationship Bi-Directional Causal Relationship

A B

C

A B

Unanalyzed Relationship Moderated Causal Relationship

A B

A B

C

Figure 3.1: Six Types of Relationships

The moderated causal relationship is the one usually associated with interactions. It
can be sometimes difficult to discern between the moderator and the cause. In moderated
causal relationships, it is stressed that there is some interaction between attributes. There
can be multiple dependent causes, yet it is not necessary that they are interacting with
one another.

When the effects of pair of variables cannot be determined, we refer to them as con-

founded variables. Interacting variables cause unresolvable confounding effects. Modera-
tion can be seen as a way of resolving confounding, although it can be ambiguous which
of the variables is moderating and which is moderated.

3.2 Dependence and Independence

Our investigation of interactions may only proceed after we have fully understood the
concepts of association and dependence. Association is a concept from categorical data
analysis, while dependence is used in probability theory. The two concepts are largely

3.2. Dependence and Independence 29

synonymous. In probability theory, two events are independent iff the probability of their
co-occurrence is P (X,Y) = P (X)P (Y).

In categorical data analysis, to study attributes A and B, we introduce cross-tabulation
of frequencies in a two-way contingency table.

E a1 a2

b1 5 10
b2 12 8

For continuous numerical attributes, a scatter plot is most similar to a contingency table.
We could compute approximate probabilities from contingency tables, dividing the field
count by the total table count, but we do not do that in categorical data analysis: we
always try deal only with frequencies.

The frequencies are obtained by counting instances in the training set that have a
given pair of attribute values. For example, there are 5 instances in S = {i ∈ U :
A(i) = a1 ∧ B(i) = b1}, where U is the training set. A n-way contingency table is a
multidimensional equivalent of the above, for n attributes. A 1-way contingency table is
a simple frequency distribution of attribute values.

We may wonder whether two attributes are associated. Generally, they are not asso-
ciated if we can predict the count in the two-way table from the two 1-way contingency
tables for both attributes. The obvious and general approach is to investigate the depen-
dence or independence of individual attribute value pairs as events: the corresponding
measures of association for 2×2 tables are the odds ratio and relative risks. It works both
for nominal and ordinal attributes.

Should we desire a test that will either confirm or refute whether two attributes are
associated with a certain probability, we can use χ2 statistic as a measure of pairwise

association between attributes A and B:

Ei,j =
Nai

Nbj

N
,

QP =
∑

i∈DA,j∈DB

(Nai,bj
− Ei,j)

2

Ei,j
.

Here Ei,j is the predicted count. For associations of multiple attributes, a similar formula
is used. N is the number of instances, and Ncondition the number of instances fulfilling a
particular condition.

We can invoke the χ2 statistical test to verify association at the specific level of signif-
icance. The variables are associated if QP exceeds the tabulated value of χ2 at the given
level of significance with the degrees of freedom equal to df = (|DA| − 1)(|DB | − 1). The
inner workings of this test are based on checking the goodness of fit of the multiplicative
prediction on the basis of marginal frequencies Ei,∗ and E∗,b to the actual Ei,j.

We could also use the continuity-adjusted χ2 test, and the likelihood-ratio χ2 test.
Fisher’s exact test can be used for 2× 2 tables, while its generalization, Freeman-Halton
statistic, has no such limitation and can be used for general R×C tables.

For a pair of numerical attributes, we might investigate the correlation coefficient
between the two attributes. For associations between numerical and nominal attributes,
we could use ANOVA.

3.2. Dependence and Independence 30

There are several measures and tests of association intended specifically for pairs of or-
dinal attributes: Pearson’s correlation coefficient, Spearman’s rank correlation coefficient,
Kendall’s tau-b, Stuart’s tau-c, Somers’ D(C|R) and D(R|C), Mantel-Haenszel chi-square
statistic, Cochran-Armitage trend test (for a pair of a bi-valued and an ordinal attribute),
but we will focus solely on nominal attributes in this text. An interested reader may refer
to [SAS98].

Measures of Association

Sometimes a binary decision of whether a pair of attributes are dependent or independent
is insufficient. We may be interested in the measure of association, an example of which
is the contingency coefficient:

P =

√

QP

QP + min(|DA|, |DB |)
.

The contingency coefficient P is equal to 0 when there is no association between variables.
It is always less than 1, even when the variables are totally associated. It must be noted
that the value of P depends on the size of value codomains for attributes, which com-
plicates comparisons of associations between different attribute pairs. Cramer’s V solves
some of the problems of P for tables other than 2 × 2. Another modification of P is phi
coefficient.

Other measures of association are gamma (based on concordant and discordant pairs
of observations), asymmetric lambda λ(C|R) (based on improvement in predicting col-
umn variable given knowledge of the row variable), symmetric lambda (average of both
asymmetric λ(C|R) and λ(R|C)), uncertainty coefficient U(C|R) (proportion of entropy
in column variable explained by the row variable), and uncertainty coefficient U (average
of both uncertainty coefficients U(C|R) and U(R|C)).

Furthermore, we can apply tests and measures of agreement, such as the McNemar’s
test, which specialize on 2× 2 and multi-way 2× 2× . . . tables. Cochran-Mantel-Haenszel
statistic can be used for analyzing the relationship between a pair of attributes while
controlling for the third attribute, but it becomes unreliable when the associations between
the tested pair of attributes are of differing directions at different values of the controlled
attribute, e.g., θXY (1) < 1 and θXY (2) > 1. Breslow-Day statistic is intended for testing
homogeneous association in 2× 2× k tables, but cannot be generalized to arbitrary 3-way
tables, and does not work well with small samples.

3.2.1 Marginal and Conditional Association

We will now focus on situations with three attributes. We can convert three-way contin-
gency tables into ordinary two-way ones in by picking two bound attributes to represent
the two dimensions in table, while the remaining attribute is considered to be conditional.

A marginal table results from averaging or summing over the uninvolved free attribute,
we can imagine it as a projection onto the two bound attributes. On the other hand, a
conditional table, sometimes also called a partial table, is a two-attribute cross-section
where the condition attribute is kept at a constant value. In classification, the label will
be the condition attribute, unless noted otherwise.

3.2. Dependence and Independence 31

Table 3.1: Simpson’s paradox: looking at location alone, without controlling for race, will
give us results which are opposite to the actual.

marginal

location lived died pdeath

New York 4758005 8878 0.19%
Richmond 127396 286 0.22%

white non-white

loc. lived died pdeath

NY 4666809 8365 0.18%
Rich. 80764 131 0.16%

loc. lived died pdeath

NY 91196 513 0.56%
Rich. 46578 155 0.33%

A pair of attributes A,B is conditionally independent with respect to the third condi-
tion attribute C if A and B are (marginally) independent at all values of C.

Conditional and marginal association are not necessarily correlated. In fact, there are
several possibilities [And02]:

Marginal Conditional Comment

independence independence not interesting
independence dependence conditional dependence
dependence independence conditional independence
dependence dependence conditional dependence

Conditionally independent attributes are suitable for sub-problem decomposition and
latent variable analysis (variable clustering, factor analysis, latent class analysis). Es-
sentially, the attributes are correlated, but tell us nothing about the class. The only
conclusion we can make is that some groups of attributes have something in common.

Conditional dependence with marginal independence is interesting, as the XOR prob-
lem (C = A XOR B) is one such example. Myopic attribute selection would dispose of
the attributes A and B.

The most complex is the fourth scenario: simultaneous marginal and conditional as-
sociations. There are several well-known possibilities:

Simpson’s Paradox occurs when the marginal association is in the opposite direction
to conditional association. An example from [FF99] notes the following tuberculosis
example, with attributes P and R:

DP = {NewYork,Richmond},

DR = {white,non− white}.
(3.1)

The label identifies whether an inhabitant died of tuberculosis. We only consider
the probability for death in Table 3.1. From Fig. 3.2, we see that by considering
location alone, it would seem that New York health care is better. But if we also
control for the influence of skin color, Richmond health care is better.

Homogeneous Association describes the situation with attributes A, B, and C, where
the measure of association between any given pair of them is constant at all values

3.2. Dependence and Independence 32

0

0.1

0.2

0.3

0.4

0.5

0.6
D

ea
th

 R
at

e

Location

Simpson’s Paradox

New York Richmond

White
Non-White

Both

Figure 3.2: A graphical depiction of Simpson’s paradox. The lines’ gradient describes the
relationship between location and death rate.

of the remaining one. From this we can conclude that there is no 2-way interaction
between any pair of attributes, and that there is no 3-way interaction among the
triple.

3.2.2 Graphical Models

As in the previous section, we will base our discussion on [Agr90, And02]. Assume three
attributes A,B,C. We want to visually present their marginal associations. If there is
a marginal association between attributes A and B, but C is independent of both, we
describe this symbolically with (AB,C). A graphical depiction is based on assigning
a vertex to each attribute, and an edge to the possibility of each marginal association
between the two vertices. Let us now survey all possibilities on three attributes:

Complete Independence: There are no interactions, everything is independent of ev-
erything else.

(A,B,C)

A

B C

Joint Independence: Two variables are jointly independent of the third variable. In
(AB,C), A and B are jointly independent of C, but A and B are associated.

3.2. Dependence and Independence 33

(AB,C) (AC,B) (A,BC)

A

B C

A

B C

A

B C

Conditional Independence: Two variables are conditionally independent given the
third variable. In (AB,AC), B and C are conditionally independent given C, al-
though both A and B, and A and C are mutually associated.

(AB,AC) (AB,BC) (AC,BC)

A

B C

A

B C

A

B C

Homogeneous Association: Every pair of three variables is associated, but the associ-
ation does not vary with respect to the value of the remaining variable.

(AB,BC,AC)

A

B C

But what about a 3-way association model, (ABC)? In practice, the homogeneous
(AB,BC,AC) model is the one not illustrated, as a clique of n-nodes indicates a n-way
association. Are these graphical models satisfying with respect to the difference between
marginal and conditional association? For example, how do we represent an instance of
Simpson’s paradox with such a graph?

3.2.3 Bayesian Networks

In Bayesian networks [Pea88], the edges are directed. There are further requirements:
the networks may have no cycles, for example. For a given vertex A, we compute the
probability distribution of A’s values using the probabilities of parent vertices in PA =
{X : (X,A) ∈ E}, where E is the set of directed edges in the network. The Bayesian
network model corresponding to a näıve Bayesian classifier for attributes X1,X2,X3,X4

and label Y would be as follows:

(Y X1, Y X2, Y X3, Y X4)

Y

X1 X2 X3 X4

3.2. Dependence and Independence 34

In Bayesian networks, an edge between two vertices is a marginal association. If we
are learning Bayesian networks from data, we usually try to simplify the graphical model
by eliminating a direct edge between A and B if there exists another path between the
two vertices which explains the direct association away. The essence of learning here is
pursuit of independence.

If a vertex A has several parents PA, we will assume that these parents are conditionally
associated with A. Thus, the probability of each value of A is computed from a conditional
n-way contingency table, where n = |PA|, the condition being that an instance must
have that particular value of A to be included in a frequency computation. As n-way
contingency tables may be very sparse, classification trees and rules are used to model
frequencies and probabilities, for example: P (A = yes|X1 = no,X2 = no,X3 = ∗,X4 = ∗).
Latent variables, also referred to as hidden or unobserved, may be introduced to remove
complex cliques or near-cliques from the network:

X1

X2 X3

X4

L

X1

X2 X3

X4

before with latent variable L

3.2.4 Generalized Association

In the previous subsections, we only considered domains with two attributes and a label.
If there are three attributes and a label, the definition of marginal association does not
change much, as we are still projecting all instances to the matrix of two attributes.
Similarly, we might introduce a 3-way marginal association where only one attribute is
removed. But the notion of conditional association involves three attributes and two roles
for attributes: two attributes have been bound attributes, and one of them has been the
conditional attribute. We should wonder what role should the fourth attribute have.

Inspired by [Dem02], let us introduce four disjunct sets, the bound set of attributes
B, the conditional set of attributes C, the context set of attributes K, and the marginal
set of attributesM so that B ∪ C ∪ K ∪M = A∪{C}, where A is the set of attributes of
a given domain, and C is the label. In [Dem02], the free set of attributes is K ∪M and
C = {C}.

To investigate generalized association, we first disregard the attributes of the marginal
set by computing the marginal contingency table of the remaining attributes. Then, for
each value of

⊗

X∈C DX , we investigate the corresponding contingency table of bound and
context attributes.

Each of these (|B|+ |C|)-way contingency tables is converted into a 2-way contingency
table, so that every row corresponds to a tuple of bound attribute values, an element of
the Cartesian product of bound attribute codomains

⊗

X∈BDX , and every column to a
similarly defined tuple of context attribute values. A 3-way partition matrix [Zup97] is

3.3. Interactions in Machine Learning 35

obtained by a superimposing all these 2-way contingency tables, so that each field in the
matrix carries the probability or frequency distribution of conditional set attribute value
tuples.

When we investigate a particular generalized association, we are effectively studying
the conditional association of bound attributes with respect to to the conditional at-
tributes, while controlling for the context attributes. While the marginal set could always
be empty, it is usually practical to include attributes into the marginal set in order to
reduce the sparsity of the partition matrix.

The utility of generalized association was demonstrated in [Zup97] as means of loss-
lessly eliminating groups of bound attributes and replacing them with a single new at-
tribute, without affecting the classification performance of the classifier on the training
set. The HINT algorithm always assumed that C = {C} and M = ∅. Each new value of
the attribute corresponds to some a subset of equivalent elements of a Cartesian product
of the original attributes’ codomains, given a equivalence relation. An appropriate equiv-
alence relation is compatibility or indistinguishability of attribute values with respect to
all other attributes and the label. If there are several possible bound sets, HINT picks
the the set which yields an attribute with a minimal number of values, pursuing minimal
complexity. If the method was repeatedly and recursively applied on the domain, there
would eventually remain a single attribute whose codomain is the codomain of the label
itself. HINT was intended for deterministic domains, but similar algorithms have been
developed for noisy and non-deterministic problem domains.

Classification Association Marginal association is a special case of generalized asso-
ciation, where K = C = ∅. We define classification association for multi-way contingency
tables as a special case of the generalized association: K = ∅ and C = {C}.

3.3 Interactions in Machine Learning

One of the first multivariate data analysis methods was Automatic Interaction Detector
(AID) by Morgan and Sonquist [MS63]. AID was one of the first classification tree learning
systems, according to [MST92] predated only by [Hun62].

The notion of interactions has been observed several times in machine learning, but
with varying terminology. For example, J. R. Quinlan [Qui94] referred to the problem in
such a way:

We can think of a spectrum of classification tasks corresponding to this same
distinction. At one extreme are P-type tasks where all the input variables
are always relevant to the classification. Consider a n-dimensional description
space and a yes-no concept represented by a general hyperplane decision surface
in this space. To decide whether a particular point lies above or below the
hyperplane, we must know all its coordinates, not just some of them. At the
other extreme are the S-type tasks in which the relevance of a particular input
variable depends on the values of other input variables. In a concept such as
‘red and round, or yellow and hot’, the shape of the object is relevant only if
it is red and the temperature only if it is yellow.

He conjectured that classification trees are unsuitable for P-type tasks, and that connec-
tionist back-propagation requires inordinate amounts of time to learn S-type tasks. By

3.4. Interactions in Regression Analysis 36

our terminology, P-type tasks indicate domains with independent attributes, while S-type
tasks indicate domains with interacting attributes. However, in a single domain there may
simultaneously be P-type subtasks and S-type subtasks.

Interactions are not an issue with most instance-based learning methods, based on
computing proximities between instances. In fact, such methods are usually called upon
to resolve the problem of interactions, assuming that interactions do not introduce non-
Euclidean artifacts in the metric attribute space.

The notion of interactions in context of machine learning has been initially associ-
ated with hardness of learning in machine learning, e.g., though the example of learning
parity [Ses89]. Sensitivity of feature selection algorithms to interactions was solved with
algorithms such as Relief [KR92], recently surveyed and analyzed in [Šik02].

An important contribution to field was the work of Pérez and Rendell, who developed
a method, multidimensional relational projection [Pér97], for discovering and unfolding
complex n-way interactions in non-probabilistic classification problems. [PR96] is a com-
prehensive survey of attribute interactions. Pérez [Pér97] defined interactions as ‘the joint
effect of two or more factors on the dependent variable, independent of the separate effect
of either factor’, following [RH80].

More recently, Freitas reviewed the role of interactions in data mining in [Fre01],
pointed out the relevance of interactions to rule interestingness, their relation with my-
opia of greediness, and constructive induction. In [FF99], they scanned for examples of
Simpson’s paradox in the UCI repository domains.

Perhaps the most important event in pattern recognition with regards to interactions
was the book by Minsky and Papert [MP69], where they proved that the perceptron
cannot learn linearly inseparable problems, such as the XOR function [RR96]. XOR is an
example of a domain with interactions. The hidden layer in neural networks allows learning
of three-way interactions, while n − 1 hidden layers are required for n-way interactions.
Here we refer to ‘ordinary’ linear neurons: other types of neurons may not be as sensitive
to interactions.

3.4 Interactions in Regression Analysis

According to [Bla69], interactions can be defined as: ‘A first-order interaction of two
independent variables X1 and X2 on a dependent variable Y occurs when the relation
between either of the X’s and Y (as measured by the linear regression slope) is not constant
for all values of the other independent variable.’ Other expressions for interactions are
moderator effects and moderating effects, but mediation refers to something different. In
this section, we summarize [JTW90]. In statistical study of an interacting pair of variables,
the moderator variable is often the weaker predictor of the two.

The significance of the interaction effect with dichotomous variables is estimated by
the F test. The strength of the effect can be measured in a variety of ways, one of
which is the η2 index, defined as the proportion of variance in the dependent variable that
is attributable to the interaction effect in the sample data. However, η2 is a positively
biased estimator of the effect size. Main effects are the effects of individual variables, while
interaction effects are the contributions of variable interactions.

When working with many dichotomous variables, Bonferroni procedure, adjusted Bon-
ferroni procedure, or Scheffe-like methods are recommended to control for experiment-wise

3.4. Interactions in Regression Analysis 37

errors and thus prevent discovering accidental interactions.
With continuous variables X1,X2 affecting a dependent variable Y , three methods are

possible:
� dichotomization of both X1 and X2;

� dichotomization of the moderator variable (X2), while the slope of X1 and Y is
studied independently for each of the values of the moderator variable; this way we
can study also the nature of the interaction;

� the use of multiple regression, introducing multiplicative interaction terms (X1X2).
Here, an interaction is deemed significant if the difference between the R2 values
(squared sample multiple correlation coefficients) for the expanded model with (R2

2)
and the original model (R2

1) without the interaction term is itself significant (just
like higher-order terms of power polynomials in multiple regression) by testing the
significance of the following statistic:

F =
(R2

2 −R2
1)/(k2 − k1)

(1−R2
2)/(N − k2 − 1)

,

where N is the total sample size, and k denotes the number of predictors in each
model. The resulting F is distributed with k2−k1 and N−k2−1 degrees of freedom.
It must be noted that this method induces multicollinearity in the model, because
the variables are correlated with the interaction terms, introducing inflated standard
errors for the regression coefficients. One recommendation is to center X1 and X2

prior to introducing the interaction term.

Interactions may be ordinal or disordinal. With disordinal or crossover interaction
effects, the regression lines for different groups may intersect; for ordinal interactions this
is not the case. With disordinal interactions, there may be a region of nonsignificance
which is a range of values of X1 where the value of the moderator variable X2 has no
effect.

3.4.1 Interactions and Correlations

Sometimes we want to verify if correlation between X and Y is constant at all levels of
the moderator variable. The procedure for evaluating this null hypothesis when there is
a single moderator variable is as follows:

We transform each correlation to Fisher’s Z:

Z =
1

2
(ln(1 + r)− ln(1− r)) ,

where r is the correlation between X and Y in a given group. The various values of Z are
combined by means of the following formula:

Q =
∑

j

(nj − 3)(Zj − Z ′)2,

where nj is the number of observations for group j, and

Z =
∑

j

Zj
nj − 3

∑

j nj − 3
.

Q is distributed approximately as a χ2 with k − 1 degrees of freedom.

3.5. Ceteris Paribus 38

3.4.2 Problems with Interaction Effects

When the interaction effect or a moderated relationship is the result of an irrelevant factor,
we term this a false moderator, or a false interaction effect. Some possible causes are group
differences in:

� range restrictions (i.e., less variability in X or in Y) due to arbitrary sampling
decisions;

� reliability of the predictor variables;

� criterion contamination;

� predictor and criterion variable metric: it may make sense to transform the criterion
variable to eliminate the false ordinal interaction effects.

We might not detect interactions because of small sample sizes. The lower the R values
of independent variables, the larger the sample sizes need to be in order to obtain interac-
tion effects with sufficient power. Power refers to the probability of correctly rejecting the
null hypothesis. Without centering, problems with multicollinearity are likelier. When
the interaction is not bilinear (in the sense that the slope of X1 and Y changes as a linear
function of the moderator variable X2), the traditional cross product term is not appropri-
ate for evaluating the interaction effect, and the interaction might go undetected. In fact,
there are infinitely many functional forms of moderated relationships between continuous
variables.

3.5 Ceteris Paribus

One way of explaining the concept of interactions is via a well-known concept in economics:
ceteris paribus. The expression is normally used in the following sense, as explained by
[Joh00]:

Ceteris Paribus: Latin expression for ‘other things being equal.’ The term is
used in economic analysis when the analyst wants to focus on explaining the
effect of changes in one (independent) variable on changes in another (depen-
dent) variable without having to worry about the possible offsetting effects of
still other independent variables on the dependent variable under examination.
For example, ‘an increase in the price of beef will result, ceteris paribus, in less
beef being sold to consumers.’ [Putting aside the possibility that the prices of
chicken, pork, fish and lamb simultaneously increased by even larger percent-
ages, or that consumer incomes have also jumped sharply, or that CBS News
has just announced that beef prevents AIDS, etc. — an increase in the price
of beef will result in less beef being sold to consumers.]

If we state an influence of X on Y under the ceteris paribus assumption, we explain
Y from X while all other variables are kept constant. If X and Y interact with some Z,
we would not be able to plot a graph of X versus Y without controlling for Z. Therefore,
we may only use the ceteris paribus assumption when there are no interactions of X and
Y with other variables.

3.6. Game Theory 39

Most useful statements in economics are usually of qualitative nature (‘the lower the
price, the greater the quantity of goods sold’), so we can relax the interpretation, formu-
lating it rather as: there is no attribute Z which would reverse the qualitative association
between X and Y . There may be interactions, as long as they do not invalidate the
qualitative statements.

3.6 Game Theory

An interesting question is that of estimating the value of a game to a given player. A
colorful application of interaction indices is in political analysis of coalition voting ‘games’,
where players are voters, e.g., political parties in a parliament, or a court jury. In such
a case, value is the ability to affect the outcome of the vote, and power indices are its
measures [DS79, MM00]. Two well-known examples of power indices are Shapley-Shubik
and Benzhaf-Coleman values, the former arising from game theory, and the latter emerging
from legislative practice. Power index is an estimate of the actual voting power of a voter
in a given coalition: not all voters have the same power, even though they may have
the same weight. For that reason, votes in courts are now sometimes weighted using the
knowledge of power indices.

However, players may interact: cooperate or compete. This may twist the power
indices, which place different assumptions about the coalitions. For example, Benzhaf-
Coleman index assumes that all coalitions are equiprobable, while for Shapley-Shubik
index it is assumed that the decision of each voter is uniformly random and independent
of other voters. As a possible solution, according to [Mar99] first mentioned in [Owe72],
we may instead calculate the value for a coalition of a pair of players. Interaction index

is the measure of coalition value. Interaction index was axiomatized for arbitrary groups
of k players in [GR99]. Interaction index is defined with respect to some value estimate,
e.g., Benzhaf or Shapley value, which carries the assumptions about coalitions.

For the simple case of a 2-way interaction index, the interaction index for players i
and j, some coalition S, and a value function v is

v(S ∪ {i, j}) − v(S ∪ {i})− v(S ∪ {j}) + v(S).

Interaction index may be positive or negative. If it is positive, the players should cooperate
in a positive interaction, else they should compete in a negative interaction. If interaction
index is zero, the players can act independently. However, if we are not given a coalition, it
is often worth studying the interaction index over multiple possible coalitions, and [GR99]
suggests averaging over all possible coalitions.

In economics, concretizations of the term player are diverse, but the value is almost
always utility or a monetary quantity. The players may be companies, and we study
whether these companies are competitors or complementors. They are competitors when
the interaction index is negative, and they are complementors when the interaction index
is positive. Players may also be goods from the viewpoint of a consumer. A matching
skirt and a blouse are complementary, while two pairs of similar boots are substitutable.

Recently, these concepts have also been applied to studying interactions between at-
tributes in the rough set approach to data analysis [GD02], simply by placing the classifier
evaluation function in the place of value of a game, and an attribute in the place of a

3.6. Game Theory 40

player. Furthermore, there are interesting applications of interaction indices in fuzzy vote
aggregation [Mar99].

CHAPTER 4

Interactions

A theory is something nobody believes, except the person who made it.

An experiment is something everybody believes, except the person who made

it.

In this chapter, we provide our own definition of interactions. Although we have used
the concept of interactions and have listed many possible definitions, we have neglected
to decide upon the definition we will pursue ourselves. Our definition will be built upon
the concepts from Chaps. 2 and 3, applied to the näıve Bayesian classifier (NBC) as the
fundamental learning algorithm. We will first investigate the deficiencies of NBC, and
focus on interactions as one cause of the deficiencies. In the remainder of our work, we
will address interactions, how to find them and how to deal with them.

4.1 Näıve Bayesian Classifier

We have mentioned Bayes rule earlier in Sect. 2.5.1. A näıve Bayesian classifier (NBC)
is its concrete form as applied to classification. Our derivation will follow [Kon97]:

We start with the Bayes rule:

P (ck|i) = P (ck)
P (i|ck)

P (i)
,

and assume independence of attributes A1, . . . , An ∈ A, given class ck, meaning that:

P (A1(i), A2(i), . . . , An(i)|ck) =
n
∏

i=1

P (Ai(i)|ck). (4.1)

We then obtain:

P (ck|i) =
P (ck)

P (i)

n
∏

i=1

P (Ai(i)|ck).

4.1. Näıve Bayesian Classifier 42

After another application of Bayes rule:

P (Ai(i)|ck) = P (Ai(i))
P (ck|Ai(i))

P (ck)
,

we obtain

P (ck|i) = P (ck)

∏n
i=1 P (Ai(i))

P (i)

n
∏

i=1

P (ck|Ai(i))

P (ck)
.

Since the factor (
∏n

i=1 P (Ai(i)))/P (i) is independent of the class, we leave it out and
obtain the final formula:

P (ck|i) = P (ck)
n
∏

i=1

P (ck|Ai(i))

P (ck)
.

The objective of a learning algorithm is to approximate the probabilities on the right-
hand side of the equation. The knowledge of the NBC is a table of approximations of a
priori class probabilities P (ck), k = 1, . . . , |DC |, and a table of conditional probabilities of
class ck given a value (ai)j of attribute ai, i = 1, . . . , |A|, j = 1, . . . , |DAi

|: P (ck|(ai)j).
The NBC formula yields a factor, proportional to the probability that the instance i

is of class ck. Instance i is described with the values of attributes, A(i), where A is one of
the attributes A ∈ A:

Pr{dNB(i) = ck} ∝ fNB(i, ck) = P (ck)
∏

A∈A

P (A(i)|ck). (4.2)

The zero-order label probability distribution obtained by joined votes is normalized,
to guarantee that the probabilities for all the classes sum up to 1 for a given instance i:

Pr{dNB(i) = ck} =
fNB(i, ck)

∑|DC |
l=1 fNB(i, cl)

. (4.3)

4.1.1 Näıve Linear Regression

Multiplication of zero-order probability distributions in classification could be roughly
compared to summation in a particularly simple form of linear regression, which we will
call näıve linear regression (NLR). Modern multiple regression procedures solve some of
the deficiencies of NLR by using least-squares fitting instead of averaging. Assumptions
are similar: both NLR and NBC are linear and assume attribute independence. The
analogy between NLR and NBC can be seen as a survey of deficiencies in NBC.

In NBC, we compute conditional probabilities of classes given an attribute value, and
the classes’ prior probabilities. Using these probabilities, we predict the label probability
distribution. It is possible to use several ad hoc techniques for artificially ‘smoothing’
or ‘moderating’ the probability distribution, often with good results, e.g. in the m-error
estimation [Ces90].

In NLR, we compute the effect f of each attribute xi, i = 1, 2, . . . , k on the label value
y on n instances in the familiar way with univariate least-squares fitting:

f(xi) =
σxiy

σ2
i

(xi − x̄i),

4.1. Näıve Bayesian Classifier 43

σ2
i =

1

n− 1

n
∑

j=1

(xi,j − x̄i)
2,

σxiy =
1

n− 1

n
∑

j=1

(xi,j − x̄i)(yj − ȳ).

σ2
i is the sample variance of attribute xi, and σxiy is the sample covariance. We arrive

to y from xi by y = f(xi) + ȳ. Finally, we näıvely average all the effects, and obtain the
following multivariate linear regression model:

f(x) = ȳ +
1

k

k
∑

i=1

σxiy

σ2
i

(xi − x̄i).

When attributes are correlated the independence assumption is violated. One solution
to NLR is multivariate least-squares fitting, which is performed on all attributes at once,
and the resulting ‘ordinary’ LS regression is the most frequently used procedure. However,
correlations still influence the significance tests (which assume independence).

Neither NLR nor NBC are resistant to uninformative attributes. Techniques for NBC
like feature selection have an analogous set of techniques in regression called best-subset
regression. For training NBC, a wrapper approach is based on adding attributes to the
model one after another, or removing one after another, until the quality of the model is
maximized. In regression, this is called the step-wise method.

Both, NLR and NBC tolerate errors in attributes, but assume the label information
is perfect. In regression, orthogonal least squares (OLS) fitting assumes a measurement
error also in the label values, fitting correspondingly. Another group of methods, based
on robust statistics, accept that certain instances might be outliers and not subject to
the model, and prevent them from influencing it, thus achieve a better fit on the model-
conforming data.

Furthermore, missing attribute values are problematic in many ways. This is usually
solved by leaving out the vote of the missing attribute, or by using specific imputation
methods. Although it is usually assumed that values are missing at random, it is likelier
that they do not miss at random. It can be more profitable to represent the missing value
with a special value of the attribute.

4.1.2 NBC as a Discriminative Learner

We will now show how the näıve Bayesian classifier (NBC) can be understood as a lin-
ear discriminator. Its optimality is subject to linear separability as has been observed
already in [DH73]. We will discuss the form of NBC which only applies for ordinal at-
tributes, which is the form normally used in the machine learning community. Continuous
attributes should be discretized prior to applying NBC. Sometimes, e.g., in [RH97], NBC
is often formulated differently, assuming a p-dimensional real observation vector and a
model (e.g., Gaussian) for class densities. In this section, we will only be concerned with
non-probabilistic discriminative learning.

In the two-class discrimination problem DC = {c1, c2}, the objective is to correctly
determine the most likely class, rather than to estimate the probability distribution. Thus,

4.2. Improving NBC 44

instance i is predicted to be of class c1 if:

P (c1)
∏

A∈A

P (A(i)|c1) > P (c2)
∏

A∈A

P (A(i)|c2).

We can take the logarithm of both sides in the inequality. Because of monotonicity of
logarithm, this is without loss. We then rearrange the terms:

log
P (c1)

P (c2)
+
∑

A∈A

log
P (A(i)|c1)

P (A(i)|c2)
> 0.

NBC allows each attribute value to separately affect the class distribution. Therefore,
not each attribute but each attribute value has its own dimension. We illustrate this with
dummy coding. If an instance has a particular attribute value, the dummy value for that
dimension becomes 1, else 0. So each n-valued attribute A, n = |DA| is replaced with n
dummy attributes. We will treat them as Boolean factors. Thus, the class boundary is a
hyperplane in as many dimensions as there are attribute-value pairs. An attribute A has
nA values: a1, . . . , anA

.

log
P (c1)

P (c2)
+
∑

A∈A

nA
∑

l=1

(A(i) = al) log
P (al|c1)

P (al|c2)
> 0,

where the nC
∑

A∈A nA probabilities P (vA,l|ck), l = 1, . . . , nA have been calculated on the
training set.

With such a representation of NBC, it is quite easy to see that NBC cannot be always
zero-one loss optimal even when the domain is linearly separable in attribute-value space.
Conjunctions and disjunctions are linearly separable in attribute-value space, and NBC
correctly captures them according to [DP97]. But most Boolean m-of-n concepts cannot
be learned with NBC, although they are linearly separable [ZLZ00]. We need not stress
that classification accuracy is less stringent than accuracy of label probability distributions
in probabilistic classifiers that we pursue.

4.2 Improving NBC

In previous sections we used the terminology normally used in the context of the näıve
Bayesian classifier. We will now show how NBC fits in the formalisms of Chap. 2. NBC
is based on

∑

A∈A |DA| zero-order zero-descriptor models, one for each attribute value.
However, for a particular instance (assuming no probabilistic attribute values), only |A|
models will be used, because we apply segmentation for every attribute along its val-
ues. The voting method is a simple multiplication of probability functions followed by
normalization in order to fulfill the requirement that all probabilities should sum up to 1.

The NBC learning algorithm returns a classifier which, for a problem definition P =
(A, C),A = {A1, A2, A3} and an instance world I, a subset of which we are given as
T ⊆ I, takes the following form:

LNB(({A1, A2, A3}, C),T) = IBC(A1, A2, A3) = V

E[T , C, S(A1)]
E[T , C, S(A2)]
E[T , C, S(A3)]

 .

4.2. Improving NBC 45

Here, E is the estimation function, V is the voting function, and S is the segmentation
function.

There are many possibilities for improving the näıve Bayesian classifier. We now dis-
cuss replacing each of the constituent elements of the NBC, voting, projection, estimation,
and finally, segmentation.

Voting

There has been little discussion about validity of (4.2), but normalization in (4.3) has
been subject to several proposals. Feature selection can be seen as a simplistic optimizing
voting algorithm, which includes and excludes attributes in order to maximize value of
the evaluation function.

Feature selection is an obvious example of weighting, where an attribute either has
weight of 1, or weight of 0. The voting function Vfs performs optimal feature selection,
which precedes voting according to (4.3). Thus, if Vfs is given a set of probability functions
M, it will select a subset M′ ⊂ M, so that the value of the evaluation function is
maximized.

If we abandon the rigorous probability distribution estimation methods, we could
assign weights to individual attributes [WP98], or even to individual attribute values
[FDH01]. For example, each of a pair of identical attributes would only get half the
weight of other attributes. If the weights are always greater or equal to zero, the simple
normalization in (4.3) is not affected.

Estimation-Voting

We can view the function fNB in (4.2) as a projection, the result of which is a continuous
descriptor. This way we replace voting with estimation. We may consequently estimate
the label probability distribution with respect to the descriptor, somewhat like:

E

T , C, fNB

E[T , C, S(A1)]
E[T , C, S(A2)]
E[T , C, S(A3)]

 .

One approach to estimation is binning, suggested in [ZE01], where we segment the
values of fNB and estimate the class distribution for each segment: E(T , C, S(fNB(·))).
Alternatively, we may assume that the label is logistically distributed with respect to
fNB, and obtain the parameters of the logistic distribution, with Eln(T , C, fNB(·)). An
approach similar to that is described in [Pla99]. For both approaches, we may split the
training set into the validation and remainder set, as described in Sect. 2.6.2. Then we use
the remainder set to train fNB, while the validation set is used to obtain the parameters
of the logistic distribution, or the bin frequency counts.

Estimation

If our evaluation function is classification accuracy, which does not appreciate probabilis-
tic classifiers, we may retain the closed-form voting function, but replace the estimation
algorithm E with one that explicitly maximizes the classification accuracy [RH97]. The
voting approach in [WP98] is also based on optimizing the weights in order to maximize

4.2. Improving NBC 46

0-1 loss. Similar approaches work for other algorithms too: classification accuracy of
0-1 loss-minimizing (rather than conditional likelihood-maximizing) logistic regression is
better than classification accuracy of NBC when there is plenty of training data [NJ01].

Projection

NBC can be viewed as a simple closed-form projection function, where the descriptor
that it provides is computed with associated closed-form functions. The descriptor com-
puted from probability estimates, obliviously to the evaluation function, may be rather
suboptimal, as discussed in Sect. 4.1.1.

Alternatively, we could introduce a parameter vector w ∈ R
�

A∈A |A|, where its individ-
ual dimensions are w0,w1,1, . . . ,w|A|,n|A|

. Each of them corresponds to an attribute-value
pair. The parameters appear in the following generalized linear function:

fGL(i, c1) > fGL(i, c2)⇔ w0 +

|A|
∑

i=1

ni
∑

l=1

wi,l(vi,i = (aj)l) > 0, (4.4)

(vi,i = (aj)l) =

{

0 if vi,i 6= (aj)l

1 if vi,i = (aj)l.

We now have an arbitrary linear projection function. In this form, the model closely
resembles the one of a perceptron, the one-layer neural network. This analogy is discussed
with more detail in [Kon90, Hol97]. The parameter w can be fitted with a variety of
methods. We may apply special purpose Bayesian neural network training algorithms
[Kon90]. We may even dispose of any connection with probability and employ a general
purpose Rosenblatt’s perceptron learning algorithm, or margin-maximization algorithms
based on quadratic programming [Vap99].

The change of the description did not affect comprehensibility or complexity of the
classifier. The classifier can still be easily visualized with a nomogram or a similarly simple
alternative. The only difference lies in flexibility of choosing algorithms for parameter
fitting.

Unfortunately, we have abandoned the probabilistic nature of the original näıve Bayesian
classifier. The continuous value fGL in (4.4) can be seen as a projection of an instance into
a continuous descriptor, and we may then apply estimation using binning or parametric
estimation, as in Sect. 4.2, to obtain label probability distribution.

Segmentation

A segmentation function S(A) maps an attribute A to a parameter function sA : I → DA,
sA(i) = A(i). It maps an instance to a discrete set of values. In NBC the V function is
a simple voting function that joins multiple models by multiplying the probability func-
tions they submit. Function E(T , C, sA) estimates a zero-order model with one discrete
descriptor: M1

0 (C(i)|sA(i)), for all i ∈ T . We thus have |DA| zero-order M0
0 models, and

the model is chosen according to the value of sA(i). The discrete descriptor has as many
values as the there are values in the range of the parameter function sA.

Some concepts, e.g., those discussed in [ZLZ00], cannot be learned with NBC. They
cannot be learned even if we replace the voting function and even if adopt the generalized

4.3. Interactions Defined 47

linear model. The problem lies in the inability of the segmentation algorithm to distinguish
different groups of instances which have discernible class distributions. The only way lies
in increasing the level of segmentation. Since individual attributes are already maximally
segmented, the only way of increasing the level of segmentation can be achieved by inter-
attribute segmentation. The new segments are now defined by conjunction of attribute
values of two or more attributes. Learning by segmentation is exemplified by decision
tree algorithms, L(P,T) = E(T , C, S(A1, A2, A3)). If there are only three attributes, the
voting function has been trivialized.

Inter-attribute segmentation is achieved by joining attributes into new attributes, as
first suggested in [Kon91], and later in [Paz96]. We will now investigate the situations
where attribute joining is required in detail, focusing solely on NBC, because there are
too many possible generalizations.

The function S may try to optimize the profitability of the classifier by attribute

reduction: creating fewer segments as is possibly could: this is performed using heuristics,
either traditionally top-down by stopping the process of segmentation at some point,
or by bottom-up merging of segments for as long as it pays, which can be observed in
constructive induction [Dem02]. From the viewpoint of constructive induction, we can
interpret the value of the segmentation function S(A1, A2, A3) applied on three attributes
as a new constructed attribute which joins A1, A2, and A3. Its value is the value of the
segmentation function.

4.3 Interactions Defined

Earlier, we have referred to interactions as situations when attributes should not be con-
sidered independently. In the context of the näıve Bayesian classifier, the segmentation
functions provide us with the sole means of joint treatment of multiple attributes. An

interaction is a feature of the problem domain which cannot be learned by means other

than joint segmentation of two or more attributes. An interaction is resolved by joint
segmentation of two or more attributes.

We will name interactions between two attributes and the label as three-way interac-
tions, and interactions between n− 1 attributes and the label as n-way interactions. We
note that an association is a 2-way interaction, but we will not refer to is as an interac-
tion. XOR is an example of a 3-way interaction, and parity on n bits is often used as an
example of a (n+1)-way interaction. In the context of classification, we are not interested
in interactions that do not involve the label.

An important requirement for a general k-way interaction, k > 2, is collapsibility : by
the above definition, it must be impossible for an interaction to be collapsed into any
combination of interactions of lower order. Three attributes may be truly be dependent,
but if this dependence occurs merely because only two attributes are interacting, we
cannot say that there is a 3-way interaction! If it is true that P (A,B) 6= P (A)P (B)
it is also true that P (A,B,C,D) 6= P (A)P (B)P (C)P (D), but in spite of dependence
among {A,B,C,D}, an interaction among them is not necessary, because we only have
evidence for a 2-way interaction between A and B. There might be another, but separate
interaction between C and D. Therefore, if we can learn some feature of the problem
domain with several interactions, neither of which is k-way or more, there is no k-way
interaction in the domain. This problem is still simple enough with 3-way interactions,

4.3. Interactions Defined 48

but becomes tedious with interactions of higher order.

Our dimensionality-averse definition tries to be aligned with traditional definitions of
interactions, e.g., in loglinear models. In many respects, it could be preferable to minimize
simplicity of the knowledge, rather than to minimize dimensionality, as we do.

In a more general context, we may define interactions with respect to limitations of the
projection functions, instead of basing them on segmentation functions, as we did. Even if
the concept is simple, a formalization is tedious, and will be left for some other occasion.
In a limited context, if we adopt a generalized linear model as a projection function, and
a discriminative classification problem, interactions involve linearly inseparable domains.
The concept of collapsibility helps us identify the minimal set of attributes and dimensions
needed to resolve inseparability.

4.3.1 Interaction-Resistant Bayesian Classifier

We will now introduce an interaction-resistant näıve Bayesian classifier learner (IBC).
Instead of a flat set of attributes A, IBC uses S, a set of subsets of A, for example,
S = {{A1, A2}, {A3}}. Each element Si ∈ S, indicates an interaction, and each inter-
action is resolved independently by applying a segmentation function non-myopically on
all attributes A ∈ Si. In our example, the segmentation function attempts to resolve
the interaction between A1 and A2. A briefer expression is IBC(A1A2, A3), following
Sect. 3.2.2. After the segmentation functions do their job, we estimate and vote, as usual.

A careful reader surely wonders if there is any difference between existence of inter-
actions, and violations of the assumption of independence in NBC. As mentioned earlier,
for NBC, attributes are assumed to be conditionally independent given the class. There is
no difference, but the concept of interactions requires the violation of independence to be
clearly defined. Furthermore, interactions may not be collapsible into simpler interactions,
which requires us to only seek islands of impenetrable dependence.

We will distinguish several types of interactions. The first group of interactions are
true interactions: pairing up truly interacting attributes yields us more information than
we would expect considering each attribute separately. Truly interacting attributes are
synergistic. The second group are false interactions, where several attributes provide us
the same information. Conditional interactions indicate complex situations where the
nature and existence of another interaction depends on the value of some attribute. The
types are discussed in more detail in Sect. 4.4.

Notes on the Definition

In categorical data analysis [Jac01], a 2-way interaction indicates an interaction between
two variables with respect to population frequency counts. Often, the independent variable
is not mentioned, but several models are built, one for each value of the independent
variable. This indicates that the third variable is dependent and controlled for among the
models! However, a dependence between 3 variables is a 3-way interaction, by definitions
from 3.2.

We will understand the problem if we notice that in multiple regression [JTW90] a
2-way interaction indicates an interaction between two dependent variables with respect

to the dependent variable. In regression, as well as in classification, we are not interested
in any interactions that do not involve the label. But the order of the interactions is

4.3. Interactions Defined 49

tied with the notion of the number of variables, and by this logic, what is called a 2-way
interaction with respect to the dependent variable in regression should instead be called
simply a 3-way interaction.

Since the terminology of interactions has not been established in machine learning, we
have chosen to deviate from the terminology of interactions in regression. In classification
the label is the third attribute, and we include it into consideration. A 2-way interaction
in classification is obvious and trivial: it merely indicates that the attribute interacts with
the label. In the context of generative learning, it is also interesting to study interactions,
but we only have equal attributes, without distinguishing any of them with the role of
the label. Our egalitarian 3-way interactions without respect to anything correspond to
2-way interactions with respect to the label.

4.3.2 A Pragmatic Interaction Test

How do we check whether a certain interaction exists in the domain, given a set of data?
We know how to assume an interaction, and what this assumption means, but we now
want to check for it. From the pragmatic perspective, effective decision-making is the
primary purpose of knowledge and learning. We are sometimes better off disregarding
some interactions if the training set T is too small, even if they exist in the instance world
I, from which T is sampled.

If we test the classifier on training data, the classifier which resolves an interaction will
normally perform better than one that does not. But if the classifier is tested on unseen
data, we need sufficient training data to be able to take advantage of the interaction.
Otherwise, the classifier which assumes independence will perform better, even if there is
an interaction. Namely, the segmentation function fragments data.

Philosophically, any property of the data is only worth considering if it helps our cause,
and gives us a tangible benefit. This is the ultimate test for interactions: interactions are
significant if they provide a benefit. This can be contrasted to performing statistical tests
of whether interaction effects have been significant or not at some p-value.

A 3-way interaction between attributes A1 and A2 is significant given the NBC learning
algorithm, a training set T and a test set E of instances, when:

qE

V

E[T , C, S(A1)]
E[T , C, S(A2)]
E[T , C, S(A3)]

 < qE

(

V

(

E[T , C, S(A1, A2)]
E[T , C, S(A3)]

))

,

as measured by some evaluation function q. We will assume that this should be valid
regardless of the choice of the voting function V , even if we cannot practically check the
model with all these possibilities.

It is more difficult to test the significance of a k-way, k > 3, interaction between
attributes and the class A′ ⊆ A, where |A′ ∪ {C}| = k. It is only significant when the
quality cannot be matched with any classifier which uses m-way interactions, where m < k.
If we are learning a classifier IBC(S), where Sk ∈ S, |Sk ∪ {C}| = k, Ŝ = S \ {Sk}, there
is a significant k-way interaction between attributes in Sk and the label iff:

q(IBC(S)) > max
S′⊆(P(Sk)\{Sk})

q(IBC(Ŝ ∪ S ′)), (4.5)

where P(Sk) is the power set of Sk, containing all its subsets. Sometimes a different
expression for power set is used: P(S) = 2S .

4.4. Types of Interactions 50

The definition in (4.5) is complex because it tries to account for the fact that subtract-
ing models from the voting function may sometimes improve results. Instead of assuming
an optimizing voting function, we admit that the interaction among all attributes of A′ is
significant only when no classifier which performs segmentation only on any proper cover
of any subset of A′ matches or exceeds the performance of a classifier which resolves the
interaction by using the segmentation function on the whole A′ : S(A′).

If we assume a feature-selecting voting function Vfs, and an IBCfs based on it, a k)-way
interaction between attributes in Sk and the class is significant iff:

q(IBCfs(S)) > q(IBCfs(S \ {Sk})).

If the reader finds the pragmatic test repugnant, we will evade a proper justification
by depending on a vast amount material in statistics, where interactions are searched
for primarily by model testing. Very few attributes in real data are truly conditionally
independent, and tests of significance of attribute dependence are not much better than
classifier evaluation functions. However, the reader is referred to Sect. 5.4 to see a heuristic
assessment of an interaction between three attributes, based on entropy.

4.4 Types of Interactions

4.4.1 True Interactions

Most references to interactions in machine learning have dealt with the type of interaction
exemplified by the exclusive OR (XOR) function c := a 6= b :

A B C

0 0 0
0 1 1
1 0 1
1 1 0

Observe that the values of attributes A and B are completely independent, because we
assumed that they are sampled randomly and independently: P (a, b) = P (a)P (b). How-
ever, they are not conditionally independent: P (a, b|c) 6= P (a|c)P (b|c). XOR is a standard
problem for feature selection algorithms because IBC(AB) yields a perfect classifier, even
if q(IBC(A)) = q(IBC(B)) = q(IBC()). Because of this property, we refer to XOR as an
example of a perfectly true interaction: the attributes are only useful after the interaction
is resolved.

A generalization of XOR is the n-XOR, or the parity problem, where the binary class
is a sum of n binary attributes modulo 2. There exists no k-way interaction on these
attributes, k < n. Note that in 3-XOR problem, d := (a + b + c) (mod 2), a and b are
conditionally independent given d: P (ab|d) = P (a|d)P (b|d), but this still violates the
assumption of the näıve Bayesian classifier! Remember that the assumption in (4.1) is
P (a, b, c|d) = P (a|d)P (b|d)P (c|d).

For that reason, perfectly true interactions are a hard problem for most forward-
searching algorithms that probe for interactions. The issue is partly remedied with
backward-searching attribute-subtracting algorithms which start with, e.g., IBC(WXY Z),

4.4. Types of Interactions 51

and work backwards from there, removing independent attributes. An example of a
backward-searching algorithm is MRP (Multidimensional Relational Projection), described
in [Pér97].

Most true interactions are not as spectacular as the XOR. Both attributes yield some
benefit, but their full predictive potential cannot be unleashed without resolving the in-
teraction.

A B P (c0) P (c1)

0 0 0 1
0 1 1/5 4/5
1 0 1/2 1/2
1 1 1 0

We note that P (c0|a0) = 1
10 , P (c0|b0) = 1/4, however P (c0|a0, b0) = 0, while P (c0|a0)

P (c0|b0) = 1/40. We normalize our vote, knowing that P (c1|a0)P (c1|b0) = 27/40, so the
final outcome is Pr{IBC(A,B)([a0, b0]) = c0} = 1/28.

We conclude that there is an interaction between A and B, because we derive better
a prediction by resolving the interaction. Most interactions in true data are such.

We will now examine the example of OR, where c := a ∨ b:

A B C

0 0 0
0 1 1
1 0 1
1 1 1

We note that P (c0|a0) = 1/2, P (c0|b0) = 1/2, however P (c0|a0, b0) = 1, while P (c0|a0)
P (c0|b0) = 1/4! Our voting is normalizing, and since P (c1|a0)P (c1|b0) = 1/4, the final
outcome is Pr{IBC(A,B)([a0, b0]) = c0} = 1/2. We conclude that there is an interaction
between A and B, even if the OR domain is linearly separable: this is because we are
working with probabilistic classifiers and not merely with discriminative classifiers.

4.4.2 False Interactions

Situations where attributes do not have any synergistic effect and provide us with over-
lapping information will be referred to as false interactions. Just as true interactions, false
interactions can too be found to be significant, and resolving them improves the classifier
quality. The purpose of resolution in such a case is to correctly weigh the duplicated
information, and such interactions are too found to be significant. However, although
resolution may involve joint segmentation, at least some false interactions can be resolved
without joint segmentation, but, for example, by an adaptive voting function. Therefore
we want to distinguish them from synergistic true interactions, and will refer to them as
false interactions.

Let us now consider a three-attribute domain, where attribute A is duplicated in A1

and A2. These two attributes are dependent, while A and B are conditionally independent.

4.4. Types of Interactions 52

A1 A2 B Pr{IBC(A1, A2, B) = c0} P (c0) P (c1)

0 0 0 1/13 1/7 6/7
0 0 1 3/7 3/5 2/5
1 1 0 4/7 2/5 3/5
1 1 1 12/13 6/7 1/7

The domain was engineered so that NBC would yield perfect results if either A1 or A2

was dropped from the attribute set. However, the learning algorithm might not account
for that possibility. An ideal interaction detector operating on an infinite sample from the
above domain would detect interaction A1A2. After resolving it, the classifier becomes
perfect.

Our example is the most extreme example of dependent attributes. Similar effects may
appear whenever there is a certain degree of dependency among attributes. This type
of interactions may sometimes disappear if we use a feature-selecting voting function Vfs.
However, false interactions are not covered by several definitions of interactions mentioned
earlier. Perhaps we should call a falsely interacting pair of attributes instead a pair of
attributes that have interacted with a latent attribute.

Mutually Exclusive Events: Perfectly False Interactions

We modify the above example, but A1 and A2 are now mutually exclusive events: when
vA1

= 1, event A1 occurred, when vA1
= 0, event A1 did not occur. Interaction between A1

and A2 will be found, and can we interpret the value of S(A1, A2) as a value of a new, less
redundant two-value latent attribute AL, which resolves the interaction between A1 and
A2. It might be desirable to provide each input attribute value as a separate attribute, and
rely on the mechanism for resolving false interactions to create multi-valued attributes.

A1 A2 B P (c0)

0 1 0 1/7
0 1 1 3/5
1 0 0 2/5
1 0 1 6/7

Multiple Noisy Measurements: Ordinary False Interactions

Consider a case when A1 and A2 are separate, but noisy measurements of unobserved AL.
Attribute selection operating merely from the perspective of dependence might dispose of
one of them. On the other hand, using both of them in predictions would improve the
results, assuming that the noise in A1 is independent of noise in A2.

Resolving False Interactions

While resolving true interactions is efficiently performed with joint segmentation, seg-
mentation is only one of the solutions for resolving false interactions. There are several
approaches:

4.4. Types of Interactions 53

Explicit Dependence: A tree-augmented Bayesian classifier (TAN) [FG96] would dis-
cover a dependence between attributes A1 and A2, decide that A2 is a consequence
to A1, and consequently it would approximate the joint probability distribution as
P (A1, B2, C) = P (C)P (A1|C)P (A2|C,A1), in contrast to the NBC, which is based
on P (A1, A2, C) = P (C)P (A1|C)P (A2|C).

Latent Attributes: With segmentation we would create a new attribute AL replacing
both A1 and A2. Most segmentation functions are more appropriate for resolving
proper interactions, not false interactions, because they use crisp mapping to seg-
ments. For example, if AL is the unobserved cause of A1 and A2, we could be
uncertain about the exact value of AL. This paradigm has been discussed by the
authors of TAN in [ELFK00]. Taking the Cartesian product of both attributes is a
very simplistic form of the latent attribute approach. For example, a group of falsely
interacting attributes are better left alone, without segmenting them jointly, even
if they violate the NBC assumptions, as we will see in Sect. 6.2.1. A particularly
simple latent attribute strategy is feature selection, where a group of attributes is
replaced with a single one. Feature selection improves results both because ran-
dom attributes confuse a learning algorithm, and because false interactions bias the
results.

Do-Nothing: It is observed in [RHJ01] that näıve Bayesian classifier in the discrimina-
tive context of 0-1 loss works optimally in two cases: when all the attributes are
truly independent (as it is assumed), and when all the attributes are perfectly de-
pendent. Therefore, if all the attributes were perfectly falsely interacting, we might
leave them alone, and the discriminative classification performance would not be
affected. On the other hand, the discriminative classification performance would
not be affected if we only picked a single attribute, since each one carries all the
information. But for probabilistic classification, we also care about the accuracy of
the predicted probability distribution, and replication of an attribute worsens the
results, because the probability estimates tend towards extremes in the presence of
replicated attributes. Finally, there may be several independent groups of falsely
interacting attributes, and splitting them into subgroups would make sense. We can
conclude that impassivity pays.

4.4.3 Conditional Interactions

Conditional interactions refer to situations where a multi-valued attribute A1 interacts
with a set of attributes B for some of its values, but does not interact or interacts falsely
for its other values. Let us conjure up a domain to illustrate this situation, where B =
{A2, A3}. Note that the interaction between A2 and A3 is also dependent on the value of
A1:

4.5. Instance-Sensitive Evaluation 54

A1 A2 A3 P (c0) A1 A2 A3 P (c0)

0 0 0 1 2 0 0 1/25
0 0 1 0 2 0 1 1/7
0 1 0 0 2 1 0 3/11
0 1 1 1 2 1 1 3/5
1 0 0 0 3 0 0 2/5
1 0 1 1 3 0 1 8/11
1 1 0 1 3 1 0 6/7
1 1 1 0 3 1 1 24/25

For values vA1
∈ {0, 1}, A1, A2 and A3 are truly interacting in a 3-XOR or 3-parity

domain. However, for values vA1
∈ {2, 3}, attributes A1, A2 and A3 are perfectly indepen-

dent. It depends on the frequency of the values of A1 whether this triple will be found to
be a part of an interaction or not. We thus refer to attribute A1 as a trigger attribute.

One way of resolving this issue is to split A1 into two attributes, one being a binary
b1 := a1 ≥ 2, and the other a binary b2 := a1 (mod 2). Then we can use the classifier

D(S(B1), {E[S(B2, A2, A3)], V [E(S(B2)), E(S(A2)), E(S(A3))]}).

The switch function D(s,S) chooses a model from S, depending on the value of parameter
function s. One can imagine the switch function as a simple conditional voting function.
A learning algorithm which creates similar models is Kohavi’s NBTree [Koh96]. The
one-descriptor model E(T , C, S(A)) is nothing but D(S(A), {E(T , C)} × |DA|): if we do
not use projection, we no longer need one-descriptor estimation, merely zero-descriptor
estimation and the switch function.

Another variant of the conditional interaction is perhaps more frequent in real data:
relevance (rather than dependence) of a certain attribute depends on the value of the
trigger attribute. The second atribute affects the label only if the the trigger attribute has
a certain value. This case is resolved with ordinary classification trees. With an NBTree,
we may use a feature-selecting voting function, which would remove irrelevant attributes
from certain models.

4.5 Instance-Sensitive Evaluation

If we limit ourselves to discriminative classifiers, the embodiment of interactions may take
a simpler form. One attribute may substitute or complement another, even if do not
study the interaction. Adding a complementary attribute improves the results, whereas a
substitutable attribute does not provide additional help. We only need one from a set of
mutually substitutable attributes.

We estimate their complementarity with a simple procedure for a domain with at-
tributes A = {A1, A2, . . . , An}, and the label C. We construct n discriminative classifiers
d1, d2, . . . , dn, where di is learned only with attributes A \ {Ai}. We test their perfor-
mance on the test set and construct the following contingency table for every pair of two
discriminative classifiers di, dj , each cell of which contains the number of instances in the
test set corresponding to a given form of agreement between di and dj :

Such a contingency table is also used for the McNemar’s test, as described in [Die98,
Eve77]. We can conceptually categorize the relations between attributes according to this
list:

4.5. Instance-Sensitive Evaluation 55

dj wrong dj correct

di wrong n00 n01

di correct n10 n11

� A substitutable pair of attributes provide the same information the corresponding
contingency table is diagonal or close to diagonal, such as:

(

10 0
0 9

)

.

� In an ordered pair of attributes, the better attribute provides all the information
that the worse attribute provides, while the worse attribute provides nothing extra.
The contingency table is close to triangular:

(

10 6
0 9

)

.

� A complementary pair of attributes provides more information together than either
attribute separately. The contingency table is neither diagonal nor triangular:

(

8 5
4 9

)

.

While we removed individual attributes to compute the contingency table, we could
have approached the problem from another direction: we could have compared n classifiers,
each of which was trained with its corresponding attribute alone. In such a case, we would
probably not be able to correctly evaluate those examples which can only be understood
in combination with other attributes.

This method obtains a considerable amount of information about the relationship
between a pair of attributes by simply avoiding the customary averaging over all the
instances in the test set. Instead, the method investigates the dependencies between
individual attributes and instances. Although this method may appear similar to searching
for interactions, it is unable to discover true interactions, because they require presence
of both attributes. It can be easily extended for that purpose, but we will not investigate
such extensions in this text.

Our classification of relationships between attributes is a valid method for comparing
different classifiers. This is useful when we consider whether and how to integrate them in
an ensemble, for example, it is beneficial to join the votes of two complementary classifiers.
A number of other numerical measures of classifier diversity exist [KW01].

4.5. Instance-Sensitive Evaluation 56

CHAPTER 5

Finding 3-Way Interactions

Engineers think equations approximate reality,

physicists think that reality approximates equations,

but mathematicians find no connection.

We could generate a massive number of classifiers, having some assume interactions
and others not assume them, and eventually choose the best performing model. But
we would desire a more sophisticated and less brute-force classifier selection algorithm
which will examine the interactions selectively and efficiently by searching intelligently
in the classifier space. Furthermore, the brute force method will not inform us about
interactions in the domain.

Probes are heuristic methods which evaluate groups of attributes and estimate the level
and type of their interaction as to uncover the interactions in a given domain. In forward

probing we start with the assumption of no interactions, and iteratively build groups of
interacting attributes.

Most interaction probes are based on simple predictors which only use a pair of at-
tributes. The interaction effect is estimated with the improvement of the classifier resulting
from segmentation operating on all attributes simultaneously. The predictors’ quality can
be evaluated either on the test or on the training set. We will refer to these as model
probes. They provide reliable results, but one needs to assume the segmentation method,
the base classification method and the evaluation function beforehand.

Association probes are based on statistical tests of conditional independence. These
tests estimate the strength of an association, and then compute the likelihood of depen-
dence given the strength and the number of instances. Association probes are not directly
concerned with classifier quality. We warn the reader that the presence of conditional
dependence does not necessarily indicate presence of a significant interaction.

Somewhat midway between wrapper probes and association probes, we may define an
information-theoretic probe, which approximates the actual evaluation functions.

Several constructive induction algorithms [Dem02, Zup97] evaluate the benefit of ap-
plying an optimizing segmentation function to subsets of attributes to determine whether

5.1. Wrapper Probes 58

constructing a new attribute using these attributes is justified. The new attribute is sup-
posed to replace and simplify the constituent attributes, but not relinquish information.
These algorithms can be considered to be another family of interaction probes with several
interesting properties. They can also be seen as optimizing segmentation functions.

The objective of the remainder of this chapter will be to examine and compare these
probes. We will not attempt to evaluate the probes. Rather, we will examine similarities
between probes, their sensitivity to various artifacts, and the methodology of using them.
Evaluation is left for coming chapters.

5.1 Wrapper Probes

Wrapper probes attempt to predict a classifier’s quality by evaluating various variants of
the classifier trained on the portion of the training set of instances. Hopefully, the con-
clusions will help us determine the best variant of the classifier for the test set. Generally,
wrapper probes are greedy search algorithms built around the pragmatic interaction test,
and a certain resolution function.

One variant joints two attributes X and Y into a new attribute XY whose domain
is a Cartesian product of constituent attribute domains DXY = DX × DY . The probe’s
estimate is the quality gain of a näıve Bayesian classifier with the joined attribute over
the default NBC with separate attributes. We define it as

QG := q(NBC(XY ,Z,W)) − q(NBC(X,Y,Z,W)),

for some evaluation function q. No effort is made to optimize segmentation of the joint
attribute XY .

Pazzani [Paz96] built two algorithms around such a probe, referring to the first as
‘forward sequential selection and joining,’ or FSSJ. FSSJ starts with a classifier trained
using an empty set of attributes. In each iteration, it considers adding a new attribute to
the set, or joining an attribute with one existing attribute already in the set. The chosen
operation is the one that maximizes either the interaction or the attribute gain, if only
the gain is positive. In case joining was chosen, it replaces the two constituent attributes
with the new joint attribute.

He notes another algorithm, “backward sequential elimination and joining,” which
starts with the basic näıve Bayesian model, and for each attribute considers two operations:
deleting the attribute, or joining two used attributes. Generally, his results with BSEJ
are better than those with FSSJ, although BSEJ does not dominate FSSJ.

There are several variants of wrapper probes. For example, instead of the holistic
quality gain, which includes other attributes into consideration q(NBC(XY ,Z,W)) −
q(NBC(X,Y,Z,W)), we can simply myopically focus on q(NBC(XY))−q(NBC(X,Y)).
We may relax the wrapper methodology, and improve performance by evaluating the
classifier on the test set. Although joining attributes will always improve performance, we
may assume that large gains in performance truly indicate an interaction.

5.2 Constructive Induction

Function decomposition [Zup97] comes in two flavors: the noise-tolerant minimal-error
(MinErr) decomposition, and the determinism-assuming minimal-complexity (MinCom-

5.2. Constructive Induction 59

plexity) decomposition. Recursive application of function decomposition suffices to con-
struct classifiers. The fundamental feature of function decomposition is the merging of
attribute value pairs, which we call attribute reduction and is a type of a segmentation
function. The core idea of attribute reduction is to merge similar attribute values, while
distinguishing dissimilar attribute values. In addition to the attribute reduction mecha-
nism, we use a heuristic estimate, a partition measure, to determine which pairs of at-
tributes to join in a Cartesian product before reducing it.

Minimal-complexity attribute reduction considers more than just the label distribu-
tions: we can merge those value pairs which are not necessary to perfectly discern the
class. This means that if we can discern the class of all the instances covered by a partic-
ular duo of value pairs with other attributes alone, these two value pairs can be merged.
Our next objective is to maximize the number of such mergers, and we achieve it with
graph coloring. The new attribute’s values corresponds to colors. The fewer the colors,
the better the constructed attribute.

Minimal-error attribute reduction is similar to clustering in sense that merging is per-
formed on the basis of label distributions, greedily merging the closest pair of attribute
value pairs. However, clustering performs multiple merges on the basis of the same dissim-
ilarity matrix, whereas minimal-error decomposition performs only a single nearest-pair
merge and updates the matrix after that. m-error estimate determines the number of
mergers to perform, and that determines the number of clusters: we perform only those
merges that reduce the m-error estimate. The value of m is usually determined by means
of wrapper methods, e.g., with internal (training set) cross validation.

Although minimal-error decomposition is somewhat similar to Kramer’s clustering al-
gorithm [Kra94], it must be noted that Kramer’s algorithm is computing a single label
distribution for a attribute value pair. On the other hand, minimal-error decomposition
computes a label distribution for every value tuple of all the other attributes. As with
minimal-complexity attribute reduction, we estimate the similarity of label distributions
given the values of all other attributes, which we refer to as context attributes. This way,
we prevent destroying information, which could be useful in later resolutions. Decompo-
sition is thus able to handle multi-way interactions while only resolving a small number
of attributes at once. However, context is a handicap in domains with falsely interacting
attributes, as Demšar observed in [Dem02].

Although function decomposition algorithms can operate with tuples of bound at-
tributes, and not merely with pairs, the combinatorial complexity of testing the quality
of all the possible 3-attribute constructions is excessive. The method thus uses heuristic
probes to pick the pair of attributes that yielded the best constructed attribute. This
attribute substitutes the original pair of attributes. The procedure terminates when only
a single feature remains, and not when there are no more interactions.

The probe values for minimal-error decomposition is the total error reduction obtained
with value merging, if the expected error is estimated with the m-probability estimate. For
minimal-complexity decomposition, [Zup97] notes several possible heuristics, but the most
frequently chosen one is based on the total number of segments obtained when losslessly
decomposing a group of attributes. We will later investigate whether the value of these
probes has anything to do with interactions.

5.3. Association Probes 60

5.3 Association Probes

Another possible definition of interactions is based on the notion of dependence and inde-
pendence. This may be more appealing as we seem not to be tied to a classifier evaluation
function or to a particular type of classifiers. In Sect. 3.2.1, we noted that there is no
interaction if the attributes are conditionally independent. Generally, a k-way interaction
exists if there is a dependency between k attributes which cannot be broken down com-
pletely into multiple dependencies, each of which would contain fewer than k attributes.
One of the attributes is the label.

5.3.1 Cochran-Mantel-Haenszel Statistic

We can perform a Cochran-Mantel-Haenszel χ2 test of the null hypothesis that two nominal
variables are conditionally independent in each class, assuming that there is no 4-way
(or higher) interaction. The details of the generalized Cochran-Mantel-Haenszel (CMH)
statistic are intricate, and we refer the reader to [Agr90]. To prevent singular matrices
in computations, we initially fill the contingency table, which measures the number of
instances in the training data with those attribute values, with a small value (10−6), as
recommended in [Agr90]. Our implementation was derived from the library ‘ctest’ by Kurt
Hornik, P. Dalgaard, and T. Hothorn, a part of the R statistical system [IG96].

As the output of this probe, we used the p-value of the statistic, which can be under-
stood as a means of normalizing as to remove the influence of the number of attribute
values that determine the number of degrees of freedom. It must be noted that p-value
should not be equated with probability of the hypothesis. For many statistical tests, p-
values are informative only when they are very low, else they may even be even randomly
distributed.

5.3.2 Semi-Näıve Bayes

Semi-näıve Bayesian classifier [Kon91] attempts to merge those pairs of attribute value
pairs that have similar label probability distributions. In contrast to Pazzani’s algorithm,
which joins attributes, SNB only joins attribute value pairs. It considers merging all pairs
of attribute values, without restricting itself to a particular pair of attributes.

The theorem of Chebyshev gives the lower bound on the probability that the relative
frequency f of an event after n trials differs from the factual prior probability p less than
ε:

P (|f − p| ≤ ε) > 1−
p(1− p)

ε2n

SNB recommends merging of value ji of attribute J and value kl of attribute K if:

1−
1

Njikl
ε2
≥

1

2

ε =

m
∑

j=1

P (cj)

∣

∣

∣

∣

P (cj |jikl)−
P (cj |ji)P (cj |kl)

P (cj)

∣

∣

∣

∣

Here, Njikl
is the number of instances in the training set, for which J(i) = ji ∧K(i) = kl.

5.4. Information-Theoretic Probes 61

The squared part of the equation measures the difference between the label probability
distributions of ji and kl. The factual probability is taken to be equal to 0.5. In SNB,
m-probability estimation is used for estimating conditional and class probabilities.

Although SNB was designed as a feature constructor, it can also be used as a probe
for estimating the level of interaction between whole attributes. For this, we compute the
sum of merging probabilities for a pair of attributes over all their value pairs, normalized
by the number of attribute value pairs that actually appear in the training data:

ISNB(J,K) = 1−

∑

i∈DJ

∑

l∈DK
1− 1/Njikl

ε2

|DJ ||DK |

Although the formula appears complex, most of the complexity emerges because the
values are re-scaled and normalized several times. However, this re-scaling proves to be
useful, because the uniformity of the scores improves the clarity of results obtained with
clustering and other methods of analysis.

5.4 Information-Theoretic Probes

We will focus on the information-theoretic notion of entropy, for which there are rigorous
mathematical tools and bounds. However, like wrapper probes, we retain the concepts of a
segmentation function and an evaluation function, even if they are somewhat camouflaged.

This way, we will be able to arrive at relatively simple, efficient, and illuminating
closed-form probes for interactions. They involve evaluating on the training set with KL
divergence as the evaluation function, and learning the joint probability distribution rather
than merely the label probability distribution. The segmentation function is the trivial
Cartesian product.

One can notice that all the formulae in this section are also appropriate for generative
learning. Although it appears we do, we in fact do not set any attribute apart as the
label. But since all our formulae are based on Kullback-Leibler divergence, we could
easily use another non-generative evaluation function instead, perhaps giving up some of
the elegance and efficiency.

5.4.1 3-Way Interaction Gain

Information gain of a single attribute A with the label C [HMS66], also known as mutual

information between A and C [CT91], is defined this way:

GainC(A) = I(A;C)

=
∑

a,c

P (a, c) log
P (a, c)

P (a)P (c)

= H(C) + H(A)−H(AC)

= H(A)−H(A|C).

(5.1)

Mutual information is a special case of KL divergence in evaluating the approximation
of the joint probability with the product of marginal probabilities: I(X;Y) = I(Y ;X) =
D(P (x, y)||P (x)P (y)). The lower the KL divergence, the better the two attributes can be
modeled with the assumption of independence. Therefore, mutual information should not

5.4. Information-Theoretic Probes 62

be seen as anything else than a particular type of evaluation function (KL divergence) of
a generative model (predicting both the attribute and the class) with the assumption of
independence. Evaluation takes place on the training set, rather than on the test set, so
it is not obvious whether the result is significant or not. Furthermore, multiplication (×)
in P (x)P (y) = P (x) × P (y) is just one specific function we can use for approximating
P (x, y). There are other simple functions. We see that information theory is also based
on assumptions about evaluation functions and about model functions.

Conditional mutual information [CBL97, WW89] of a group of attributes is computed
by subtracting the entropy of individual attributes from the entropy of Cartesian product
of the values of all the attributes. For attributes A,B and a label C, we can use the
following formula:

I(A;B|C) =
∑

a,b,c

P (a, b|c) log
P (a, b|c)

P (a|c)P (b|c)

= H(A|C) + H(B|C)−H(AB|C),

(5.2)

where H(X) is entropy, and AB is the Cartesian product of values of attributes A and B.
Each attribute itself can be evaluated by its quality as a predictor, and the joint entropy
approach tries to separate the actual contribution of an interaction over independent
contributions of separate attributes. We can also express conditional mutual information
through KL divergence: I(X;Y |C) = D(P (x, y|c)||P (x|c)P (y|c)). Again, a greater value
will indicate a greater deviation from independence.

Interaction gain for 3-way interactions can be defined as:

IG3(ABC) := I(AB;C)− I(A;C)− I(B;C)

= GainC(AB)−GainC(A) −GainC(B),
(5.3)

and can be understood as the decrease in entropy caused by joining the attributes A and
B into a Cartesian product. The higher the interaction gain, the more information we
gained by joining the attributes in a Cartesian product. Interaction gain can be negative,
if both A and B carry the same information. Information gain is a 2-way interaction gain
of an attribute and the label: IG2(A,C) = GainC(A), just as dependence between two
attributes is nothing else than a 2-way interaction.

We can transform (5.2) by abolishing conditional probabilities and conditional entropy
into:

I(A;B|C) = H(A|C) + H(B|C)−H(AB|C)

= (H(AC)−H(C)) + (H(BC)−H(C))− (H(ABC)−H(C))

= H(AC) + H(BC)−H(C)−H(ABC).

We can also work backwards from the definition of interaction gain, rearranging the terms:

IG3(ABC) = (H(AB) + H(C)−H(ABC))

− (H(A) + H(C)−H(AC))− (H(B) + H(C)−H(BC))

= H(AB) + H(AC) + H(BC)

−H(ABC)−H(A)−H(B)−H(C).

(5.4)

5.4. Information-Theoretic Probes 63

The value of interaction gain is the same if we substitute the label with one of the
attributes. Therefore we neglect distinguishing the label. Earlier, we only investigated
interactions which included the label: such interactions are most interesting when studying
classification problems.

IG3(ABC) = H(AB)−H(A)−H(B) + I(A;B|C)

= I(A;B|C)− I(A;B)

= D(P (a, b|c)||P (a|c)P (b|c)) −D(P (a, b)||P (a)P (b)).

(5.5)

If we nevertheless focus on one attribute (C) and then investigate the interplay between the
attributes (A,B), we notice two parts, dependency measured by I(A;B), and interaction

I(A;B|C). Both dependency and interaction are always zero or positive. When the level

of interaction exceeds the level of dependency, the interaction is true. When the opposite

is true, the interaction is false. Of course, a pair of attributes may have a bit of both,
an example of which are the conditional interactions, and this is avoided by breaking
multi-valued attributes into dummy one-valued attributes.

When there are only two attributes (A,B) with a label (C), and if we assume that both
attributes are relevant, there are only two possible decompositions of the joint probability
distribution: (ABC) and (AC,BC). Comparison between (ABC) and (AC,BC) with the
assumption of independence of (AC,BC) is the essence of our (5.5). We view I(A;B),
a measure of sharing between A and B, but also as a measure of sharing between (AC)
and (BC), even if this practice could be disputed. Although there are several possible
approaches, we will not try to separate individual attributes’ contributions to accuracy.

A true interaction exists merely if the conditional mutual information I(A;B|C) is
greater than what we would expect from I(A;B). If IBC(A) and IBC(B) contain the
same information, interaction gain is negative. This indicates the possibility of a false
interaction according to the pragmatic criterion. For a perfectly true interaction we know
that I(A;B) = I(B;C) = I(A;C) = 0, and a positive interaction gain clearly indicates
the presence of a true interaction.

Generalizing Interaction Gain

It is possible to construct a multitude of interaction gain generalizations by varying the
learning mode, the evaluation function, and the predictive model. It is certain that some
of such generalizations will sometimes be better for some selection of data. Interaction
gain is based on generative learning, the Kullback-Leibler divergence computed on the
training data, and probabilistic prediction with and without the assumption of conditional
independence. As such, it should be seen as a heuristic interaction probe. It has an
important ability of distinguishing true from false interactions.

We could use other measures of association, several of which were mentioned in
Sect. 3.2. A type of measures of association are attribute impurity measures, intended
for feature selection in the context of classification, most of which are not generative. Sev-
eral non-myopic attribute measures consider attributes other than the one evaluated. For
example, Relief-like measures [Šik02] will reduce the worth of duplicated attributes. This
often helps improve classification accuracy when the measure is used for feature selection,
but such measures are inappropriate for evaluating interactions.

Some attribute impurity measures, e.g., the gain ratio, consider the number of attribute
values, reducing the worth of an attribute proportionally to the number of its values. When

5.4. Information-Theoretic Probes 64

C

BA

C

BA

(a) (b)

Figure 5.1: A Venn diagram of three interacting attributes (a), and of two conditionally
independent attributes plus a label (b).

we apply such a measure on an attribute obtained by resolving an interaction with the
Cartesian product, the results will be strongly distorted: the complex joint attribute’s
worth will be excessively reduced.

5.4.2 Visualizing Interactions

The simplest way of explaining the significance of interactions is via the cardinality of the
set metaphor. The definition for information gain from (5.1) is I(A;B) = H(A)+H(B)−
H(AB). This is similar to the cardinality of the set as computed using the Bernolli’s
inclusion-exclusion principle [Wei02]: |A∩B| = |A|+ |B|− |A∪B|. The total information
content of attributes A and B together is −H(AB), of A alone it is −H(A), and of B,
−H(B). Thus, I(A;B) corresponds to the intersection between A and B. Note the sign
reversal because of entropy.

To draw the analogy further, interaction gain, as defined in (5.5) and drawn in (a) on
the left of Fig. 5.1, corresponds to |A ∩ B ∩ C| = |A| + |B| + |C| − |A ∪ B| − |B ∪ C| −
|A∪C|+ |A∪B∪C|. Essentially, cardinality of an attributes’ intersection corresponds to
their interaction gain. Cardinality so computed may be negative, as noticed by [Ved02].
We have suggested and will show that this negativity provides useful information even if
the pretty metaphor is ruined. Unfortunately, merely extending this idea to four sets no
longer provides a useful heuristic.

As a side note, the domain as assumed by the näıve Bayesian classifier is Fig. 5.1(b).
The entropy of C, as estimated by the näıve Bayesian classifier is H[P (A|C)P (B|C)] =
H(AC) + H(BC) − 2H(C), as compared with H[P (AB|C)] = H(ABC) − H(C). An
alternative way of defining a concept similar to interaction gain is by comparing H(ABC)
with H(AC) + H(BC)−H(C) (we added H(C) to both expressions). Such an approach
might open a better course to generalizing interaction gain to arbitrary k-way interactions,
but it requires assigning a special role to one of the attributes.

One of the pleasant properties of the set-theoretic metaphor is that it is independent
from any notion of conditional probability. Therefore, we assume no ordering of attributes,
and we do not separate causes from effects. Causality could only be an expression of
temporal ordering of events, in sense that causes temporally precede the effects. We could

5.4. Information-Theoretic Probes 65

A

B C

A

B C

A

B C

Figure 5.2: Three equivalent Bayesian networks for the XOR domain.

C

A B

A ∩ B ∩ C

Figure 5.3: An interaction diagram for the perfect interaction between A,B and C, e.g.,
in the XOR domain.

pretend that effects are better predictable than causes, but quality of predictions may be
irrelevant: in the information-theoretic framework it is always symmetric.

For the XOR domain c := a 6= b, viewed as a generative learning problem attempting
to approximate P (a, b, c), there are three appropriate Bayesian networks, as illustrated in
Fig. 5.2. Although all these models correctly describe the joint probability distribution,
the direction of edges is meaningless and the edges may be misleading because there are
no dependencies between either pair of vertices.

We can use hypergraphs G = (V,E) for visualizing the interactions in the domain,
where a hyperedge H = {A,B,C} exists iff IG3(ABC) > 0. There are many ways of
visualizing hypergraphs, either by using a different color for each hyperedge, or by using
polygons in place of hyperedges, or by drawing polygons around vertices connected by a
hyperedge. Or, instead of hypergraphs, we may use ordinary graphs with special ‘interac-
tion’ vertices for each hyperedge or interaction, which are created when using edges alone
would be ambiguous. We mark interactions either with dots, or with labeled rectangular
nodes. Figs. 5.3–5.6 present graphical depictions of various types of interactions. Further
variants of interaction visualizations appear in Ch. 7.

5.4.3 Related Work

Quantum Information Theory

In the field of quantum information theory, Vedral [Ved02] uses relative entropy as a
quantification of distinguishability of physical states. He proposes a generalization of rel-

5.4. Information-Theoretic Probes 66

C

A B

A ∩ B

Figure 5.4: An interaction diagram rendered for a false interaction between A and B.

C

A B

B ∩ CA ∩ C

A ∩ B ∩ C

Figure 5.5: An interaction diagram rendered for an ordinary interaction with independent
attributes A and B.

A

B C

A ∩ B

B ∩ C

A ∩ C

A ∩ B ∩ C

Figure 5.6: A full interaction diagram rendered for three sets, with tagged intersections
and all possible interactions. This is the most complex situation.

5.4. Information-Theoretic Probes 67

ative entropy that measures the divergence between the joint probability distribution and
its approximation based on the assumption of independence between all attributes, e.g.,
I(A;B;C) := D(P (a, b, c)||P (a)P (b)P (c)). He argues that the interaction gain, although
a natural generalization inspired by the Bernoulli’s inclusion-exclusion principle for com-
puting a union of sets, is inappropriate because it may be negative. We now know that it
is negative when the interaction is false. His definition of generalized relative entropy can
never be negative. We can represent his generalization with entropy:

D(P (a, b, c)||P (a)P (b)P (c)) =
∑

a,b,c

P (a, b, c) log
P (a, b, c)

P (a)P (b)P (c)
=

−
∑

a,b,c

P (a, b, c) log P (a, b, c) +
∑

a

∑

b,c

P (a, b, c) log P (a)

+
∑

b

∑

a,c

P (a, b, c) log P (b) +
∑

c

∑

a,b

P (a, b, c) log P (c)

= H(A) + H(B) + H(C)−H(ABC)

(5.6)

Game Theory

As an aside, we may now define interaction index we first mentioned in Sect. 3.6, as
described by [GMR00, GMR99]. The original definitions from [GR99] differ in a minor
way, using ⊂ instead of ⊆. There are two interaction indices for a coalition S, Iv

S(S) for
the Shapley value, and Iv

B(S) for the Banzhaf value. The set N contains all the players,
while the set T acts as an iterator for averaging over all possible coalitions.

Iv
S(S) :=

∑

T ⊆N\S

(|N | − |T | − |S|)!|T |!

(|N | − |S|+ 1)!

∑

L⊆S

(−1)|S|−|L|v(L ∪ T) (5.7)

Iv
B(S) := 2|S|−|N |

∑

T ⊆N\S

∑

L⊆S

(−1)|S|−|L|v(L ∪ T)

. (5.8)

We may adopt negative value of entropy as the value function v. As we remember
from Sect. 2.6.2, the greater the entropy, the lower the expected earnings from a betting
game. If we also assume that N = S, the Banzhaf interaction index simplifies to:

IH
B (S) = −

∑

L⊆S

(−1)|S|−|L|H(L).

For S = {A,B}, IH
B (AB) = H(A)+H(B)−H(AB) = IG2(AB), while for S = {A,B,C},

IH
B (ABC) = H(AB)+H(AC)+H(BC)−H(A)−H(B)−H(C)−H(ABC) = IG3(ABC).

Unfortunately, using IH
B for 4-way interaction gain may no longer be useful, as prelimi-

nary experiments indicate that other than 3-parity, correlated attributes may also yield
positive values, in spite of the correlated attributes being conceptually an epitome of false
interactions.

The final is the chaining interaction index [MR99], defined for a set of maximal chains

C(N), where a maximal chain M of a Hasse diagram H(N) is an ordered collection of
|N |+ 1 nested distinct coalitions:

M =
(

∅ =M0 (M1 (M2 (· · · (M|N |−1 (M|N | = N
)

.

5.4. Information-Theoretic Probes 68

Each maximal chain corresponds to a permutation of elements of N . Let MS be the the
minimal coalition belonging to M that contains S. The chaining interaction index Iv

R is
then an average value of a chain over all the maximal chains:

Iv
R(S) =

1

|N |!

∑

M⊆C(N)

δSv(MS), ∅ 6= S ⊆ N . (5.9)

Here δSv(T) is the S-derivative of v at T , defined recursively as δSv(T) = v(T)−v(T \S).
It can be shown that

Iv
R(S) =

∑

T ⊆N\S

(

|S|
(|N | − |S| − |T |)!(|S|+ |T | − 1)!

|N |!

)

(v(T ∪ S)− v(T)). (5.10)

We may again use negative entropy as a value function. Because conditional entropy
is calculated as H(A|C) = H(AC)−H(C), we can express H(T)−H(T ∪S) = −H(S|T).
Therefore, the more dependence there is on average between S and other players, the
higher value will IH

R achieve.

CHAPTER 6

Practical Search for Interactions

Why think? Why not try the experiment?

John Hunter

Now that we have defined interactions theoretically, we will focus on investigating the
nature of interactions in true data sets. The objective of this chapter will be to study
probing techniques for discovering interactions in data. We also explore the relationship
between interactions and domain structure, as designed by humans. We investigate the in-
terplay between the information-theoretic interaction probes and the pragmatic definition
of interactions.

Instead of performing superficial statistics on a large set of domains, we have chosen
only four characteristic domains, but our analysis will be thorough. Two domains are
noiseless uniform samples of manually constructed hierarchical DECMAC decision models,
developed with the DEX software [BR90]: ‘car’ [BR88], and ‘nursery’ [OBR89]. We used
a real medical data set ‘HHS’, contributed by Dr. D. Smrke from the University Clinical
Center in Ljubljana, on the base of which an attribute structure was constructed by
a domain expert, and described in [ZDS+01]. Finally, we created an artificial domain
which integrates the concepts from Chap. 4. All the attribute structures are illustrated in
Fig. 6.1.

The DECMAC methodology is based on constructing higher-level features from prim-
itive attributes, this way reducing the number of attributes in the domain. Ultimately, we
create a function from a small number of higher-level attributes to the label value.

Our artificial domain was constructed as to contain all the types of true and false
interactions: a 3-XOR, an ordinary interaction (OR), two noisy measurements, two mu-
tually exclusive events, and a trigger attribute in two 3-way conditional interactions, one
with conditioned dependence and one with conditioned relevance. We added two random
attributes. The class value is stochastically sampled from the probability distribution
obtained by assuming that all these binary sub-problems are independent.

The difference between our ‘artificial’ domain and the DECMAC structures is that
our domain is probabilistic, whereas the DECMAC structures are deterministic. Whereas

70

HHS

endoprosthesis

Patient

age

mobility_before_operation

Health

neurological_disease

Cardiovascular

pulmonary_disease

cardiovascular_disease

diabetes

other_disease

Timingoperation_duration

injury_operation_time

ComplicationsEarly

DuringOp

general_compl

operation_compl

Other

LuxationInfect

luxation

Infection

superficial_infection

deep_infection

Neurologicalneurol_lesion

loss_of_consciousness

Cardiovascularpulmonary_embolism

phlebothrombosis

Late

late_deep_infection

late_luxation

late_neurological_compl

myositis

RehabFunctional

sitting_abil

standing_abil

walking_abil

Psychophysicalcooperativeness

hospitalization_duration

nursery

employ

parents

has_nurs

struct_finan

structure

form

children

housing

finance

soc_healthsocial

health

car

price

buying

maint

techcomfort

doors

persons

lug_boot safety

Artificial

3-xor 2-xor or multiple-measurements exclusive-events cond-dependence cond-relevance random

3xor-a 3xor-b 3xor-c 2xor-a 2xor-b or-a or-b noise-a noise-b exclusive-a exclusive-b cond-triggercond-a cond-b random-a random-b

Figure 6.1: Hand-made attribute structures for the ‘car’ (middle-right), ‘nursery’ (middle-
left), ‘HHS’ (top), and ‘Artificial’ (bottom) domains. Basic attributes are in rectangles,
constructed attributes are ellipses.

6.1. True and False Interactions 71

non-primitive attributes in DECMAC structures are perfectly described by a function from
primitive attributes, in ‘artificial’ the function involves randomness. Finally, we have no
knowledge about the nature of ‘HHS’.

For the ‘artificial’ and ‘HHS’ domain, we used the usual 10-fold cross-validation. On the
‘car’ and ‘nursery’ domains, we trained our classifiers on a randomly sampled proportion of
the data, and tested the classifiers on the rest. Because the HINT classifier would achieve
perfect classification accuracy on 90% of the data, we instead took smaller samples. For
‘car’ the proportion was 20% with 20 repetitions (HINT: ∼95%, C4.5: ∼90%), and for
‘nursery’ the proportion was 8% with 25 repetitions (HINT: ∼98%, C4.5: ∼95%). At this
proportion C4.5 achieved worse results than HINT.

We have selected the negative value of the venerable KL divergence D(P̂ ||Q), defined
and explained in Sect. 2.6.2 to play the role of our evaluation function, where P̂ is an
approximation to the true probability for an instance, and Q is the probabilistic classifier’s
output. When we test a classifier on a set of instances, we compute the divergence for
each instance separately, and average the divergence over all the instances. In the graphs
the top and right edges of the graphs consistently indicate positive qualities, and because
low divergence is good and high divergence is bad, we negate it before plotting.

KL was chosen primarily because it offers greater sensitivity than classification ac-
curacy: KL will distinguish between the classifier which predicted the actual class with
p = 0.9 and one that predicted it with 0.51, while classification accuracy will not. Also,
KL will more fairly penalize a classifier that assigned the actual class p = 0.49, while clas-
sification accuracy will penalize it as much as if it offered p = 0. The benefits of greater
sensitivity in evaluation functions are discussed in [LZ02], although they refer to area
under ROC (aROC). In contrast to aROC, Kullback-Leibler divergence is simpler, and is
otherwise the most frequently used distance measure between probability distributions.

6.1 True and False Interactions

Our first exploration will focus on distinguishing true from false interactions. A heuristic
measure which is especially suitable for this purpose is interaction gain from Sect. 5.4. In
this chapter we will only use 3-way interaction gain, IG3(ABC), defined and explained in
Sect. 5.4.1.

The ability of this heuristic to distinguish between true and false interactions is ex-
amined on domains ‘artificial’ and ‘nursery’ in Fig. 6.2. In ‘artificial’, neighborhood of
attributes is associated with them being in an interaction of known type, whereas it is
unknown whether the neighborhood in the human-designed structure of ‘nursery’ has any-
thing to do with interactions.

For the ‘artificial’ domain, it can be seen that interaction gain properly determines
whether pairs of attributes 3-interact with the label, and how. Most of the non-interacting
attribute pairs’ interaction gain is close to 0, as well as for the random pair of attributes.
3-way interaction gain is unable to detect the conditional relevance interaction, where
the dependence between two attributes only occurs at certain condition attribute values.
There is no improvement in joining pairs attributes that participate in the 4-way parity
interaction with the label. However, the clearest aspect of this figure illustrates the ability
of interaction gain to distinguish between true and false interactions: true interactions
yield positive interaction gain, and false interactions yield negative interaction gain.

6.2. Classifier Performance and Interactions 72

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

in
te

ra
ct

io
n

ga
in

2-XOR
3-XOR

Cond-depend
Cond-relev
Correlated
Exclusive

OR
Random

mixed pairs

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

in
te

ra
ct

io
n

ga
in

employ
soc. health

struct. finan
structure

mixed pairs

‘artificial’ ‘nursery’

Figure 6.2: Analysis of interaction gain: on the left in each graph there are pairs of
attributes neighboring in the attribute structure, jittered horizontally to prevent overdraw.
On the right there are the non-neighboring attributes. On the vertical axis, we represent
interaction gain.

In the ‘nursery’ domain, the interaction between attributes of only one concept is
standing out. For other concepts, interaction gain is non-zero but not large. It is striking
that there are virtually no false interactions, and this is because random sampling from
the artificially generated nursery domain prevents them from showing up, even if they
existed in the natural data from which the domain was constructed. The ‘car’ domain
proved to be quite similar to the ‘nursery’.

The most interesting aspect of the ‘HHS’ domain is that instances are natural rather
than generated from the attribute structure. We divide the attribute pairs in two groups,
the attributes that are part of the same concept, and attribute pairs where individual at-
tributes belong to different concepts. The result is visualized in Fig. 6.3. It can be noticed
that with respect to interactions, the structure is either not far from being arbitrary, or
the interaction gain is inappropriate as a probe in this domain. There are also virtually
no true interactions, but there are many false interactions.

6.2 Classifier Performance and Interactions

6.2.1 Replacing and Adding Attributes

We now focus on the effect of joining attributes to classification accuracy. First of all, we
will investigate the relationship between the joint attribute replacing or complementing
the original attributes. With NBC, it is customary to replace attributes [Paz96, Kon91],
while for loglinear models [Agr90] we leave the original attributes in place. The fitting
algorithms for loglinear models are optimizing, rather than estimating, but it is generally
considered a bad practice to add additional dependence in NBC. For loglinear models, it is

6.2. Classifier Performance and Interactions 73

-0.02 0.00 0.02 0.04 0.06 0.08
0

20

40

60

0

20

40

60

non.neighbors

neighbors

Figure 6.3: Interaction gain frequency distribution for the ‘HHS’ domain. The top dis-
tribution refers to the interaction gain for pairs of attributes which belong to the same
concept, and the bottom distribution refers to pairs of attributes not belonging to the
same concept.

very interesting to look at the individual contribution of an attribute to the classification,
separate from its contribution which is a part of the interaction.

We will review the changes in evaluation function with respect to both strategies with
joined attributes. If the base classifier is IBC(X,Y,Z), the joint domain with replacement
is IBC(XY,Z), and with addition it is IBC(XY,X, Y,Z). The what interests are the im-
provements in classification performance. For replacement, it is rXY

r = q(IBC(XY,Z))−
q(IBC(X,Y,Z)) and for addition, it is rXY

a = q(IBC(XY,X, Y,Z)) − q(IBC(X,Y,Z)).

The results can be seen in Fig. 6.4. Most concepts are not dependent, and joining
them worsens the classifier quality. It is perhaps not surprising that there are relatively
few significant interactions. Also, it is not a surprise that ra rarely exceeds rr, except for
the ‘nursery’ and ‘car’, which do not have any correlated attributes because the domain
is sampled.

On the ‘artificial’ domain, both true interactions are found to be useful. Certain com-
plex interactions (3-XOR, conditional dependence) cannot be captured with the limited
device of joining two attributes. A most interesting observation is that resolving false in-
teractions may either yield an improvement or a deterioration: joining the exclusive pair
of attributes improves the results, while joining the correlated but noisy pair of attributes
worsens the results. This implies that a special method for handling false interactions
could be useful.

Especially interesting is that, with several exceptions, joining attributes which are part
of human-designed concepts did not improve the classification results. It appears that
the attribute neighborhood in the attribute structure does not coincide with significant
interactions, and we will now focus on the nature of attribute structure.

6.2. Classifier Performance and Interactions 74

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06

im
pr

ov
em

en
t b

y
re

pl
ac

em
en

t

improvement by addition

Artificial

2-XOR
3-XOR

Cond-depend
Cond-relev
Correlated
Exclusive

OR
Random

mixed pairs

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06

im
pr

ov
em

en
t b

y
re

pl
ac

em
en

t

improvement by addition

Nursery

employ
soc. health

struct. finan
structure

mixed pairs

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

-0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

im
pr

ov
em

en
t b

y
re

pl
ac

em
en

t

improvement by addition

HHS

neighbors
non-neighbors

Figure 6.4: These graphs visualize the classifier quality change that occurs by joining pairs
of attributes. The vertical axis represents rr, effect of resolution by replacement, and the
horizontal axis ra, effect of resolution by addition.

6.2. Classifier Performance and Interactions 75

6.2.2 Intermezzo: Making of the Attribute Structure

Attribute structure in DEX is based on joining primitive attributes into higher-level con-
cepts. The true purpose pursued by a human designer of the structure is to maintain a
small set of relevant attributes whenever making a decision. Capturing interactions is not
an explicit objective in this methodology. Examples of motivations to join attributes into
a concept are:

Taxonomic aggregation: We aggregate associated attributes (attributes about the car-
diovascular system are all joined into a single concept; attributes associated with
functional rehabilitation are too joined: sitting ability, standing ability, walking
ability).

Taxonomic division: Trying to organize a large number of attributes, we divide them
into groups, sometimes arbitrarily (medical complications can be divided into early
complications and late complications).

Similarity: Several attributes may be similar or correlated, often they are all conse-
quences of an unobserved attribute. For that purpose, the concept is defined to
match the unobserved attribute, and its value is deductively derived from its conse-
quences.

Interactions: The concept cannot be reduced to independent sub-problems. It cannot
be fully understood without considering all attributes at once (deciding about car’s
comfort: the number of car doors, and the number of family members; presence of
arithmetic operations: car price and maintenance price).

We have already discussed similarity: it is an example of a false interaction. But the
functional relation between taxonomic relatedness and an interaction is only our hope that
interactions between unrelated attributes are unlikely.

We do not claim that taxonomic relatedness and ontologies in general are harmful:
aggregating multiple noisy measurements is generally beneficial, but representing the ag-
gregation with a segmentation function is often less appropriate than representing it with
a voting function. There are several automatic methods intended to perform a similar
deed, often presented under the common term variable clustering [SAS98]. The voting
function in the näıve Bayesian classifier is not burdened with the number of simultaneously
present attributes, as long as they only 2-interact with the class: for a machine it is not
as important to reduce the number of attributes in a group as it is for a human analyst.

6.2.3 Predicting the Quality Gain

After we have shown that the attribute structure is not necessarily a good predictor of
existence and type of interactions, we will focus on evaluating various automatic heuris-
tics for predicting the rr: improvement or deterioration of classifier quality achieved by
replacing interacting attributes X,Y with their Cartesian product XY , improvement by

replacement or simply quality gain. Quality gain is a non-binary quantification of the
pragmatic interaction test from Sect. 4.3.2. We will no longer burden ourselves with ad-
dition of the joined attribute, as results from previous section demonstrate that it is quite
consistently inferior to replacement.

6.3. Non-Wrapper Heuristics 76

Wrapper Heuristic

We will start with the most obvious approach. Using 10-fold cross-validation on the
training set, we perform evaluation of the same classifier which will be later evaluated on
the test set, e.g., IBC(XY,Z), and average the results over those 10 folds. The results are
drawn on Fig. 6.5, and appear satisfactory for ‘nursery’ and ‘artificial’. For domain ‘car’,
the size of the training set is quite limited, and the wrapper estimate of improvement is
hence underestimating the actual improvement. For domain ‘HHS’, with relatively few
instances, the errors are larger, but unbiased.

6.2.4 Myopic Quality Gain

Can we can simplify the wrapper heuristic? One approach is by focusing only on a pair
of attributes, and ignoring all the others. Specifically, if we wonder about the interaction
between attributes X and Y , we evaluate myopic improvement by replacement through
r̂r = (IBC(XY)) − q(IBC(X,Y)), ignoring attribute Z. Judging by Fig. 6.6, this sim-
plification did not affect the results much. The source of myopia lies in disregarding all
other attributes while the interaction between a pair of them is investigated.

Desiring further simplification, we try to avoid using internal cross-validation, and
just evaluate the improvement by replacement myopically on the test set. The results
are presented in Fig. 6.7. Although true interactions do yield larger improvement by
replacement estimates, all the estimates are positive. It is not obvious where the break-
even point is, but if we have to use wrapper-like cross-validation to estimate that break-
even point, we might as well use unambiguous wrappers everywhere.

6.3 Non-Wrapper Heuristics

6.3.1 Interaction Gain

We have previously used interaction gain to evaluate the types of interactions. We will
now examine whether interaction gain is connected with the quality gain by replacement.
The relationship does exist, even if not particularly strong, and is illustrated on Fig. 6.8.
The important conclusion, however, is that quality gain by replacement can be understood
as a test of significance of an interaction. Only strong false interactions and strong true
interactions result in positive quality gain. But only interaction gain is able to classify the
interaction type, we do not obtain this information from quality gain.

There is an is an indisputable similarity between interaction gain and myopic wrapper
estimate of improvement, and this correlation is sketched in Fig. 6.9.

6.3.2 Cochran-Mantel-Haenszel Statistic

Earlier, we have mentioned the problem of test-set heuristics, where it is difficult to deter-
mine whether an estimate of improvement is significant or now. Cochran-Mantel-Haenszel
χ2 test is used for testing the null hypothesis that two attributes are conditionally indepen-
dent with respect to the label. The null hypothesis is that two attributes are conditionally
independent in each class, assuming that there is no four-way (or higher) interaction. The
p-value is close to 0 when the null hypothesis is very unlikely, but if it is not very unlikely,

6.3. Non-Wrapper Heuristics 77

0

0.01

0.02

0.03

0.04

0.05

0.06

0 0.01 0.02 0.03 0.04 0.05 0.06

im
pr

ov
em

en
t b

y
re

pl
ac

em
en

t

improvement estimate by CV

Artificial

2-XOR
3-XOR

Cond-depend
Cond-relev
Correlated
Exclusive

OR
Random

mixed pairs

-0.2

-0.15

-0.1

-0.05

0

0.05

-0.2 -0.15 -0.1 -0.05 0 0.05

im
pr

ov
em

en
t b

y
re

pl
ac

em
en

t

improvement estimate by CV

Car

comfort
price

mixed pairs

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

im
pr

ov
em

en
t b

y
re

pl
ac

em
en

t

improvement estimate by CV

HHS

neighbors
non-neighbors

Figure 6.5: Wrapper estimates of improvement by internal 10-fold cross-validation on the
training set in comparison with the external 10-fold cross-validation.

6.3. Non-Wrapper Heuristics 78

0

0.01

0.02

0.03

0.04

0.05

0.06

0 0.01 0.02 0.03 0.04 0.05 0.06

im
pr

ov
em

en
t b

y
re

pl
ac

em
en

t

myopic improvement estimate by CV

Artificial

2-XOR
3-XOR

Cond-depend
Cond-relev
Correlated
Exclusive

OR
Random

mixed pairs

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

-0.06 -0.04 -0.02 0 0.02 0.04 0.06

im
pr

ov
em

en
t b

y
re

pl
ac

em
en

t

myopic improvement estimate by CV

Nursery

employ
soc. health

struct. finan
structure

mixed pairs

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

im
pr

ov
em

en
t b

y
re

pl
ac

em
en

t

myopic improvement estimate by CV

HHS

neighbors
non-neighbors

Figure 6.6: Wrapper estimates of improvement by replacement by myopic internal 10-fold
cross-validation on the training set.

6.3. Non-Wrapper Heuristics 79

0

0.01

0.02

0.03

0.04

0.05

0.06

0 0.01 0.02 0.03 0.04 0.05 0.06

im
pr

ov
em

en
t b

y
re

pl
ac

em
en

t

myopic improvement estimate on training set

Artificial

2-XOR
3-XOR

Cond-depend
Cond-relev
Correlated
Exclusive

OR
Random

mixed pairs

-0.04

-0.02

0

0.02

0.04

0.06

-0.04 -0.02 0 0.02 0.04 0.06

im
pr

ov
em

en
t b

y
re

pl
ac

em
en

t

myopic improvement estimate on training set

Nursery

employ
soc. health

struct. finan
structure

mixed pairs

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

im
pr

ov
em

en
t b

y
re

pl
ac

em
en

t

myopic improvement estimate on training set

HHS

neighbors
non-neighbors

Figure 6.7: Wrapper estimates of improvement by replacement by myopic evaluation on
training set.

6.3. Non-Wrapper Heuristics 80

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

-0.06 -0.04 -0.02 0 0.02 0.04 0.06

im
pr

ov
em

en
t b

y
re

pl
ac

em
en

t

interaction gain

Artificial

2-XOR
3-XOR

Cond-depend
Cond-relev
Correlated
Exclusive

OR
Random

mixed pairs

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

-0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1

im
pr

ov
em

en
t b

y
re

pl
ac

em
en

t

interaction gain

Nursery

employ
soc. health

struct. finan
structure

mixed pairs

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1

im
pr

ov
em

en
t b

y
re

pl
ac

em
en

t

interaction gain

HHS

neighbors
non-neighbors

Figure 6.8: The relation between the interaction gain and quality gain by replacement.

6.3. Non-Wrapper Heuristics 81

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

-0.06 -0.04 -0.02 0 0.02 0.04 0.06

in
te

ra
ct

io
n

ga
in

myopic improvement estimate on training set

Artificial

2-XOR
3-XOR

Cond-depend
Cond-relev
Correlated
Exclusive

OR
Random

mixed pairs

0

0.02

0.04

0.06

0.08

0.1

0 0.02 0.04 0.06 0.08 0.1

in
te

ra
ct

io
n

ga
in

myopic improvement estimate on training set

Nursery

employ
soc. health

struct. finan
structure

mixed pairs

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

-0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

in
te

ra
ct

io
n

ga
in

myopic improvement estimate on training set

HHS

neighbors
non-neighbors

Figure 6.9: Comparison of interaction gain with myopic wrapper estimate of improvement
on the training set.

6.4. Heuristics from Constructive Induction 82

the p-value may be randomly distributed. If we are disturbed by the nature of the p-value,
we should use a measure of association, not a statistic.

Judging from Fig. 6.10, resolving the very likely dependencies, plotted on the left side
of the graph, tends to cause a positive quality gain, especially in the ‘nursery’ domain.
Many interactions go undetected by the CMH test, and many likely dependencies cause
a deterioration, especially in ‘HHS’. There are many other statistical tests of dependence,
surveyed in Sect. 3.2. We only tested CMH because it appears to be the most frequently
used and is sufficiently general, unlike many tests limited to 2× 2× 2 contingency tables.

6.4 Heuristics from Constructive Induction

In this section, we will focus on non-myopic heuristics described in Sect. 5.2 and in [Zup97,
Dem02]. We intend to compare these heuristics with interaction gain. We have used the
Orange framework [DZ02] to conduct our experiments.

We also conducted experiments with the SNB and mutual information, but they did not
provide much insight. Experimentally, SNB and mutual conditional entropy are closely
related. They are especially sensitive to attribute dependencies in the form of positive
I(A;B).

6.4.1 Complexity of the Joint Concept

In our previous experiments, we expended no effort for trying to simplify the joint at-
tribute, which was always a simple Cartesian product. In reality, simplifying that at-
tribute would result in superior performance, as the estimation for each segment would
be performed on more data. Of course, we should not simplify excessively, and we only
merge those attribute value pairs which are compatible, in sense that the examples having
those value pairs can still be correctly classified provided the values of other attributes.
In this manner, the segmentation is non-myopic, and allows us to join attributes which
could later prove to be a part of multi-way interactions.

One possible heuristic’s value is the number of segments thus obtained. The results
are illustrated in Fig. 6.11. We can notice that the heuristic excels at finding the human-
designed concepts, even when these concepts are not immediately useful in the NBC
context, in all domains, except for ‘artificial’ — especially interesting is its performance
on the natural ‘HHS’ domain. For ‘artificial’, only the Exclusive concept has been dis-
covered, along with several irrelevant concepts, while several useful concepts have been
estimated as bad.

It is important to understand that when this heuristic is used in the context of func-
tion decomposition, only the best concept is chosen, and the creation of a new attribute
modifies the domain, and consequently the heuristic values in subsequent iterations of the
algorithm. So our comparison should be understood in a proper context.

This heuristic does not look for interactions. It is simplifying away irrelevant groups
of attribute values, starting from the least useful attributes. Eventually remain only a
few powerful rules, the decisive attribute values. For example, if you have a bleeding
torn neck artery, an infected blister is largely irrelevant to your health status. Function
decomposition will thus simplify the attributes related to the details of the blister. But
would we not achieve a similar effect by increasing the weight of attributes relating to
bleeding wounds?

6.4. Heuristics from Constructive Induction 83

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

im
pr

ov
em

en
t b

y
re

pl
ac

em
en

t

Cochran-Mantel-Haenszel p-value

Artificial

2-XOR
3-XOR

Cond-depend
Cond-relev
Correlated
Exclusive

OR
Random

mixed pairs

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

im
pr

ov
em

en
t b

y
re

pl
ac

em
en

t

Cochran-Mantel-Haenszel p-value

Nursery

employ
soc. health

struct. finan
structure

mixed pairs

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

im
pr

ov
em

en
t b

y
re

pl
ac

em
en

t

Cochran-Mantel-Haenszel p-value

HHS

neighbors
non-neighbors

Figure 6.10: The horizontal coordinate of each point is the p-value of the null hypothesis
that two attributes are conditionally independent in each class, assuming that there is no
three-way interaction. On the left, there are the likely dependencies, elsewhere there are
the less certain dependencies. The vertical coordinate is the actual improvement gained
by replacing that pair of attributes.

6.4. Heuristics from Constructive Induction 84

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

-4 -3.5 -3 -2.5 -2

in
te

ra
ct

io
n

ga
in

MinComplexity heuristic value

Artificial

2-XOR
3-XOR

Cond-depend
Cond-relev
Correlated
Exclusive

OR
Random

mixed pairs

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

-7.5 -7 -6.5 -6 -5.5 -5 -4.5 -4 -3.5 -3 -2.5

in
te

ra
ct

io
n

ga
in

MinComplexity heuristic value

Nursery

employ
soc. health

struct. finan
structure

mixed pairs

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

-4 -3.5 -3 -2.5 -2 -1.5 -1

in
te

ra
ct

io
n

ga
in

MinComplexity heuristic value

HHS

neighbors
non-neighbors

Figure 6.11: The horizontal coordinate is a heuristic estimate of joint attribute complexity
after lossless segmentation. The vertical coordinate is interaction gain.

6.5. Experimental Summary 85

6.4.2 Reduction in Error achieved by Joining

In non-deterministic domains, residual ignorance is unavoidable. There crisp compatibility-
based segmentation rules and the associated complexity-based heuristic from previous
paragraphs are no longer appropriate. The class is rarely consistent even for instances
with identical attribute values, and thus it is hard to find any compatibility whatsoever
between attribute value pairs.

Instead, but in a similar style, we merge those attribute values which increase the
purity of the domain, not myopically but with respect to other attributes. As merging
never truly reduces the purity, possibly only increases it, we introduce m-error estimate
[Ces90], an improved embodiment of the Laplacean prior that penalizes small instance
sets. We set the value of m to 3, which works well on most domains.

Similarly, we merge away irrelevant attribute values. For example, for the OR concept
in ‘artificial’ on Fig. 6.12, three of four attribute value pairs are indistinguishable from each
other, and this heuristic will reduce the four attribute value pairs into merely two, without
any loss in true purity. This way, minimization of error achieves stellar performance on
the ‘artificial’ domain. Most importantly, it discovered the 3-way interactions (3-XOR),
and only dismissed random attributes. Therefore, minimization of error appears not to be
myopic. Unfortunately, on all other domains, it was not found useful for detecting either
useful concepts or pairs of attributes with high interaction gain.

6.5 Experimental Summary

We tried to search for interactions. Our study was based around comparing different
heuristics. We found out that interaction gain is a useful estimate of the interaction type,
unlike most other known measures. It is worth to replace pairs of attributes which truly
interact, or strongly falsely interact with a new attribute. Moderately falsely interacting
attributes were better off left alone, given no suitable alternatives.

Our 3-way interaction gain is myopic in sense that it is unable to discover perfect 4-way
interactions. Human-designed attribute structures do not distinguish between true and
false interactions, so they are of limited applicability in resolving interactions on natural
data.

A wrapper estimate of improvement of a näıve Bayesian classifier after joining the
pair of attributes was found to be a robust test of significance of an interaction given
only the training set of instances, but this conclusion is somewhat tautological. A useful
simplification of the wrapper estimate was the myopic wrapper estimate, in which only the
investigated pair of attributes was used to construct the näıve Bayesian classifier, while
all other attributes were neglected.

It very interesting that only strongly false interactions and strongly true interactions,
as measured by the interaction gain, yielded a positive quality gain, as measured by
the Kullback-Leibler divergence. Other probes did not provide much useful information,
although we note that minimal-error probe appears to be able to pinpoint multi-way
interactions.

6.5. Experimental Summary 86

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

-4 -3.5 -3 -2.5 -2

in
te

ra
ct

io
n

ga
in

MinComplexity heuristic value

Artificial

2-XOR
3-XOR

Cond-depend
Cond-relev
Correlated
Exclusive

OR
Random

mixed pairs

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

-7.5 -7 -6.5 -6 -5.5 -5 -4.5 -4 -3.5 -3 -2.5

in
te

ra
ct

io
n

ga
in

MinComplexity heuristic value

Nursery

employ
soc. health

struct. finan
structure

mixed pairs

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

-4 -3.5 -3 -2.5 -2 -1.5 -1

in
te

ra
ct

io
n

ga
in

MinComplexity heuristic value

HHS

neighbors
non-neighbors

Figure 6.12: The horizontal coordinate is a heuristic estimate of expected reduction in
error achieved by noise-proof segmentation. The vertical coordinate is interaction gain.

CHAPTER 7

Interaction Analysis and Significance

Statistics are like a bikini. What they reveal is suggestive, but what they

conceal is vital.

Aaron Levenstein

In this chapter, we will attempt to demonstrate that being informed about interactions
provides benefit to the data analyst. For that reason, we try to present the false and true
interactions in the domain in a comprehensive visual way.

As is our custom, we will detailedly investigate three natural domains, a very frequent
benchmark, the ‘adult’ or ‘census’ data set [HB99], and the natural domain ‘HHS’ we
already used in Ch. 6, which contains relatively few instances. Furthermore, we explored
a new medical data set ‘breast’ with many instances, contributed by Dr. T. Čufer and
Dr. S. Borštner from the Institute of Oncology in Ljubljana.

Because ‘adult’ and ‘breast’ data sets contain numerical attributes, we used the Fayyad
and Irani entropy-based algorithm to discretize them, as implemented in [DZ02], except
when it would cause an attribute to be collapsed in a single value. In such a case, we
used equal-frequency discretization with two intervals, with the median value being the
interval boundary.

Missing values exist in the ‘adult’ and ‘breast’ data sets, and we represented them with
a special attribute value. We could have assumed that the values are missing at random,
but they rarely miss at random. It might be beneficial to introduce such an assumption
in small data sets, if this were our focus (it was not).

Analyzing a domain with respect to interactions between attributes provides a useful
representation to a human analyst. We will distinguish true from false interactions, as
different visualizations suit each type. For example, the false interactions tend to be
transitive, whereas true interactions tend not to be. Therefore, a hierarchical presentation
of the false interactions captures their mutual similarities best, whereas a graph presents
the few true interactions that may exist.

In this chapter, we will be concerned solely with 3-way interactions between two at-
tributes and the label. Therefore, when an interaction between two attributes is men-
tioned, we really mean a 3-interaction between the two attributes and the label.

7.1. False Interactions 88

ag
e

lo
ss

_o
f_

co
ns

ci
ou

sn
es

s
di

ab
et

es
ph

le
bo

th
ro

m
bo

si
s

si
tti

ng
_a

bi
l

ho
sp

ita
liz

at
io

n_
du

ra
tio

n
in

ju
ry

_o
pe

ra
tio

n_
tim

e
la

te
_n

eu
ro

lo
gi

ca
l_

co
m

pl
ne

ur
ol

_l
es

io
n

pu
lm

on
ar

y_
em

bo
lis

m
m

yo
si

tis
w

al
ki

ng
_a

bi
l

m
ob

ili
ty

_b
ef

or
e_

op
er

at
io

n
ca

rd
io

va
sc

ul
ar

_d
is

ea
se

lu
xa

tio
n

la
te

_d
ee

p_
in

fe
ct

io
n

la
te

_l
ux

at
io

n
ne

ur
ol

og
ic

al
_d

is
ea

se
en

do
pr

os
th

es
is

de
ep

_i
nf

ec
tio

n
pu

lm
on

ar
y_

di
se

as
e

su
pe

rf
ic

ia
l_

in
fe

ct
io

n
ot

he
r_

di
se

as
e

ge
ne

ra
l_

co
m

pl
op

er
at

io
n_

du
ra

tio
n

op
er

at
io

n_
co

m
pl

st
an

di
ng

_a
bi

l
co

op
er

at
iv

en
es

s

0
50

0
10

00
15

00

H
ei

gh
t

Figure 7.1: False interaction dendrogram analysis on domain ‘HHS’.

7.1 False Interactions

Attributes that interact falsely with the label should appear close to one another, while
those which do not should be placed further apart. False interactions are transitive, so
either clustering or multidimensional scaling are appropriate presentation methods. We
used the hierarchical clustering method ‘agnes’ [KR90, SHR97], as implemented in the
‘cluster’ library for the R environment [IG96]. The results were obtained with Ward’s
method, described in more detail in Sect. A.1. The dissimilarity function, which we
express as a matrix D, was obtained with the following formula:

D(A,B) =

NA if IG(ABC) > 0.001,

1000 if |IG(ABC)| < 0.001,

−1/IG(ABC) if IG(ABC) < −0.001.

(7.1)

The significance of (7.1) is that the dissimilarity is low when the interaction gain
is negative, therefore the attributes are close. On the other hand, when the value of
interaction gain is close to zero, they appear distant: independence pushes attributes
apart. For true interactions, we cannot say anything about their proximity or remoteness,
and we therefore assign the value of NA (not available), trying not to affect placement.
Because the value of NA is not supported by the clustering algorithm, we replace it with
the average dissimilarity in that domain. In summary, groups of dependent attributes will
be clustered close together, while independent attributes will lie apart.

The results from the clustering algorithm are visualized as dendrograms in Figs. 7.3-7.2.
The height of a merger of a pair of attributes in a dendrogram is also an indicator of their

7.1.
F
alse

In
teraction

s
89

UPA
GRADUS

GRADSEL
UPASEL

UPARSEL
PAI1

PAI1SEL
ODDALJEN
LOKALIZA

DFS2
ER.B
PR.B

LOKOREG.
NEOKT

PAI2
TKL

VASK.INV
KTZHT

NKL
UICC

UPAR
DRUZINSK

MENOPAVZ
TIP.TU

OPERACIJ
KATL

KAT.D
PAI2SEL

ANAMNEZA
PREGL.BE

RT
KAT.L

MENSEL
TIPTUSEL

VELIKOST
VEL.C
VELSEL

MKL
FAZAS

NOV.TU
STEVILO
NODSEL
INV.KAPS

LIMF.INV
INVAZIJA
INVAZIJ1

HR
HT

KT
ZDRAVLJE

F
igu

re
7.2:

F
alse

in
teraction

d
en

d
rogram

for
d
om

ain
‘b

reast’.

age

marital−status

relationship

hours−per−week

sex

workclass

native−country

race

education

education−num

occupation

capital−gain

capital−loss

fnlwgt

0 200 400 600 800 1000

HeightF
igu

re
7.3:

F
alse

in
teraction

d
en

d
rogram

for
d
om

ain
‘ad

u
lt’.

7.2. True Interactions 90

proximity. The lower the merger in the tree, the closer the pair is. For example, in Fig. 7.3,
the most falsely interacting pairs of attributes are martial status-relationship, and
education-education num.

In Fig. 7.3, attributes age, martial status and relationship give us virtually the
same information about the label (earnings). The attribute race appears to provide novel
information. On the other hand, attribute fnlwgt provides either completely unique in-
formation, or no information at all. These dendrograms do not provide any information
about informativeness of individual attributes, merely about the similarities between in-
formativenesses of attributes. Feature selection which disregards true interactions could
be based simply on picking the most informative attribute from a given cluster.

One could contrast our method to the well-known variable clustering approach, as
described in, e.g., [SAS98]. However, we do not compute dissimilarity merely on the basis
of the similarity of the attribute values. We instead compare attributes with respect to the
similarity of information they provide about the class. We also disregard true interactions.

It is surprising that the false interaction dendrograms appear to create meaningful
clusterings without any background knowledge whatsoever. All they take into account is
the sharing of information about the label in the attributes.

7.2 True Interactions

We may display true interactions in a graph, where vertices correspond to attributes and
edges indicate the existence of 3-way interactions with respect to the class. We used the
dot software for rendering the graphs [KN].

We identify true interactions by a positive value of interaction gain. It was noticeable
already in Ch. 6 that most interactions are weak and may only be artifacts of noise. For
that reason, we only pick the strongest interactions, with interaction gain above some cut-
off point. Figs. 7.8–7.10 contain renderings of true interactions, as estimated by interaction
gain. The edges are labeled with interaction gain, expressed as the percentage of the largest
interaction gain in the domain. The opacity of the edge is adjusted with respect to that
percentage, for better clarity.

The cut-off point was set at the ‘knee-point’ in the sorted series of interaction gains.
For example, the series for ‘HHS’ is

[100, 97, 83, 76, 72, 71, 68, 64, 63, 62, 61, 60, 56, 45, 45, 44, 44, 43, 43, 42, 42, 42, 40, 40, . . .],

and its knee-point appears to be a discontinuity around 50. Beyond 50, the interaction
gains start being densely distributed, and are likely to be sampled from a normal distribu-
tion centered around 0, also visible in between the two humps in Fig. 6.3. The large hump
are the ‘random’ interaction gains, whereas the small hump are the true interactions. The
distribution of interaction gain in most domains has such a shape.

7.2.1 Applicability of True Interactions

It is interesting to compare the interaction graph in Fig. 7.9 with the classification tree
induced by the C4.5 classification tree learning algorithm [Qui93] for domain ‘breast’
in Fig. 7.7. These same two attributes are the interaction that performed best. This
classification tree yielded perfect classification accuracy. Therefore, interaction gain could
possibly be a non-myopic heuristic split selection criterion.

7.2. True Interactions 91

endoprosthesis

operation_duration

100%

diabetes

neurological_disease

98%

hospitalization_duration

83%

operation_compl

65%

injury_operation_time

76%

other_disease

61%

luxation

73%

mobility_before_operation

71%

60%

standing_abil

64%

walking_abil

69% 57% 63%

Figure 7.4: True interaction graph of domain ‘HHS’.

ODDALJEN

LOKOREG.

100%

DFS2

PR.B

64%

ER.B

86%

NODSEL

55%

UPAR

78%

PAI2SEL

77%

PAI2

77%

UPARSEL

74%

LOKALIZA

71%

VEL.C

MENOPAVZ

67%

TKL

60%

ZDRAVLJE

65%

GRADUS

TIP.TU

52%

Figure 7.5: True interaction graph of domain ‘breast’.

native_country

age

100%

race

23%

workclass

75%

occupation

75%

capital_loss

capital_gain

63%

education

59%

marital_status

52%

relationship

46%

hours_per_week

35%

Figure 7.6: True interaction graph of domain ‘adult’.

7.3. Experimental Summary 92

ODDALJEN > 0: y (119.0)

ODDALJEN <= 0:

:...LOKOREG. <= 0: n (506.9)

LOKOREG. > 0: y (17.1/0.1)

Figure 7.7: A perfect tree classifier for the ‘breast’ domain, learned by C4.5.

If we mentioned the utility of false interactions to feature selection, we may now men-
tion the utility of true interactions to discretization: most procedures for discretization
are univariate and only discretize one attribute at a time. When there are true interac-
tions, additional values in either of the attributes may prove uninformative and could be
neglected. For that reason it would be sensible to discretize truly interacting groups of
attributes together, in a multivariate fashion. Such a procedure was suggested in [Bay00].
It seems that for falsely interacting groups of attributes, multivariate discretization is not
necessary, but such claim should be tested.

7.2.2 Significant and Insignificant Interactions

Rather than by adjusting the threshold, we may measure the magnitude of an interaction
through its performance gain, as measured by the wrapper estimate of improvement after
joining the attributes in a Cartesian product, described in Sect. 6.2.3. This is the same
as performing the pragmatic interaction test from Sect. 4.3.2. Regardless of positive
interaction gain, we disregard those interactions that do not also yield an improvement in
classification performance. It is easy to see that only a small number of interactions are
truly significant.

The edges in our visualizations of true interaction graphs in Figs. 7.8–7.10 are labeled
with the quality gain, expressed as percentages of the best-performing interaction. The
most significant interaction in the domain is marked with 100%.

In the visualization of domain ‘adult’ in Fig. 7.10, there is a single interaction worth
mentioning: between capital gain and capital loss. The fnl weight attribute is
likely to be noise, and noise has a tendency of overfitting the data better when there are
more values. No wonder that this domain has been used so frequently.

7.3 Experimental Summary

We can present false interactions to a human analyst in the form of a dendrogram, created
with a hierarchical clustering algorithm. In the dendrogram, falsely interacting attributes
appear close together, while independent attributes appear far from one another.

We illustrate true interactions in an interaction graph, where edges indicate the exis-
tence of a true 3-way interaction between the pair of attributes, denoted as vertices, with
the label.

Although there are many candidates for true interactions, only a small number of them
are truly important. We present a significance testing method, based on the pragmatic
interaction test. We evaluate the improvement of classifier’s performance when a pair of
attributes is replaced with their Cartesian product. We can confirm that a true interaction

7.3. Experimental Summary 93

endoprosthesis

hospitalization_duration

64%

operation_duration

100%

deep_infection

1%

myositis

1%

general_compl

3%

1%

4%

pulmonary_disease

1%

other_disease

1%

2%

injury_operation_time

0%

loss_of_consciousness

0%

phlebothrombosis

1%

late_deep_infection

1%

late_luxation

1%

late_neurological_compl

0%operation_compl

2% 1%

2%

neurological_disease

40% 0%

1%

0%

luxation

1%

2%

1%

1%

standing_abil

1%

cooperativeness

1%

0%

superficial_infection

1%

1%

0%mobility_before_operation

5%

cardiovascular_disease

8%

sitting_abil

2%

age

0%

2%

11%

diabetes

2%

1%

neurol_lesion

0%

1%

Figure 7.8: True interaction analysis on domain ‘HHS’ with performance gain cut-off.

7.3. Experimental Summary 94

DRUZINSK

FAZAS

27%

KTZHT

0%

UPA

1%

VASK.INV

0%

1%

OPERACIJ

0%

RT

0%

UPASEL

2%

0%

PAI2

0%

PAI2SEL

0%

INV.KAPS

2%

NEOKT

0%

ANAMNEZA

1%

1%

33%

LOKOREG.

1%

ODDALJEN

2%

MKL

0%

PREGL.BE

0%

0% 0%

NOV.TU

0%

MENSEL

1%

NKL

1%

0%

UICC

0%

KT

0%

STEVILO

0%

INVAZIJ1

1%

1%

PAI1

4%

0%

PAI1SEL

0% 0%

UPARSEL

3% 2%20%

0%

INVAZIJA

3%

0%

HR

PR.B

4%

HT

3%

1%

1% 0% 0%

0%

ZDRAVLJE

0%0%

LOKALIZA

0%0%

KAT.L

0%

0%

VELSEL

0%NODSEL

0%

DFS2

0%

UPAR

0%

1%

GRADSEL

2%

TIP.TU

0%

GRADUS

0%

LIMF.INV

0%

ER.B

0%

KATL

1% 2%

100%

KAT.D

2%

0%

VEL.C

2%

Figure 7.9: True interaction analysis on domain ‘breast’ with performance gain cut-off.

fnlwgt

age

36%

workclass

18%

education

16%

education_num

22%

relationship

24%

capital_loss

capital_gain

100%

hours_per_week

20%

Figure 7.10: True interaction analysis on domain ‘adult’ with performance gain cut-off.

7.3. Experimental Summary 95

can only be significant if there is a lot of data, as it was already observed in [MJ93].
However, there are usually many false interactions.

We suggest that being informed about true interactions may be useful to non-myopic
split selection in construction of classification trees, and may provide a starting point for
non-myopic multivariate discretization. On the other hand, false interactions could be
useful for feature selection.

Feature selection is meaningful for two reasons: removing irrelevant noisy attributes
and removing duplicated attributes. On the true side, feature selection which does not
consider interactions might dispose of attributes which may initially appear noisy, but
disclose information inside a true interaction. On the false side, feature selection which
simply disposes of correlated attributes is not doing its job well.

7.3. Experimental Summary 96

CHAPTER 8

Better Classification by Resolving

Interactions

Torture the data long enough and they will confess to anything.

Anonymous

Although interaction dendrograms and interaction graphs are pretty, their usefulness
is subjective. In this chapter we will show how knowledge of interactions can improve the
objective performance of machine learning algorithms. We use the same data sets as in
Ch. 7, identically processed.

The core idea for improving classification performance with knowledge of interactions is
interaction resolution. If a simple learning algorithm receives a particular set of attributes,
it assumes that different attributes are not interacting in complex ways with respect to the
class. Our initial example was the näıve Bayesian classifier, but there are other algorithms
that take a similar assumption, for example logistic regression (LR) [PPS01], and optimal
separating hyperplanes [Vap99] (also see Sec. A.2), a type of support vector machines
(SVM) with a linear kernel function. Both are built around a projection function that
finds an informative hyperplane in the attribute space, and are designed for domains with
two classes. Because they are linear, they are also sensitive to interactions.

Logistic regression determines this hyperplane with gradient descent or some other
numerical optimization procedure as to maximize some statistical criterion, usually likeli-
hood of the training data given the hyperplane and an estimated parameter of the logistic
distribution. Apart from the hyperplane, which determines the points of equiprobability
of both classes, there is another parameter to the logistic distribution, which defines the
‘slant’ of the logistic distribution function, or its scale parameter, and is estimated from
the data. When the scale is zero, logistic regression behaves like a linear discriminant.

Optimal separating hyperplanes are discriminative learning algorithms, where the hy-
perplane is placed as to maximize the distance from the nearest instances of either class.
Usually, quadratic programming is used for this purpose. Label’s probability distribution
is a simple threshold function of the distance to the hyperplane, unless we instead apply an

8.1. Implementation Notes 98

estimation function. In our experiments, we used univariate logistic distribution instead,
and estimated both of its parameters, the scale and the mean.

8.1 Implementation Notes

Our experiments were performed with the Orange machine learning toolkit [DZ02]. It
implements the näıve Bayesian classifier (NBC), function decomposition (HINT), and
classification trees (orngTree). Since our data is non-deterministic, we used minimal-
error function decomposition (HINT-ME). Orange also contains the C4.5 tree induction
algorithm [Qui93]. We used extensions to Orange [Jak02], which implement support vector
machines (SVM) [CL01], and logistic regression (LR) [Mil92]. It is important to know that
neither logistic regression nor support vector machines are standardized. There are many
algorithms and implementations with differing performance.

Both logistic regression and SVM classifiers are designed for classification in binary
classification problems with two classes. For problems with n classes, we create n binary
classification problems, and the task is to separate instances of one class from those of
different class. For fusing all these probabilities in a single probability distribution we
used the algorithm described in [Zad02] and implemented in [Jak02].

In SVM, we used a separate feature dimension for each attribute-value pair, even
for binary attributes. For logistic regression, a single variable for each binary attribute
proved to be more effective. In our experiments, the bivalent representation (−1, 1) of
attributes worked well for SVM, while the binary representation (0, 1) proved suitable
to logistic regression. We used dummy coding of nominal attributes in LR and SVM: a
‘dummy’ binary attribute is created for every multi-valued nominal attribute value. The
two classification tree learning algorithms had the advantage of using non-discretized data
in the ‘adult’ and ‘breast’ data sets.

Although SVM is a powerful method, able to capture non-linear relationships between
attributes and class, we used only the simplest, linear SVM kernel, with the option C =
1000. The complexity of such a classifier is comparable to the one of NBC. We discuss
the definition slightly more detailedly in Sect. A.2. To obtain probabilistic classification
using the SVM, we used 10-fold internal cross-validation to create a data set containing
the distance to hyperplane as the sole descriptor. We then estimated the two parameters
of the logistic distribution to build the probabilistic model.

We compared the different techniques with the unarguably simple method of classi-
fication accuracy, and beside it, with the more sensitive Kullback-Leibler divergence. If
a classifier estimates the probability of the correct class to be zero, the KL divergence
would reach infinity. To avoid penalizing such overly bold classifiers too much, we add
ε = 10−5 to all the probabilities before computing the logarithm. Natural logarithms were
used to compute KL divergence. For some instance i, the KL divergence is computed as
ln(1 + ε)− ln(Pr{d(i) = C(i)}+ ε). This way, the KL divergence will never be more than
11.6 for any instance. This correction factor only affects the value of evaluation function
near zero, elsewhere the influence is imperceptible.

We have not attempted to use sophisticated techniques for evaluation, such as infor-
mation score, area under ROC, or the McNemar’s test, because the differences between
algorithms are ample enough. We used simple 10-fold cross-validation in all cases, and av-
eraged the value of evaluation function over all the instances. We list the standard errors

8.2. Baseline Results 99

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

0

5

10

15

misses

hits

Figure 8.1: Distribution of true class probabilities as provided by the näıve Bayesian
classifier for unseen data in the ‘adult’ domain. Above is the frequency distribution of
probabilities for correct classifications, and below is the frequency distribution of proba-
bilities for mistaken classifications.

next to each result. The standard error is estimated across the 10 folds of cross-validation,
both for KL divergence and the error rate. For that reason, it should be viewed only as an
illustration of result stability with respect to folds, and not as an instrument for judging
the significance of result improvement.

Some tests were not executed, purely because of inefficient implementations of certain
algorithms. For example, our implementation of SVM was not able to handle the ‘adult’
data set, as the performance of SVM drops rapidly with a rising number of training
instances, even if it is extremely effective with a large number of attributes.

8.2 Baseline Results

The base classification results are presented in Table 8.1. It is easy to see that the SVM
wins in the ‘HHS’ domain, classification trees and logistic regression in the ‘breast’ domain,
and NBC in the ‘adult’ domain. In the comparison we included the timid learner which
ignores all the attributes, and merely offers the estimated label probability distribution as
its sole model.

The performance of the näıve Bayesian classifier on the ‘adult’ domain is interesting:
it has the worst error rate, yet the best KL divergence. This indicates that it is able
to timidly but reliably estimate the class probabilities, while logistic regression tends to
be overly confident. Judging by Fig. 8.1, when the NBC estimated the probability to
be different from 1, it was a lot likelier that it was a miss than a hit. On relatively few
occasions was NBC confidently wrong.

8.2. Baseline Results 100

‘adult’ Kullback-Leibler Error Rate

NBC 0.416 ± 0.007 16.45 ± 0.28

LR 1.562 ± 0.023 13.57 ± 0.20

C4.5 0.619 ± 0.015 15.62 ± 0.24

Timid 0.552 ± 0.001 24.08 ± 0.13

‘HHS’ Kullback-Leibler Error Rate

NBC 2.184 ± 0.400 56.25 ± 3.51

LR 1.296 ± 0.106 56.25 ± 2.72

Linear SVM 1.083 ± 0.022 55.36 ± 4.52

SVM: RBF Kernel 1.103 ± 0.025 59.82 ± 4.52

SVM: Poly Kernel 1.116 ± 0.023 63.39 ± 4.72

HINT-ME 1.408 ± 0.116 60.71 ± 6.04

orngTree 6.822 ± 0.699 62.50 ± 5.62

C4.5 3.835 ± 0.470 58.93 ± 4.98

Timid 1.112 ± 0.013 61.61 ± 4.89

‘breast’ Kullback-Leibler Error Rate

NBC 0.262 ± 0.086 2.80 ± 0.72

LR 0.016 ± 0.016 0.14 ± 0.14

Linear SVM 0.032 ± 0.021 0.28 ± 0.19

SVM: RBF Kernel 0.032 ± 0.021 0.28 ± 0.19

SVM: Poly Kernel 0.151 ± 0.049 1.54 ± 0.44

orngTree 0.081 ± 0.027 0.70 ± 0.23

C4.5 0.000 ± 0.000 0.00 ± 0.00

Timid 0.517 ± 0.019 21.12 ± 1.40

Table 8.1: Base classification results without resolving interactions.

8.3. Resolution of Interactions 101

f ← 0 {Number of failures}
H ← {A1, A2, . . . , An}
b← q(L(H)) {Base performance rate}
I ← H×H {All attribute pairs}
while f < N ∧ I 6= ∅ do

〈A,B〉 ← arg maxI∈I IG3(I, C)
I ← I \ {〈A,B〉} {Eliminate this interaction}
Ĥ ← R(H, 〈A,B〉)
b̂← q̂(L, Ĥ)
if b̂ > b then {Is the new attribute set superior?}

f ← 0
H ← Ĥ
b← b̂

else

f ← f + 1
end if

end while

return L(H)

Figure 8.2: General framework of an interaction resolution algorithm.

8.3 Resolution of Interactions

If there is an interaction between a pair of attributes, we resolve it using a segmentation
function which considers both attributes and creates a new nominal joint attribute. The
new attribute can be seen as a range of some segmentation function. The simplest seg-
mentation function is the Cartesian product, but we also mentioned in Sect. 8.4 that we
can apply the tool of attribute reduction to reduce the number of joint attribute values.

We are given some simple learning algorithm L, for example the näıve Bayesian clas-
sifier, logistic regression, or optimal separating hyperplane. We are given an evaluation
function, such as the classification accuracy, or Kullback-Leibler divergence. Furthermore,
we are given a resolution function R maps from an interaction and a set of attributes into
a new set of attributes where that interaction no longer exists.

Our algorithm, presented in Fig. 8.2, uses interaction gain to guide the model search.
We use a failure counter to determine when to stop the search, and we do that after
N consecutive failures. To determine the worth of a particular model, we use a wrapper
evaluation function q̂, which trains a given learning algorithm with a given attribute set on
the remainder set, and tests it on the validation set, for a number of remainter/validation
set splits. Throughout the algorithm, the training data set is used, so we do not mention
it explicitly as a parameter.

We will now address different choices of the learning algorithm, and the resolution
function. Furthermore, we will distinguish resolution of false and true interactions.

8.4. Attribute Reduction 102

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0 10 20 30 40 50 60 70

im
pr

ov
em

en
t b

y
re

pl
ac

em
en

t

number of joint attribute values

breast

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0 200 400 600 800 1000 1200 1400 1600
im

pr
ov

em
en

t b
y

re
pl

ac
em

en
t

number of joint attribute values

Adult/Census

‘breast’ ‘adult’

Figure 8.3: Relationship between joint attribute complexity and quality gain after resolv-
ing the attribute pair.

8.4 Attribute Reduction

The resolution method, in our case the Cartesian product, is a parameter to the wrapper
test of usefulness or significance of a particular interaction. Given a better resolution
method, such as one that resolves the interaction with fewer attribute values than there
are in the Cartesian product, the test could become more sensitive.

Is this needed? Several attributes in the ‘adult’ data set have a very large number
of values, which interfere with the computations of improvement. They do not interfere
with computations of interaction gain, however. As illustrated in Fig. 8.3, attributes with
very many values indeed cannot improve classification accuracy, regardless of the instance
numerousness in ‘adult’. It may thus make sense to simplify the Cartesian products before
further processing with some attribute reduction algorithm.

For that purpose, we conducted an experiment using the minimal-error attribute re-
duction in the place of a joint segmentation function [Zup97], briefly described in Sect. 5.2.
Starting with the joint Cartesian product attribute, we keep merging pairs of values which
are similar with respect to the class, as long as the estimated error keeps dropping. Al-
though the algorithm originally also considers similarity of the class with respect to other
attribute values, we disregard all other attributes, as it is not our intention to resolve
other interactions. The process of value merging continues for as long as the classification
performance is expected to rise, using m-error estimate with m = 3.

As to remove the potentially positive influence of minimal-error reduction in individ-
ual attributes, we reduce individuals attributes first, without context. We perform the
reduction of the joint attribute from original attributes, as individual reduction may dis-
card information which is only useful when both attributes are present. We compute the
quality gain by subtracting the quality of the domain with a NBC voting between the
two independently reduced attributes with the quality of the NBC with the reduced joint
attribute. As earlier, we use interaction gain computed with the Cartesian product to

8.5. Resolving False Interactions 103

ODDALJEN

LOKOREG.

100%

MENOPAVZ

45%

LOKALIZA

71%

HT

33%

OPERACIJ

60%

GRADSEL

48%

TIP.TU

46%

GRADUS

43%

PAI2

43%

KAT.D

42%

STEVILO

39%

NODSEL

39%

RT

39%

UICC

38%

NKL

38%

KT

36%

PAI1SEL

56%

DFS2

55%

INV.KAPS

55%

NOV.TU

50%

TKL

31%50%

30%

LIMF.INV

37%

KAT.L

32%

Figure 8.4: True interaction graph with MinErr resolution on domain ‘breast’.

classify the interaction.

The results are illustrated in Figs. 8.4–8.5. The first observation is that many more
interactions are now significant, also demonstrated by Figs. 8.6–8.8. Several interesting
interactions appear, for example the broad moderating influence of the native country in
‘adult’. However, the improvement is not consistent, and interactions which were found
significant with the Cartesian product attribute disappear after minimal-error reduction,
for example the capital gain/loss interaction in ‘adult’.

8.5 Resolving False Interactions

Feature selection can be seen as a simple form of attribute reduction where only a single
attribute survives the reduction. We tried to do better than that. We used the aforemen-
tioned minimal-error attribute reduction. No context was used in attribute reduction, as
suggested in [Dem02]. It is obvious that the pairs of attributes with the lowest interaction
gain should be tried first, in contrast to the interaction resolution algorithm intended for
true interactions in Fig. 8.2, which seeks maximal interaction gains.

Once we resolve a false interaction, we replace the original pair of attributes with
the new attribute. If in some successive step we try to resolve an attribute which has
already been resolved, we simply use its remaining descendant instead. We perform no
checking for true interactions among falsely interacting attributes, relying on the wrapper
evaluation function to prevent missteps.

As it can be seen in Table 8.2, the results are consistently good, especially for the NBC.
In two of three cases, the best classifier’s result improved, and in the remaining case nothing
changed. Only in ‘HHS’ there was some result deterioration in KL divergence scores,
while classification accuracy sometimes even improved. Perhaps the default parameter of
m = 3.0 should be adjusted to match the large amount of ignorance in the ‘HHS’ domain.
Also, internal cross-validation used by the wrapper evaluation function is not reliable on
small data sets: a leave-one-out approach would be feasible performance-wise in this case.
Nevertheless, on ‘HHS’ the SVM classifier’s baseline performance, which was best prior to
resolution, even improved after resolving false interactions.

8.5. Resolving False Interactions 104

sex

education_num

100%

native_country

98%

18%

relationship

8%

hours_per_week

5%

education

98%

18%

fnlwgt

85%

18%

16%

16%

3% 2%

race

29%

18%

age

22%

30%

44%occupation

25%

32%

workclass

11%

25%

marital_status

12%

Figure 8.5: True interaction graph with MinErr resolution on domain ‘adult’.

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

-0.35 -0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1

im
pr

ov
em

en
t b

y
re

pl
ac

em
en

t (
C

ar
te

si
an

)

improvement by replacement (MinErr)

breast

Figure 8.6: Comparing the improvement in resolution with Cartesian product and the
MinErr procedure on the ‘breast’ domain.

8.5. Resolving False Interactions 105

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3

im
pr

ov
em

en
t b

y
re

pl
ac

em
en

t (
C

ar
te

si
an

)

improvement by replacement (MinErr)

HHS

Figure 8.7: Comparing the improvement in resolution with Cartesian product and the
MinErr procedure on ‘HHS’.

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

-0.08 -0.06 -0.04 -0.02 0 0.02 0.04

im
pr

ov
em

en
t b

y
re

pl
ac

em
en

t (
C

ar
te

si
an

)

improvement by replacement (MinErr)

Adult

Figure 8.8: Comparing the improvement in resolution with Cartesian product and the
MinErr procedure on ‘adult’.

8.6. Resolving True Interactions 106

‘adult’ Kullback-Leibler Div. Error Rate (%)

Baseline False + ME-R Baseline False + ME-R

NBC 0.416 ± 0.007 0.352 ± 0.006 16.45 ± 0.28 15.00 ± 0.27

LR 1.562 ± 0.023 0.418 ± 0.124 13.57 ± 0.20 13.24 ± 0.27

Linear SVM — — — —

‘HHS’ Kullback-Leibler Div. Error Rate (%)

Baseline False + ME-R Baseline False + ME-R

NBC 2.184 ± 0.400 2.238 ± 0.394 56.25 ± 3.51 50.89 ± 4.08

LR 1.296 ± 0.106 1.352 ± 0.093 56.25 ± 2.72 58.04 ± 2.40

Linear SVM 1.083 ± 0.022 1.081 ± 0.020 55.36 ± 4.52 52.68 ± 6.21

‘breast’ Kullback-Leibler Div. Error Rate (%)

Baseline False + ME-R Baseline False + ME-R

NBC 0.262 ± 0.086 0.187 ± 0.073 2.80 ± 0.72 1.40 ± 0.46

LR 0.016 ± 0.016 0.016 ± 0.016 0.14 ± 0.14 0.14 ± 0.14

Linear SVM 0.032 ± 0.021 0.032 ± 0.021 0.28 ± 0.19 0.28 ± 0.19

Table 8.2: Comparison of baseline results with those obtained after resolving false inter-
actions using minimal-error attribute reduction.

In the ‘breast’ domain, false interaction resolution did not yield any improvement
to SVM and LR. Probably feature weighting, which is inherent in these two methods,
successfully eliminated the effects of false interactions in this domain.

In all cases, there were relatively few false interactions resolved. Hence, the complexity
of the classifier did not increase significantly. On the other hand, we can view resolution
of false interactions with attribute reduction as simplification of the classifier, and not
vice versa. In fact, a human analyst would quite easily understand which attributes were
joined from the interaction dendrogram.

8.6 Resolving True Interactions

We again used the minimal-error attribute reduction algorithm, but this time for resolving
true interactions. As with false interaction resolution, we may have already eliminated an
attribute when a new interaction involving that attribute is suggested. In such a case, we
resolve its descendants, if only they have not been merged into a single attribute already.

An important concept in resolving true interactions is context. Assume A interacts
with B, and B interacts with C. If we first resolved A and B with attribute reduction,
we might have disposed of values which will prove useful when resolving AB with C. For
that reason, we include all the attributes that significantly interact with either of the two
attributes, whose interaction we are resolving, in the context. As a significance criterion
for this purpose, we used the pragmatic test of interaction with the Cartesian product
resolution method, reasoning that it is appropriate because the context attributes in the
minimal-error reduction algorithm are not reduced either.

8.7. Experimental Summary 107

‘adult’ Kullback-Leibler Div. Error Rate (%)

Baseline True + ME-R Baseline True + ME-R

NBC 0.416 ± 0.007 0.392 ± 0.007 16.45 ± 0.28 15.61 ± 0.25

LR 1.562 ± 0.023 1.564 ± 0.024 13.57 ± 0.20 13.58 ± 0.21

Linear SVM — — — —

‘HHS’ Kullback-Leibler Div. Error Rate (%)

Baseline True + ME-R Baseline True + ME-R

NBC 2.184 ± 0.400 2.411 ± 0.379 56.25 ± 3.51 56.25 ± 3.51

LR 1.296 ± 0.106 1.319 ± 0.107 56.25 ± 2.72 57.14 ± 3.49

Linear SVM 1.083 ± 0.022 1.124 ± 0.038 55.36 ± 4.52 58.04 ± 3.57

‘breast’ Kullback-Leibler Div. Error Rate (%)

Baseline True + ME-R Baseline True + ME-R

NBC 0.262 ± 0.086 0.171 ± 0.086 2.80 ± 0.72 1.40 ± 0.75

LR 0.016 ± 0.016 0.016 ± 0.016 0.14 ± 0.14 0.14 ± 0.14

Linear SVM 0.032 ± 0.021 0.016 ± 0.016 0.28 ± 0.19 0.14 ± 0.14

Table 8.3: Comparison of baseline results with those obtained after resolving true inter-
actions using minimal-error attribute reduction.

The importance of resolving true interactions is lower than that of resolving false
interactions in our domains. Still, the results improved, except in the ‘HHS’ domain. Ap-
parently, there are either insufficient training instances, or simply no truly significant true
interactions in this domain. The results worsened because a wrapper evaluation function
requires a sufficient number of instances to be reliable at validating model variants. Per-
haps the standard error in wrapper estimates should be considered, and only significant
improvements put into effect.

In Table 8.4 we compare the results obtained with the minimal-error attribute reduc-
tion and those without attribute reduction. Attribute reduction always helped the näıve
Bayesian classifier, only in one case the results worsened: in the domain ‘HHS’ for the
SVM, where the wrapper estimation has problems correctly validating models. On ‘adult’,
resolution without reduction created too many attribute values for LR to even function
properly.

8.7 Experimental Summary

Our significance testing method is biased against attributes with many values, so we
also examined the results by using the minimal-error attribute reduction. Minimal-error
attribute reduction simplifies the joint Cartesian product attributes, which causes many
more interactions to become significant.

The use of attribute reduction generally improved results for both false and true inter-
actions. Although resolution is indeed required for resolving true interactions, we thought
that false interactions could be better resolved by other, simpler means, such as attribute

8.7. Experimental Summary 108

‘adult’ Kullback-Leibler Div. Error Rate (%)

True + CART True + ME-R True + CART True + ME-R

NBC 0.414 ± 0.007 0.392 ± 0.007 16.39 ± 0.26 15.61 ± 0.25

LR — 1.564 ± 0.024 — 13.58 ± 0.21

Linear SVM — — — —

‘HHS’ Kullback-Leibler Div. Error Rate (%)

True + CART True + ME-R True + CART True + ME-R

NBC 2.879 ± 0.482 2.411 ± 0.379 55.36 ± 4.07 56.25 ± 3.51

LR 1.467 ± 0.146 1.319 ± 0.107 57.14 ± 2.46 57.14 ± 3.49

Linear SVM 1.100 ± 0.023 1.124 ± 0.038 55.36 ± 5.02 58.04 ± 3.57

‘breast’ Kullback-Leibler Div. Error Rate (%)

True + CART True + ME-R True + CART True + ME-R

NBC 0.229 ± 0.086 0.171 ± 0.086 0.84 ± 0.37 1.40 ± 0.75

LR 0.016 ± 0.016 0.016 ± 0.016 0.14 ± 0.14 0.14 ± 0.14

Linear SVM 0.016 ± 0.016 0.016 ± 0.016 0.14 ± 0.14 0.14 ± 0.14

Table 8.4: Comparison of true interaction resolution with attribute reduction (ME-R) and
without attribute reduction (CART).

selection and weighting, inherent in LR and SVM. It was a surprise to us that false inter-
action resolution improved results also for these two methods.

We can confirm previous observations, e.g., in [MJ93], that significant true interac-
tions are relatively rare, and can only be supported by a considerable amount of data.
Such support is required both to improve classification performance by resolving them,
and to demonstrate their significance. By our understanding, improving classification
performance and demonstrating significance is indistinguishable.

Support vector machines and logistic regression performed well, but were not particu-
larly robust. They often demonstrated excessive confidence. If they were made more ro-
bust, they would have a good chance of rarely losing in competing with the näıve Bayesian
classifier. On the other hand, we can notice that sophisticated methods were in only one
case (‘breast’) better than simple methods.

Our results should be viewed as preliminary, but encouraging. There are many possible
extensions, and improvements that could be worth considering:

� The use of interaction gain as the guiding principle might be not ideal: we could,
instead or in addition to it, use the quality gain with the appropriate attribute
reduction method for resolution, which we used for pragmatic interaction significance
testing.

� We could speed up the procedure by resolving all the significant interactions, rather
than performing the time-consuming model search iteratively though the list of can-
didate interactions.

� We did not use the classification tree learning algorithms as a attribute resolution

8.7. Experimental Summary 109

algorithm, to replace minimal-error attribute reduction. If we did that, we would
check that the thus obtained segmentations achieve good quality with respect to
probabilistic evaluation functions.

� If two continuous attributes interact, the segmentation obtained with a classification
tree learning algorithm may be a good multivariate discretization of both attributes.

� It would be interesting to compare feature selection and feature weighting with
resolution of false interactions. We included logistic regression and SVM to be able
to investigate whether feature weighting, inherent in these two procedures, obsoletes
the false interaction resolution, but this was apparently not the case.

� We did not perform any parameter tuning, and this could affect the results. However,
we tried to be fair by using recommended parameter values in all cases, and not
tuning any of them.

8.7. Experimental Summary 110

CHAPTER 9

Conclusion

A true skeptic is skeptical about his skepticism.

In Ch. 2 we started with a framework for probabilistic machine learning. We have
shown that probabilistic classifiers have many useful properties. They are able to esti-
mate the precision of their predictions which assures cost-based decision making without
requiring to know the utility function or a cost matrix prior to learning. We briefly explored
the problem of uncertainty and ignorance, and suggested that the classifier’s estimate of
uncertainty should match its actual ignorance on unseen data. It is sometimes useful to
even estimate our ignorance about our ignorance, and for that purpose we proposed the
notion of higher-order uncertainty, sketching its possible formalization.

As classification accuracy is unfair to probabilistic classifiers, we surveyed a number
of possible evaluation functions. We have presented some decision-theoretic measures,
but they require the knowledge of the utility function. Collapsing a receiver operating
characteristic into a single number by computing the area under it involves assuming that
all cost matrices are equally likely, besides the analysis is time-consuming. We have pre-
sented an analogy with gambling, where a proper measure between boldness and timidity
determines long-term success, and have decided to use the Kullback-Leibler divergence as
the evaluation function. We strongly stressed that an classifier should only be evaluated
on the instances that were not used in the process of learning.

We then tried to unify a number of probabilistic machine learning methods in a single
framework, and the result are four fundamental functions. Given a set of instances, an
zero-descriptor estimation function attempts to capture the probability distribution of
label values with no information beyond knowing the class of each instance. Classifier’s
output is such a distribution, which we formally denote with the concept of a model.

A segmentation function divides instances on the basis of their attribute values into
groups. For each group separately, the estimation function creates a model. A voting
function is able to join multiple models into a single one, without considering the attribute
values.

Estimation can also consider instance descriptors. Here, the estimation function re-
ceives one or more descriptors of each instance in addition to its class. The descriptors

112

need not correspond to attributes, instead a projection function should find a small num-
ber of informative projections from the attribute space into some new descriptor space.
The most frequently used projection is linear, where the descriptor is the distance of the
instance from some hyperplane in the attribute space.

Before creating our own definition of interactions, we surveyed a number of related
fields in Ch. 3. The concept of interactions appears in statistics, in categorical data
analysis, in probability theory, in machine learning, in pattern recognition, in game theory,
in law, in economics, and in the study of causality. The causal explanation of an interaction
is based on the concept of a moderator: a moderator attribute is moderating the influence
the cause has on the effect. The probabilistic interpretation of an interaction is that it is a
dependence between a number of attributes. In machine learning there is a vague notion
that considering one attribute at a time is myopic, and fully justified only when there are
no interactions.

From this heritage, and using the framework of Ch. 2, along with the specific example of
the näıve Bayesian classifier, we present a view of an interaction that is based on intrinsic
limitations of the segmentation function in Ch. 4. To be able to improve classification
performance with the knowledge of interactions, it is required to resolve it. Although we
admitted that there are better resolution methods, and address some of them later in this
work, we initially focused on the Cartesian product of a pair of attributes. Replacing the
original attributes with their Cartesian product is the step which enables a näıve Bayesian
classifier to take advantage of an interaction. Of additional interest may be an assessment
the näıve Bayesian classifier’s limitations: some of them can be solved without resolving
interactions, e.g., by attribute selection and weighting.

Instead of introducing special tests for interactions, we suggested that an interaction
is significant only when resolving it improves the classification performance. We admitted
that this definition is dependent upon the learning algorithm, the evaluation function,
and the quantity of data, but it is completely sensible if we choose to pursue classification
performance. We stressed that only those interactions that involve the label as one of the
attributes are interesting for classification problems.

The main four types of interactions are true, false, problematic, and non-existent
interactions. A pair of falsely interacting attributes will provide us with the same in-
formation about the class. A pair of truly interacting attributes provides information
about the label which is not visible without the presence of both attributes. Finally, the
problematic interactions are those cases, when the type of an interaction is dependent
on some attribute value. One approach is to create several non-problematic attributes
from a single problematic one, introducing a new binary attribute for an attribute value.
Non-existent interactions the assumption of most simple machine learning algorithms. We
briefly touched upon methods for resolving false interactions, since latent variable analysis
and feature weighting may be preferable to resolving with the Cartesian product.

In Ch. 5, we listed the existing methods from machine learning which have been used for
searching patters in data that resemble interactions. We also proposed our own approach,
based on information theory. Our interaction gain can be seen as a generalization of
information gain to from two to three attributes. We showed in Ch. 6 that interaction
gain is useful for identifying pairs of attributes that do not interact, interact falsely or truly.
Furthermore, we presented a set-theoretic explanation of information content in attributes
which might illuminate the problem. We pointed out several similarities between our

113

approach and respective approaches in game theory and in quantum information theory.
Other experiments in Ch. 6 focused on the relation between interaction gain and the

pragmatic interaction test. We found out that strong false interactions and strong true
interactions yield a larger improvement with respect to the pragmatic test. If we search
for interactions with the intention of improving the classification performance, we have
shown that internal cross-validation provides reliable results. With respect to the näıve
Bayesian classifier, it is usually more beneficial to replace attributes in resolution, rather
than add the resolved attributes to the initial set of attributes. Furthermore, if we desire
simplifying and speeding up the pragmatic test, we can exclude other attributes while we
focus on a specific pair.

We tried to illuminate the relationship between ontological attribute structures that
people use to organize attributes in the domain. We found that the neighborhood of
attributes structures does not always imply either false or true interactions. However, since
these structures represent the background knowledge, the classifier could either use them to
speed up search for interactions by first considering attributes neighboring in the ontology.
On the other hand, for detailed analysis, a user would probably be more surprised by an
unexpected interaction between distant attributes than by expected interactions among
neighbors.

A machine learning system should not pursue mere precision of its predictions, but
should also try to provide a human analyst with insight about the characteristics of the
problem domain. For that reason, we have investigated interaction analysis in Ch. 7.
We suggested visualization of true interactions in an interaction graph, whereas the false
interactions are more informatively visualized in an interaction dendrogram. We have
performed some experiments with the pragmatic test of significance of an interaction and
found out that only a small number of true interactions are significant.

Finally, in Ch. 8 we resolved both true and false interactions. This improved classi-
fication performance of the näıve Bayesian classifier, logistic regression, and of support
vector machines. We found that, in contrast to the interaction gain, the resolution with
a Cartesian product is dependent on the number of attribute values. We proposed using
an attribute reduction algorithm, such as the minimal-error attribute reduction from the
field of function decomposition, which was used to resolve interactions in the classification
performance experiments.

114

Extended Abstract in Slovene

Language

115

POGLAVJE 10

Interakcije med atributi v strojnem učenju

Povzetek

Za odločanje o nekem problemu imamo po navadi na voljo več podatkov.
Hkrati bi si želeli obravnavati le tiste, ki so med seboj res povezani. Forma-
lizacija te povezanosti so interakcije. Neka skupina podatkov je med seboj
v interakciji, če njihovih medsebojnih povezanosti ne moremo več popolnoma
razumeti, ko odstranimo kateregakoli od podatkov. Interakcije ločimo na sode-
javnosti in soodvisnosti. Pri sodejavnostih se nam nekateri vzorci v podatkih
odkrijejo le, če imamo na voljo tudi ostale podatke. Pri soodvisnostih pa ugoto-
vimo, da nam več podatkov poda iste informacije, zaradi česar moramo paziti,
da jim ne damo prevelike teže. Interakcije so po definiciji nepoenostavljive: ne
moremo jih razbiti na več ločenih interakcij. Če to lahko naredimo, to niso
interakcije.

V tem magistrskem delu preučimo več problemov povezanih z interakci-
jami. To zahteva interdisciplinaren pristop, saj so interakcije temeljni problem
na več področjih, od strojnega učenja, statistike do teorije iger in kvantne
fizike. Preučimo obstoječe metode za odkrivanje interakcij in predlagamo
izračun interakcijskega prispevka, s sposobnostjo razlikovanja med sodejav-
nimi, soodvisnimi ter neodvisnimi skupinami treh atributov. Ta izračun je
posplošitev informacijskega prispevka oziroma medsebojne informacije. Pre-
dlagamo pragmatični test pomembnosti interakcij: upoštevanje interakcije pri-
speva k bolǰsim rezultatom neke družine algoritmov strojnega učenja le, če je
ta interakcija pomembna. Take so le izrazite sodejavnosti in soodvisnosti.
Prikažemo, kako lahko uporabniku na vizualen način predstavimo interakcije
v danem klasifikacijskem problemu in kako lahko nekatere najpopularneǰse al-
goritme strojnega učenja z upoštevanjem interakcij izbolǰsamo.

10.1. Uvod 118

Ključne besede

- strojno učenje

- klasifikacija, razpoznavanje vzorcev, uvrščanje

- interakcija, soodvisnost, sodejavnost, odvisnost, neodvisnost

- konstruktivna indukcija

- mere nečistoče, informacijski prispevek atributa, ocenjevanje kvalitete atri-
butov

- Bayesov klasifikator, naivni Bayesov klasifikator, delno naivni Bayesov kla-
sifikator

- teorija o informacijah, entropija, relativna entropija, medsebojna informacija

10.1 Uvod

Ko poskušamo ljudje razumeti podatke, jih ne obravnavamo v celoti. Raje jih razbijemo
na manǰse, bolj obvladljive koščke. To deljenje problemov na podprobleme je osnova večine
postopkov strojnega učenja. Čeprav je redukcionističen, deluje.

A obstajajo delčki znanja in vzorci v naravi, ki izginejo, če jih poskušamo razrezati.
Moramo jih obravnavati kot celoto. Po drugi strani pa spet ne moremo vsega obravnavati
kot celoto, saj je poenostavljanje ključno za zmožnost posploševanja. Čemu bi jemali
krvne vzorce, če vendar lahko gripo diagnosticiramo le z merjenjem telesne temperature?

Da bi prerezali ta gordijski vozel, vpeljimo koncept interakcij. Interakcije so tisti
vzorci, ki jih ne moremo razumeti po koščkih, le v celoti. Problem lahko prosto razbijamo
na koščke, če le ne razbijemo interakcij.

Predstavljajmo si marsovskega bankirja, ki bi rad stranke razdelil v tri skupine: goljufe,
povprečneže in molzne krave. Bankir ima na voljo množico atributov, ki stranko opisujejo:
starost, poklic, izobrazbo, lanskoletne dohodke, letošnje dohodke in dolgove.

Bankir zaposluje več analitikov. Najraje bi predpostavil, da so vsi atributi med seboj
neodvisni, a hkrati tudi vsi povezani z razredom. Potem bi lahko vsakemu analitiku predal
v študij le po en atribut. Vsak analitik je strokovnjak o odnosu med svojim atributom in
razredom, izkušnje pa je pridobil na velikem številu primerov, ki jih je že preučeval. Ko
analitiki odhitijo s podatki, med seboj ne komunicirajo: samo na podlagi svojega atributa
se poskušajo odločiti, v katerem razredu je nova stranka.

Bankir čez nekaj časa skliče vse analitike in jim pove, naj glasujejo za posamezen
razred. Če nek analitik čuti, da nima dovolj podatkov, mu je dovoljeno, da se vzdrži
glasovanja. Bankir izbere razred, ki je dobil največ glasov. V primeru, da je takih razredov
več, izbere najslabšega: vsekakor je bolǰse, da obravnava molzno kravo kot goljufa, kot pa
da bi klečeplazil pred goljufom.

Žal sta tu dve težavi. Več analitikov lahko preučuje iste informacije. Na primer, ko
enkrat poznamo strankin poklic, nam njena izobrazba ne bo povedala kaj bistveno novega.
Zato bo ta plat stranke dobila preveliko težo pri glasovanju. Takim atributom pravimo,
da so soodvisni.

Druga težava je v tem, da nam lanskoletni dohodki in letošnji dohodki ne povejo toliko,
kot bi nam povedali, če bi namesto tega vedeli, kako so se dohodki spremenili. Na primer,

10.2. Negotovost v strojnem učenju 119

stranke se včasih spreobrnejo v goljufe, če se jim dohodki na hitro zmanǰsajo. Takim
atributom pravimo, da so sodejavni.

Interakcije so pojem, ki združuje sodejavnosti in soodvisnosti. Ko imamo interakcije,
se splača, da analitiki med seboj sodelujejo, da bi dosegli bolǰse rezultate. Malo bolj
realistično: en sam analitik naj obdeluje več atributov in jih združi v eni sami formuli.
Na primer, dva atributa o dohodkih zamenjamo z indeksom padca dohodkov, kar je novi
atribut, na podlagi katerega analitik sprejme svojo odločitev.

Naš primer precej realistično opisuje delovanje računalnika, ko ta preučuje podatke,
mogoče pa tudi naše možgane, ko sprejemajo odločitve. Bankirjev pristop je precej podo-
ben znanemu naivnemu Bayesovemu klasifikatorju, katerega glavna omejitev je ravno ta,
da predpostavlja, da interakcij ni. Resda interakcije, še posebej sodejavnosti, niso najbolj
pogoste, zato so se strokovnjaki dolgo čudili solidnim rezultatom, ki jih je tako enostavna
metoda dosegla v primerjavi z veliko bolj zapletenimi alternativami.

Naše delo se bo osredotočilo na naravni problem iskanja sodejavnosti in soodvisnosti
v podatkih za dan klasifikacijski problem. Če nam bo uspelo, bo bankir najprej uporabil
naš postopek, da ugotovi, kateri atributi so sodejavni in kateri soodvisni. Potem bo lahko
delo bolje razdelil med svoje analitike. Zato je naš prvi cilj čimbolj razumljivo prikazati
interakcije v domeni človeku, ki podatke preučuje, po možnosti kar grafično.

Tak postopek bi tudi bil koristen postopkom strojnega učenja. Ti bi lahko z njegovo
pomočjo ugotovili, kje so zapleteni podproblemi, te razrešili z zapletenimi postopki, ki
hkrati obravnavajo več atributov. Tam, kjer pa ni komplikacij, bi uporabili enostavne
postopke, na primer naivnega Bayesovega klasifikatorja. Videli bomo, da imajo enostavni
postopki prednosti, ki niso vezane na samo enostavnost: ker predpostavimo manj in ker
ne drobimo podatkov, jih lahko bolj zanesljivo opisujemo in merimo. Naš drugi cilj je zato
izbolǰsati objektivno kvaliteto algoritmov strojnega učenja, kot jih merimo s funkcijami
cenilkami.

10.2 Negotovost v strojnem učenju

Večji del strojnega učenja temelji na predstavitvi učnih primerov z atributi, primere pa
uvrščamo v več razredov. Naloga učenja je naučiti se uvrščati učne primere v razrede na
podlagi njihovih atributov. Temu pravimo uvrščanje ali klasifikacija. Rezulat učenja pa
je, očitno, znanje, ki ga tu predstavimo v obliki klasifikatorja.

Nalogi učenja sta dve: po eni strani želimo doseči, da bi naš klasifikator pravilno uvrstil
vse primere, še posebej tiste, na katerih se ni učil. Po drugi strani pa bi si želeli, da nam
zgradba klasifikatorja pove nekaj koristnega o naravi klasifikacijskega problema.

Sprva se je mislilo, da pravila in klasifikacijska drevesa nudijo ljudem najbolǰsi vpogled
v problem, saj temeljijo na logiki in pravilih, ki jih dobro poznamo iz jezika. Potem se
je izkazalo, da ljudje velikokrat raje vidijo znanje v obliki vplivov in verjetnosti, ki ga
zajame npr. naivni Bayesov klasifikator, še posebej če ga na vizualen način predstavimo
v nomogramu. Vizualizacija je način, s katerim tudi znanje numeričnih ali subsimbolnih
postopkov predstavimo človeku na razumljiv način, ob tem pa nismo vkalupljeni v omejeni
jezik pravil.

Poznamo več vrst atributov. Po vlogi ločimo navadne atribute in razredni atribut.
Razredni atribut je po obliki tak kot navadni atributi, loči ga le vloga. Vsak atribut
ima lahko več vrednosti. Če so vrednosti števila, takim atributom pravimo številski ali

10.2. Negotovost v strojnem učenju 120

numerični, ki jih potem delimo na števne ali diskretne ter zvezne atribute, v odvisnosti od
množice števil, ki jo uporabljamo. Če so vrednosti elementi neke urejene končne množice,
atributom pravimo urejeni ali ordinalni atributi; če končna množica vrednosti ni urejena,
so atributi neurejeni ali nominalni.

V tem besedilu se bomo osredotočili na neurejene atribute, saj je definicija urejenosti
hud oreh. Namreč, urejenost lahko izhaja iz števil, lahko pa jo tudi definiramo po svoje,
na primer preko vpliva na razred. Pravzaprav, če jo definiramo po svoje, lahko precej
pridobimo.

Pri klasifikacijskih problemih so vrednosti razrednega atributa elementi končne
množice, pri regresijskih problemih pa so vrednosti razrednega atributa elementi neke
množice števil. Vrednosti razrednega atributa pri klasifikacijskih problemih so razredi.

Učni algoritem je funkcija, ki preslika nek klasifikacijski problem v klasifikator. Klasi-
fikacijski problem je neke množica učnih primerov ter opisi atributov. Atributi so funkcije,
ki nam učni primer preslikajo v vrednosti atributov, kot so opisane zgoraj. Klasifikator pa
je funkcija, ki preslika učni primer v razred. Tu bomo ločili diskriminativne, stohastične

in verjetnostne klasifikatorje. Diskriminativni preslikajo učne primere v točno določen
razred. Stohastični lahko za isti učni primer ob različnih prilikah vrnejo različne razrede:
v skladu z neko verjetnostno porazdelitvijo. Verjetnostni klasifikatorji nam vrnejo kar
verjetnostno porazdelitev samo in te imamo najraje.

10.2.1 Negotovost

Nesmiselno je, da bi ucenjevali klasifikatorje po njihovi uspešnosti uvrščanja primerov, ki
so jih že videli: saj bi si jih lahko vendar dobesedno zapomnili. Izziv je klasificirati primere,
ki jih učni algoritem še ni videl. Če smo se učili na učni množici primerov, svoje znanje
preverjamo na testni množici. Čeprav je to težko, je enako težko za vse klasifikatorje, zato
jih lahko med seboj primerjamo.

Težava se pojavi takrat, ko za rešitev nekega klasifikacijskega problema nimamo do-
volj primerov, ali pa ko ta problem ni determinističen. Čeprav bi lahko diskriminativni
klasifikator vedno predložil najbolj verjeten razred, bi si bolj želeli verjetnostnega, ki bi
opisal možnosti pojavitve določenega razreda z verjetnostmi.

Koncept verjetnosti uporabljamo v več situacijah. Prva je negotovost in ta je su-
bjektivne narave, saj izraža našo negotovost o tem, kaj je. Drugi dve sta neznanje in
nepredvidljivost, ki sta objektivni lastnosti. Neznanje je neobhodna posledica našega ne-
popolnega poznavanja resničnosti. Nepredvidljivost se nanaša na to, da tudi če bi imeli
vse podatke, ne bi mogli nečesa predvideti. Ker je filozofsko sporna, bomo govorili le o
neznanju.

Cilj klasifikatorja je, da se njegova negotovost kot ocena lastnega neznanja ujame z
dejanskim neznanjem. Primeru, ko je negotovost ‘manǰsa’ od neznanja, pravimo preveliko
prileganje podatkom ali bahavost (angl. overfitting). Ko je negotovost ‘večja’ od neznanja,
gre za premajhno prileganje podatkom ali plašnost (angl. underfitting).

10.2.2 Vrednotenje klasifikatorjev

Najpopularneǰsa metoda za vrednotenje klasifikatorjev, klasifikacijska točnost, ne nagra-
juje klasifikatorjev, ki pravilno ocenijo svoje neznanje, saj je bila zamǐsljena za diskrimi-
nativne ali bahave klasifikatorje. Zato bi si želeli metod, ki bi to upoštevale.

10.2. Negotovost v strojnem učenju 121

Težavo bi lahko rešili tako, da definiramo funkcijo koristnosti (angl. utility function),
ki oceni odgovor nekega klasifikatorja in ga primerja s pravilnim odgovorom. Če verjetno-
stni klasifikator funkcijo koristnost pozna, ji lahko svoj odgovor prilagodi, da bo čimbolj
koristen. Na primer, huǰsa napaka je, da odpustimo bolnega pacienta, kot pa da pre-
gledamo zdravega. Recimo, da funkcijo koristnosti predstavimo s cenovno matriko M:
M(d(i), C(i)) je cena, ki jo mora klasifikator d plačati pri primeru i, če je pravilni razred
C(i). Za klasifikacijsko točnost gre takrat, ko je

M(ci, cj) =

{

0 če i = j,

1 če i 6= j.

Verjetnostni klasifikator lahko izbere optimalni odgovor za poljubno M po naslednji
formuli:

co = arg min
c̃∈DC

∑

ĉ∈DC

Pr{d(i) = ĉ}M(c̃, ĉ).

Tu je DC množica vrednosti razrednega atributa C. Vseeno pa uporabnik vsekakor raje
vidi napovedi klasifikatorja v obliki ocene negotovosti kot v obliki enega samega odgovora,
četudi za tega računalnik pravi, da je optimalen.

Žal pa klasifikator ponavadi ne ve, kakšna je funkcija koristnosti. Zato bi si želeli neke
funkcije cenilke, ki bi ocenila odstopanje negotovosti od neznanja. Tu ima lepe lastnosti
relativna entropija ali Kullback-Leiblerjeva divergenca [KL51]. KL divergenco merimo
med dvema verjetnostnima porazdelitvama razredov, med dejansko P = P (C(i)|i) in
predvideno Q = Pr{d(i)}:

D(P ||Q) =
∑

c∈DC

P (C(i) = c) log
P (C(i) = c)

Pr{d(i) = c}
.

Relativna entropija je hevristika, ki nagradi oboje, natančnost in priznanje neznanja.
Logaritem lahko razumemo kot logaritmično funkcijo koristnosti. To je omenjal že Daniel
Bernoulli, ki je opazil, da je sreča ljudi približno logaritmična funkcija zaslužka, in zato
predlagal logaritmično funkcijo koristnosti že leta 1738 [Ber38, FU].

10.2.3 Gradnja klasifikatorjev

Obstaja nekaj bistvenih funkcij, iz katerih gradimo klasifikatorje:

Ocenjevanje Klasifikator lahko predstavimo kot funkcijo, ki preslika atributni opis pri-
mera v nek model, model pa ni nič drugega kot funkcija, ki slika iz vrednosti razrednega
atributa v verjetnosti. Modeli niso nič posebnega, so le verjetnostne porazdelitve. Te so
lahko parametrične, kot sta na primer Gaußova in logistična, ali pa neparametrične, kot je
na primer histogram. Za določanje parametrov modela uporabimo le obstoječe postopke
ocenjevanja na podlagi pretvarjanja frekvenc v verjetnosti.

Projekcija Na podlagi vrednosti atributov določimo neko novo zvezno vrednost, ki služi
kot spremenljivka, in iz te model slika v verjetnostno porazdelitev razrednega atributa.
Na primer, ko imamo dva razreda, logistična regresija slika vhodne atribute v oddaljenost
od neke hiperravnine, ki poskuša ločiti primere enega razreda od drugega. To oddaljenost
pa povežemo z verjetnostjo posameznega razreda z logistično porazdelitvijo. V primeru,
da je hiperravnina uspela pravilno ločiti vse primere, je ta poradelitev stopničasta.

10.3. Interakcije 122

Delitev Primere razdelimo na več skupin, za vsako skupino pa ločeno ocenjujemo mo-
del. Na primer, klasifikacijsko drevo razdeli vse primere na nekaj skupin, vsaki skupini
pa pripǐse nek neparametrični model. Delitev si lahko predstavljamo tudi kot diskretno
projekcijo, kjer projeciramo primere v neko novo diskretno spremenljivko, glede na katero
z neparametričnim modelom ocenjujemo porazdelitev razrednega atributa. Klasifikacijsko
drevo je konkreten primer delitvene funkcije.

Glasovanje Če imamo večje število modelov, jim lahko omogočimo, da med seboj gla-
sujejo in s tem proizvedejo nov model, ne da bi ob tem uporabljali kakršenkoli atribut.
Enostaven primer je naivni Bayesov klasifikator, kjer enakopravno glasujejo modeli, vsak
od katerih pripada svojemu atributu. Vsak atribut pa ni nič drugega kot segmentator, kjer
se vsaki vrednosti atributa priredi neparametrični model. Ta model šteje koliko primerov
posameznega razreda ima določeno vrednost atributa.

10.3 Interakcije

10.3.1 Vzročnost

Najenostavneje si interakcijo predstavljamo v kontekstu vzročnosti. Na sliki 10.1, prirejeni
iz [JTW90], vidimo različne vrste povezav med atributi A,B in C. Pri tem si lahko B
predstavljamo kot razredni, A in C pa kot navadna atributa. Z interakcijami ima največ
veze nadzorovana povezava. Tu je C nadzornik in nadzoruje vpliv, ki ga ima vzrok A
na posledico B. Seveda je velikokrat težko ločiti vzrok od nadzornika, zato je velikokrat
bolje, da ne poskušamo ločiti vlog atributov, ki so v interakciji.

10.3.2 Odvisnost

Če so atributi med seboj neodvisni, med njimi ni interakcij. Pri dogodkih A,B in C
to velja takrat, ko je P (A,B,C) = P (A)P (B)P (C). Tu moramo paziti, lahko ve-
lja P (A,B) = P (A)P (B), ne velja pa več P (A,B|C) = P (A|C)P (B|C). Rečemo
lahko, da čeprav sta atributa A in B neodvisna, nista neodvisna glede na C, razen če
P (A,B|C) = P (A|C)P (B|C). Težava s to definicijo je, da skoraj nikdar ne moremo
natančno opisati skupne verjetnosti kot produkta posamičnih, zato se moramo zateči k
različnim hevristikam in statističnim testom.

Znan primer napak zaradi neupoštevanja interakcij v tem kontekstu je Simpsonov pa-

radoks, do katerega pride, ko dobimo nasprotne rezultate pravilnim, če ne upoštevamo
tretjega atributa. Omenimo primer iz [FF99] o tuberkulozi. Zanima nas primerjava zdra-
vstvenih sistemov v mestih New York and Richmond, kar merimo s smrtnostjo zaradi
tuberkuloze. Imamo naslednjo tabelo:

kraj živeli umrli psmrt

New York 4758005 8878 0.19%
Richmond 127396 286 0.22%

Zdi se nam, da je zdravstveni sistem v mestu Richmond slabši. A poglejmo, kaj se
zgodi, ko v obravnavo vključimo še podatke o barvi kože:

10.3. Interakcije 123

Neposredna vzročna povezava Posredna vzročna povezava

A B A C B

Lažna povezava Dvosmerna vzročna povezava

A B

C

A B

Neznana povezava Nadzorovana povezava

A B

A B

C

Slika 10.1: Šest tipov vzročnih povezav

belci ne-belci

kraj živeli umrli psmrt

NY 4666809 8365 0.18%
Rich. 80764 131 0.16%

kraj živeli umrli psmrt

NY 91196 513 0.56%
Rich. 46578 155 0.33%

Torej je zdravstveni sistem v mestu Richmond bolǰsi kot v mestu New York, za oba
barvna odtenka. Razlika se mogoče pojavi zaradi različnega razmerja med barvnimi od-
tenki v teh mestih.

10.3.3 Omejitve klasifikatorjev

Naivni Bayesov klasifikator predpostavi, da lahko zapǐsemo verjetnost P (X,Y,Z|C) z
glasovanjem med P (X|C),P (Y |C) in P (Z|C). Čisto pragmatično lahko definiramo in-
terakcijo med dvema atributoma in razredom kot primer, ko bi dosegli bolǰse rezultate
z združenim obravnavanjem dveh atributov. Torej, če je med X,Y in C interakcija, bi
potem zapisali P (X,Y |C)P (Z|C).

Zdi se čudno, a čeprav poskuša metodologija Bayesovih mrež [Pea88] predstaviti
neko verjetnostno porazdelitev na veliko atributih kot produkt verjetnostnih porazdeli-
tev na manj atributih, njena predstavitev z grafi ne more ločiti med P (X,Y |C)P (Z|C)
in P (X,Y,Z|C), razen če ne uvedemo novega atributa X,Y . Uporabljena je le druga
možnost.

10.3. Interakcije 124

Namesto statističnih testov signifikantnosti tu enostavno uporabimo funkcijo cenilko
(angl. evaluation function). Če klasifikator z interakcijo deluje bolǰse kot brez nje, interak-
cijo priznamo, sicer pa je ne. Seveda je ta definicija odvisna od osnovnega klasifikatorja,
ki smo ga uporabili. Smiselna je za enostavne klasifikatorje, kot so recimo naivni Baye-
sov klasifikator, na katerega smo se opirali pri zgornji razlagi, linearna ali pa logistična
regresija ter podobne. Lahko se zgodi, da bodo trije atributi v interakciji pri naivnem
Bayesovem klasifikatorju, ne pa tudi pri logistični regresiji.

Čeprav se ne bomo spustili v podrobnosti, lahko definicijo posplošimo na neko družino
klasifikatorjev, ki so zgrajeni s principi iz razdelka 10.2.3. Take pragmatične interakcije
se pojavijo natanko takrat, ko moramo neko skupino atributov obravnavati skupaj zno-
traj neke delitvene funkcije S ali projekcijske funkcije F . Z delitvenimi funkcijami lahko
dosežemo bolǰse rezultate edino tako, da namesto S(A) in S(B) uporabimo S(A,B).

10.3.4 Teorija informacije

Navkljub smiselnosti pragmatične definicije bi si želeli definicijo interakcij, ki bi bila do
neke mere neodvisna od klasifikatorja in bi nam nudila nek vpogled v interakcije. Poglejmo
si informacijski prispevek atributa A k razredu C iz [HMS66]:

GainC(A) = H(C) + H(A)−H(AC) = GainA(C). (10.1)

Upoštevajmo, da ta definicija ne razlikuje med vlogo posameznih atributov: prispevek A
k C je enak kot prispevek C k A. Tu je AC kartezični produkt atributov A in C. Opa-
zimo lahko tudi, da je informacijski prispevek GainC(A) identičen medsebojni informaciji

I(A;C) med A in C.

Tu uporabljamo koncept entropije, ki je mera informacijske vsebine nekega vira infor-
macij [Sha48]. Ker je atribut A vir informacij, jo zanj definiramo kot:

H(A) = −
∑

a∈DA

P (a) log P (a).

Če uporabimo dvojǐski logaritem, entropijo merimo v bitih, za naravni logaritem pa v
natih.

Če jemljemo informacijski prispevek kot oceno 2-interakcije, lahko potem na podoben
način definiramo oceno 3-interakcije, ki mu bomo rekli interakcijski prispevek :

IG3(A,B,C) := I(AB;C)− I(A;C)− I(B;C)

= GainC(AB)−GainC(A)−GainC(B)

= H(AB) + H(AC) + H(BC)

−H(ABC)−H(A)−H(B)−H(C).

(10.2)

Podobno kot prej, razredni atribut nima posebne vloge. Na interakcijski prispevek lahko
gledamo kot na nekakšno posplošitev pojma medsebojne informacije na tri informacijske
vire ter informacijskega prispevka na tri atribute.

Interakcijski prispevek najlažje razložimo z metaforo števila elementov množic. Re-
cimo, da je informacija vsebina nekega atributa A množica, informacijsko vsebino pa
merimo z −H(A): manǰsa kot je atributova entropija, več informacij nam da. Nikoli pa

10.4. Vrste interakcij 125

C

BA

C

BA

(a) (b)

Slika 10.2: Vennov diagram treh atributov v interakciji (a), in dveh pogojno neodvisnih
atributov glede za razred (b).

se ne more zgoditi, da bi potem vedeli manj kot prej. Dva atributa skupaj v svoji uniji
vsebujeta −H(AB), kar je smiselno, saj vemo, da je entropija dveh virov vedno manǰsa
ali enaka vsoti obeh. Informacijski prispevek na nek način meri presek med množicama,
ravno tako kot |A∩B| = |A|+ |B| − |A∪B|. Interakcijski prispevek pa lahko primerjamo
z |A∩B∩C| = |A|+ |B|+ |C|− |A∪B|− |B∪C|− |A∪C|+ |A∪B∪C|, glej sliko 10.2(a).
Paziti pa moramo, saj je lahko interakcijski prispevek tudi negativen [Ved02]. To bomo
razložili v naslednjem razdelku. Mimogrede, naivni Bayesov klasifikator predpostavi, da
atributa A in B prispevata informacijo o C nekako takole kot v sliki 5.1(b).

Paziti moramo, ker nas lahko interakcijski prispevek še vedno zavede, če imamo več
kot tri atribute. Spomnimo se Simpsonovega paradoksa. Informacijski prispevek, kot smo
ga definirali, je tudi primeren le za ocenjevanje 3-interakcij.

10.4 Vrste interakcij

10.4.1 Sodejavnosti

Pri sodejavnostih velja, da nam atributa A in B skupaj povesta več o C, kot bi nam, če bi
le glasovala. Primer popolne sodejavnosti je znani problem ekskluzivnega ALI c := a 6= b
:

A B C

0 0 0
0 1 1
1 0 1
1 1 0

A in B sta vsak zase popoloma neodvisna od C in zato popolnoma neuporabna kot
glasovalca, a ko jih damo skupaj, bosta C napovedala pravilno. Ni pa nujno, da morata
za sodejavnost biti oba atributa sprva neuporabna. Poglejmo si primer navadnega OR,
kjer je c := a ∨ b:

10.4. Vrste interakcij 126

native_country

age

100%

race

23%

workclass

75%

occupation

75%

capital_loss

capital_gain

63%

education

59%

marital_status

52%

relationship

46%

hours_per_week

35%

Slika 10.3: Interakcijski graf atributov v domeni ‘adult’.

A B C

0 0 0
0 1 1
1 0 1
1 1 1

Četudi nam A in B pomagati pri napovedovanju C, bi z glasovanjem naivni Bayesov
klasifikator za primer a = 0, b = 0 ocenil verjetnost razreda kot P (c0) = 1/2, a pravilno je
P (c0) = 0. Od števila učnih primerov je odvisno, ali nam bo upoštevanje take sodejavnosti
prineslo oprijemljivo korist.

Pri sodejavnih atributih ima informacijski prispevek pozitivno vrednost. Večja kot
je, bolj izrazita je sodejavnost. Da bi rezultate take analize prikazali uporabniku, lahko
uporabimo graf, kjer vozlǐsča označujejo atribute, povezave pa sodejavnosti. Da bi razli-
kovali močneǰse sodejavnosti od šibkeǰsih, povezave označimo z indeksom moči ter z barvo.
Povrh tega pa prikažemo le najmočneǰse sodejavnosti, saj so neodvisni pari atributov v
končnih množicah primerov porazdeljeni okrog ničle in ne nujno na njej, zaradi česar jih
ima polovica in več pozitiven interakcijski prispevek. Na sliki 10.3 je prikazana interak-
cijska analiza domene ‘adult’ z repozitorija UCI [HB99]. Kot kaže, nam podatek, s katere
države je prǐsel posameznik, pove veliko v kombinaciji z drugimi atributi. V kombinaciji
nam povedo ti povezani pari atributov nepričakovano več o zaslužku posameznika, kot bi
nam kot bi nam posamično z glasovanjem.

Sodejavnosti so primer pri katerem se splača tvoriti nove atribute, ki nadomestijo
osnovne, kar je bil že precej raziskovan problem [Kon91, Paz96]. Obstajata pa še dve
uporabi, ki do sedaj nista bili veliko omenjani: pri ločeni diskretizaciji atributov, ki so
sodejavni, lahko zapravimo podatke, saj ju podcenjujemo. Zato je za diskretizacijo so-
dejavnih atributov bolje uporabiti nekratkovidne metode diskretizacije, recimo tisto v
[Bay00], ali pa kar hkratno delitev s klasifikacijskimi drevesi.

Druga povezava se nanaša na gradnjo klasifikacijskih dreves. Zanimivo pa je, da lahko
vidimo sodejavnosti kot atribute, ki se morajo pojavljati v odločitvenem drevesu skupaj.
Na primer, v domeni ‘breast’ doseže popolne rezultate drevo, ki je zgrajeno le iz tistih
dveh atributov, ki sta v najmočneǰsi interakciji. V zadnjem času je učinkovita in popularna
metoda klasifikacijskih gozdov, kjer več klasifikacijskih dreves med seboj glasuje. Trenutni
pristopi gradijo ta drevesa naključno, na primer naključni gozdovi (angl. random forests)
[Bre99]. Ključno pa je le, da zgradimo drevo iz atributov, ki so medsebojno povezani v
interakciji.

10.4. Vrste interakcij 127

ag
e

m
ar

ita
l−

st
at

us

re
la

tio
ns

hi
p

ho
ur

s−
pe

r−
w

ee
k se

x

w
or

kc
la

ss

na
tiv

e−
co

un
tr

y

ra
ce

ed
uc

at
io

n

ed
uc

at
io

n−
nu

m

oc
cu

pa
tio

n

ca
pi

ta
l−

ga
in

ca
pi

ta
l−

lo
ss

fn
lw

gt

0
20

0
40

0
60

0
80

0
10

00

H
ei

gh
t

Slika 10.4: Interakcijski dendrogram za domeno ‘adult’.

10.4.2 Soodvisnosti

Pri soodvisnostih velja, da nam atributa A in B podata deloma iste informacije, ki nam
skupaj povejo manj o C, kot bi pričakovali, če bi kar sešteli obseg informacij, ki jih poda
vsak posamezni atribut. Posledica je, da postanemo bolj gotovi, kot bi smeli biti.

Soodvisnosti razkriva negativni interakcijski prispevek. Soodvisnosti v domeni
prikažemo z interakcijskim dendrogramom, ki je rezultat postopka hierarhičnega
razvrščanja (angl. hierarchical clustering) [KR90, SHR97]. Pri tem uporabimo tole defi-
nicijo funkcije razdalje med atributoma A in B glede na razred:

D(A,B) =

NA if IG(ABC) > 0.001,

1000 if |IG(ABC)| < 0.001,

−1/IG(ABC) if IG(ABC) < −0.001.

(10.3)

Na ta način bodo soodvisni atributi blizu, neodvisni pa daleč. Sodejavnosti na razdaljo
ne bodo vplivale. Soodvisnosti je v domenah polno. Rezultat take analize za domeno
‘adult’ je na sliki 10.4. Na primer, število let izobrazbe nam ne pove kaj bistveno novega o
zaslužku posameznika, če že vemo, kakšno izobrazbo ima. Taka analiza soodvisnosti nam
pomaga zmanǰsati število atributov.

10.5. Uporaba interakcij 128

car

price

buying

maint

techcomfort

doors

persons

lug_boot safety

Slika 10.5: Ročno izdelana struktura atributov za domeno, ki se ukvarja s problemom
odločanja o nakupu avtomobila. Osnovni atributi so v pravokotnikih, izpeljani pa v elip-
sah.

10.5 Uporaba interakcij

10.5.1 Pomembnost interakcij

Med vsemi preizkušenimi postopki je edino interakcijski prispevek pravilno ugotovil tip in-
terakcije. Seveda pa nam interakcijski prispevek pove le za tip in moč interakcije, ne pove
pa nam kaj dosti o tem, ali je v pragmatičnem smislu za klasifikacijsko točnost to interak-
cijo smiselno upoštevati. Zato predlagamo, da se namesto posebnega testa pomembnosti
ali signifikantnosti interakcije uporabi kar teste signifikantnosti izbolǰsanja klasifikatorja.
Interakcija je pomembna, če dosega klasifkator, ki jo upošteva, pomembno bolǰse rezultate
kot pa klasifikator, ki je ne upošteva. To velja za oboje, sodejavnosti in soodvisnosti.

Kar zanesljive rezultate dobimo s prečnim preverjanjem (angl. cross-validation) na
učni množici, saj na ta način simuliramo situacijo, da imamo primere, ki jih še nismo
videli. Klasifikator je namreč nesmiselno preverjati na primerih, na podlagi katerih je bil
naučen, saj bi si jih lahko le zapomnil, ne da bi jih tudi razumel.

10.5.2 Interakcije in struktura atributov

Človek v svoji analizi domene atribute organizira v drevesno strukturo [BR90], na primer
na sliki 10.5. Vprašamo se lahko, ali so sosedni atributi v interakciji z razrednim atribu-
tom ali niso. Izkaže se, da niso, saj ljudje organizirajo strukturo z namenom združevati
atribute, ki so na nek način povezani med seboj, lahko zaradi soodvisnosti ali sodejavnosti,
ali pa tudi ne. Povrh tega take strukture ne ločijo med obema vrstama interakcij. Človeku
struktura služi, da lahko predpostavi neodvisnost med daljnimi sosedami. Človek tudi ǐsče
sodejavnosti in soodvisnosti le med bližnjimi sosedami.

Pomen avtomatskega odkrivanja interakcij naj zato uporabnikom ne omenja nujno
interakcij, ki so že zajete v drevesni strukturi, saj so te pričakovane. Človeka bi zanimala le
odstopanja, tako v smislu nepričakovanih interakcij, kot tudi nepričakovanih neodvisnosti.
Po drugi strani pa se v naglici splača sprva preveriti sosede v drevesni strukturi, saj
sosednost izraža človekovo predznanje o domeni.

10.5. Uporaba interakcij 129

10.5.3 Odpravljanje interakcij

Nekateri algoritmi strojnega učenja ne zmorejo obravnavati interakcij v podatkih. Naj-
bolj znana je ta pomanjkljivost pri naivnem Bayesovevm klasifikatorju. Zato smo razvili
postopka za odpravljanje interakcij, ki s prečnim preverjanjem na učni množici ugotovita,
katere interakcije je smiselno odpraviti. Izkaže se, da je bolje kot s kartezičnim produktom
odpravljati interakcije z uporabo krčenja prostora atributov [Dem02], sicer postopkom iz
področja funkcijske dekompozicije [Zup97]. Za krčenje prostora atributov smo uporabili
metodo minimizacije napake, ki uspešno obvladuje nedeterministične domene.

Postopka smo preizkusili z naivnim Bayesovim klasifikatorjem, pa tudi z logistično
regresijo ter s klasifikatorji s podpornimi vektorji (angl. support vector machines). Pri
vseh je prǐslo v povprečju do izbolǰsanja, če je le bilo v domeni dovolj učnih primerov,
da je prečno preverjanje na učni množici pravilno ocenilo kvaliteto variant klasifikatorja.
Izbolǰsanje je bilo predvsem dobro pri odpravljanju soodvisnosti, tudi pri logistični regresiji
in metodah podpornih vektorjev, četudi smo pričakovali, da bi obteževanje atributov, ki je
v teh metodah že vgrajeno, opravilo bolǰse delo. Kot kaže, je za odpravljanje sodejavnosti
potrebnih veliko učnih primerov, pomembne sodejavnosti pa so tudi dokaj redke.

10.5. Uporaba interakcij 130

Izjava

Izjavljam, da sem magistrsko nalogo izdelal samostojno pod mentorstvom prof. dr. Ivana
Bratka. Ostale sodelavce, ki so mi pri nalogi pomagali, sem navedel v razdelku Acknowled-
gments na strani iv.

Sežana, Aleks Jakulin

17. februar 2003

APPENDIX A

Additional Materials

Yellow cat, black cat, as long as it catches mice, it is a good cat.

Deng Xiaoping

A.1 Clustering

There are three kinds of clustering algorithms: partitioning, hierarchical, and algorithms
that assign a probability of membership of a given instance to a given cluster.

Partitioning algorithms take the number of clusters as a parameter to the algorithm
and attempt to minimize an objective function. The function attempts to evaluate the
quality of the clustering, for example, the distance of elements of a cluster to the cluster
center.

Hierarchical algorithms are greedy and of two kinds: agglomerative algorithms join the
closest pair of elements into a new cluster, and in subsequent operators consider joining
the new cluster with another element, two other elements, or other clusters. The final
result is a tree. Divisive algorithms operate similarly, but by finding the best division into
two clusters. In succeeding iterations the new clusters are divided further, as long as only
clusters of one element remain. Hierarchical algorithms do not presuppose the number of
clusters, as the clustering for all possible number of clusters are present in the tree. This
assures that the process is computationally quite efficient.

Density-based algorithms define clusters as dense regions separated by sparse regions.
The density estimation process can be performed in a variety of ways. Some algorithms
assume specific probability distributions, for example the Gaussian probability distribu-
tion.

Fuzzy clustering algorithms assign a cluster membership vector to each element. An
element may belong to multiple clusters, each with a certain probability. The algorithms
described earlier are crisp, where each element is a member of only a single cluster, with
unitary probability. Most of the above algorithms, especially the density-based algorithms,
can be adjusted to work with membership vectors.

A.1. Clustering 132

We base our description of example algorithms in the following subsections on [KR90,
SHR97].

A.1.1 Partitioning Algorithms

The pam algorithm is based on search for k representative objects or medoids among the
observations of the data set. After finding a set of k medoids, k clusters are constructed
by assigning each observation to the nearest medoid. The goal is to find k representative
objects which minimize the sum of the dissimilarities of the observations to their closest
representative object. The algorithm first looks for a good initial set of medoids in the
build phase. Then it finds a local minimum for the objective function, that is, a solution
such that there is no single switch of an observation with a medoid that will decrease the
objective (this is called the swap phase).

A.1.2 Hierarchical Algorithms

The agglomerative nesting agnes algorithm constructs a hierarchy of clusterings. At first,
each observation is a small cluster by itself. Clusters are merged until only one large
cluster remains which contains all the observations. At each stage the two nearest clusters
are combined to form one larger cluster.

Different linkage methods are applicable to hierarchical clustering. In particular, hi-
erarchical clustering is based on n − 1 fusion steps for n elements. In each fusion step,
an object or cluster is merged with another, so that the quality of the merger is best, as
determined by the linkage method.

Average linkage method attempts to minimize the average distance between all pairs
of members of two clusters. If P and Q are clusters, the distance between them is defined
as

d(P,Q) =
1

|P ||Q|

∑

i∈R,j∈Q

d(i, j)

Single linkage method is based on minimizing the distance between the closest neigh-
bors in the two clusters. In this case, the generated clustering tree can be derived from
the minimum spanning tree:

d(P,Q) = min
i∈R,j∈Q

d(i, j)

Complete linkage method is based on minimizing the distance between the furthest
neighbors:

d(P,Q) = max
i∈R,j∈Q

d(i, j)

Ward’s minimum variance linkage method attempts to minimize the increase in the
total sum of squared deviations from the mean of a cluster.

Weighted linkage method is a derivative of average linkage method, but both clusters
are weighted equally in order to remove the influence of different cluster size.

A.2. Optimal Separating Hyperplanes 133

A.1.3 Fuzzy Algorithms

In a fuzzy fanny clustering, each observation is ‘spread out’ over the various clusters.
Denote by ui,v the membership of observation i to cluster v. The memberships are non-
negative, and for a fixed observation i they sum to 1. Fanny is robust to the spherical
cluster assumption.

Fanny aims to minimize the objective function:

k
∑

v

∑n
i

∑n
j u2

i,vu
2
j,vdi,j

2
∑n

j u2
j,v

where n is the number of observations, k is the number of clusters and di,j is the
dissimilarity between observations i and j. The number of clusters k must comply with
1 ≤ k ≤ n

2 − 1.

A.1.4 Evaluating the Quality of Clustering

Silhouettes are one of the heuristic measures of cluster quality. Averaged over all the clus-
ters, the average silhouette width is a measure of quality of the whole clustering. Similarly,
the agglomerative coefficient is a measure of how successful has been the clustering of a
certain data set.

The silhouette width is computed as follows: Put ai = average dissimilarity between
i and all other points of the cluster to which i belongs. For all clusters C, put d(i, C) =
average dissimilarity of i to all points of C. The smallest of these d(i, C) is denoted as
bi, and can be seen as the dissimilarity between i and its neighbor cluster. Finally, put
si = (bi−ai)/max (ai, bi). The overall average silhouette width is then simply the average
of si over all points i.

The agglomerative coefficient measures the clustering structure of the data set. For
each data item i, denote by mi its dissimilarity to the first cluster it is merged with,
divided by the dissimilarity of the merger in the final step of the algorithm. The ac is the
average of all 1 − mi. Because ac grows with the number of observations, this measure
should not be used to compare data sets of much differing size.

A.2 Optimal Separating Hyperplanes

As there can be many separating hyperplanes which are consistent with all the training
instances, one can question which of them is optimal. Vapnik’s [Vap99] notion of an
optimal separating hyperplane is based on attempting to place it so that it will be as far
as possible from the nearest instance of either class.

In contrast, the ‘traditional’ approach to linear discriminant analysis is based on plac-
ing the separating hyperplane as far as possible from the means of both classes. Such a
classifier is ideal or Bayes optimal if each class is normally distributed, while all classes
share the covariance matrix, but any discussion of such conditional optimality gives a
faulty sense of security, as we should assume too much about the nature of data.

As it is often impossible to find a consistent separating hyperplane, one can relax the
assumptions. We will try to apply soft-margin separating hyperplanes as described in

A.2. Optimal Separating Hyperplanes 134

[Vap99]. The soft-margin hyperplane (also called the generalized optimal hyperplane) is
determined by the vector w which minimizes the functional

Φ(w, ξ) =
1

2
(w ·w) + C

(

∑̀

i=1

ξi

)

(here C is a given value) subject to constraint

yi((w · xi)− b) ≥ 1− ξi, i = 1, 2, . . . , `

To find the coefficients of the generalized optimal (or maximal margin) hyperplane

w =
∑̀

i=1

αiyixi

one has to find the parameters αi, i = 1, . . . , `, that maximize the quadratic form

W (α) =
∑̀

i=1

αi −
1

2

∑̀

i,j=1

yiyjαiαj(xi · xj)

with the constraint
0 ≤ αi ≤ C, i = 1, . . . , `

∑̀

i=1

αiyi = 0

Only some of the coefficients αi, i = 1, . . . , `, will differ from zero. They determine the
support vectors.

However, unlike the support vector machines, we perform no nonlinear mapping of
input features.

Quadratic programming tools expect the QP problem to be represented somewhat dif-
ferently. Following [Joa98], we can define matrix Q as Qij = yiyj (xi · xj), and reformulate
the above form as:

minimize : W (α) = −αT1 + 1
2αT Qα

subject to : αTy = 0
0 ≤ α ≤ C1

Choosing the value of C is very important, and this is rarely mentioned in SVM litera-
ture. For example, in an unbalanced linearly separable domain, the above QP optimization
will not arrive to a correct separating hyperplane for a binary AND problem! Even worse,
with some QP algorithms, the whole process may fall in an infinite loop. If the value of C
is increased, the solution will be obtained. There are several more issues which may result
in the above QP optimization not arrive at a correct solution. Therefore, although the
methods seem conceptually simple, there are many traps, unlike with the foolproof näıve
Bayesian classifier.

REFERENCES

Agr90. A. Agresti. Categorical data analysis. Wiley, 1990. 19, 32, 60, 72

And02. C. J. Anderson. Applied categorical data analysis lecture notes. University of Illinois,
Urbana-Champaign, 2002. 31, 32

Bax97. J. Baxter. The canonical distortion measure for vector quantization and approximation.
In Proc. 14th International Conference on Machine Learning, pages 39–47. Morgan
Kaufmann, 1997. 7

Bay00. S. D. Bay. Multivariate discretization of continuous variables for set mining. In Pro-
ceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2000. 92, 126

Ber38. D. Bernoulli. Specimen theoriae novae de mensura sortis. In Commentarii Academiae
Scientiarum Imperialis Petropolitanae, volume 5, pages 175–192, 1738. 19, 121

Bla69. H. M. Blalock, Jr. Theory Construction; from verbal to mathematical formulations.
Prentice-Hall, Inc., Englewoods Cliffs, New Jersey, USA, 1969. 36

BR88. M. Bohanec and V. Rajkovič. Knowledge acquisition and explanation for multi-
attribute decision making. In 8th Intl Workshop on Expert Systems and their Ap-
plications, pages 59–78, Avignon, France, 1988. 69

BR90. M. Bohanec and V. Rajkovič. DEX: An expert system shell for decision support.
Sistemica, 1(1):145–157, 1990. 69, 128

Bre99. L. Breiman. Random forests – random features. Technical Report 567, University of
California, Statistics Department, Berkeley, 1999. 126

CBL97. J. Cheng, D. Bell, and W. Liu. Learning Bayesian networks from data: An efficient
approach based on information theory. In Proceeding of the 6th ACM International
Conference on Information and Knowledge Management, 1997. 62

Ces90. B. Cestnik. Estimating probabilities: A crucial task in machine learning. In Proc. 9th
European Conference on Artificial Intelligence, pages 147–149, 1990. 42, 85

CJS+94. C. Cortes, L. D. Jackel, S. A. Solla, V. Vapnik, and J. S. Denker. Learning curves:
Asymptotic values and rate of convergence. In J. D. Cowan, G. Tesauro, and J. Al-
spector, editors, Advances in Neural Information Processing Systems, volume 6, pages
327–334. Morgan Kaufmann Publishers, Inc., 1994. 17

References 136

CL01. C.-C. Chang and C.-J. Lin. LIBSVM: a library for support vector machines, 2001.
Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm. 98

CT91. T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley Series in
Telecommunications. John Wiley & Sons, 1991. 61

Dem02. J. Demšar. Constructive Induction by Attribute Space Reduction. PhD thesis, University
of Ljubljana, Faculty of Computer and Information Science, 2002. 34, 47, 57, 59, 82,
103, 129

DH73. R. Duda and P. Hart. Pattern Classification and Scene Analysis. John Wiley & Sons,
New York, USA, 1973. 10, 43

DHS00. R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. Wiley, 2nd edition,
October 2000. 12

Die98. T. G. Dietterich. Approximate statistical tests for comparing supervised classification
learning algorithms. Neural Computation, 10(7):1895–1924, 1998. 54

Die00. T. G. Dietterich. Ensemble methods in machine learning. In J. Kittler and F. Roli,
editors, First International Workshop on Multiple Classifier Systems, Lecture Notes in
Computer Science, pages 1–15, New York, 2000. Springer Verlag. 25

DP97. P. Domingos and M. Pazzani. On the optimality of the simple Bayesian classifier under
zero-one loss. Machine Learning, 29:103–130, 1997. 44

DS79. P. Dubey and L. Shapley. Mathematical properties of the banzhaf power index. Math-
ematics of Operations Research, 4(2):99–131, 1979. 39

DZ02. J. Demšar and B. Zupan. Orange: a data mining framework.
http://magix.fri.uni-lj.si/orange, 2002. 82, 87, 98

ELFK00. G. Elidan, N. Lotner, N. Friedman, and D. Koller. Discovering hidden variables: A
structure-based approach. In Proceeding of the Neural Information Processing Systems
conference, 2000. 53

Ell. M. Ellison. http://www.csse.monash.edu.au/~lloyd/tildeMML/. 6

Eve77. B. Everitt. The analysis of contingency tables, 1977. 54

FDH01. J. T. A. S. Ferreira, D. G. T. Denison, and D. J. Hand. Weighted naive Bayes modelling
for data mining. Technical report, Dept. of Mathematics, Imperial College, London,
UK, May 2001. 45

FF99. C. C. Fabris and A. A. Freitas. Discovering surprising patterns by detecting occurrences
of simpson’s paradox. In Research and Development in Intelligent Systems XVI (Proc.
ES99, The 19th SGES Int. Conf. on Knowledge-Based Systems and Applied Artificial
Intelligence), pages 148–160. Springer-Verlag, 1999. 31, 36, 122

FG96. N. Friedman and M. Goldszmidt. Building classifiers using Bayesian networks. In Proc.
National Conference on Artificial Intelligence, pages 1277–1284, Menlo Park, CA, 1996.
AAAI Press. 53

Fre01. A. A. Freitas. Understanding the crucial role of attribute interaction in data mining.
Artificial Intelligence Review, 16(3):177–199, November 2001. 36

FU. G. L. Fonseca and L. Ussher. The history of economic thought website.
http://cepa.newschool.edu/het/home.htm. 19, 121

GD02. G. Gediga and I. Düntsch. On model evaluation, indices of importance, and interaction
values in rough set analysis. In S. K. Pal, L. Polkowski, and A. Skowron, editors,
Rough-Neuro Computing: A way for computing with words, Heidelberg, 2002. Physica
Verlag. 39

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://magix.fri.uni-lj.si/orange
http://www.csse.monash.edu.au/~lloyd/tildeMML/
http://cepa.newschool.edu/het/home.htm

References 137

GMR99. M. Grabisch, J.-L. Marichal, and M. Roubens. Equivalent representations of a set
function with applications to game theory and multicriteria decision making. In Proc.
of the Int. Conf. on Logic, Game theory and Social choice (LGS’99), pages 184–198,
Oisterwijk, the Netherlands, May 1999. 67

GMR00. M. Grabisch, J.-L. Marichal, and M. Roubens. Equivalent representations of set func-
tions. Mathematics of Operations Research, 25(2):157–178, 2000. 67

GR99. M. Grabisch and M. Roubens. An axiomatic approach to the concept of interaction
among players in cooperative games. International Journal of Game Theory, 28(4):547–
565, 1999. 39, 67

Grü98. P. Grünwald. The Minimum Description Length Principle and Reasoning Under Uncer-
tainty. PhD dissertation, Universiteit van Amsterdam, Institute for Logic, Language,
and Computation, 1998. 12, 18

Grü00. P. Grünwald. Maximum entropy and the glasses you are looking through. In Proceedings
of the Sixteenth Annual Conference on Uncertainty in Artificial Intelligence (UAI 2000),
Stanford, CA, USA, July 2000. 11

HB99. S. Hettich and S. D. Bay. The UCI KDD archive http://kdd.ics.uci.edu. Irvine,
CA: University of California, Department of Information and Computer Science, 1999.
87, 126

HMS66. E. B. Hunt, J. Martin, and P. Stone. Experiments in Induction. Academic Press, New
York, 1966. 61, 124

Hol97. A. Holst. The Use of a Bayesian Neural Network Model for Classification Tasks. PhD
thesis, Royal Institute of Technology, Sweden, September 1997. 46

Hun62. E. B. Hunt. Concept Learning: An Information Processing Problem. Wiley, 1962. 35

IG96. R. Ihaka and R. Gentleman. R: A language for data analysis and graphics. Journal of
Computational and Graphical Statistics, 5(3):299–314, 1996. 60, 88

Jac01. J. Jaccard. Interaction Effects in Logistic Regression, volume 07–135 of Sage University
Papers. Quantitative Applications in the Social Sciences. Sage, 2001. 48

Jak02. A. Jakulin. Extensions to the Orange data mining framework.
http://ai.fri.uni-lj.si/aleks/orng, 2002. 98

Jay88. E. T. Jaynes. The relation of Bayesian and maximum entropy methods. In Maximum-
Entropy and Bayesian Methods in Science and Engineering, volume 1, pages 25–29.
Kluwer Academic Publishers, 1988. 21

Joa98. T. Joachims. Making large-scale SVM learning practical. In B. Schölkopf, C. J. C.
Burges, and A. J. Smola, editors, Advances in Kernel Methods - Support Vector Learn-
ing. MIT Press, Cambridge, USA, 1998. 134

Joh00. P. M. Johnson. A glossary of political economy terms. Dept. of Political Science,
Auburn University, 1994–2000. 38

JTW90. J. Jaccard, R. Turrisi, and C. K. Wan. Interaction Effects in Multiple Regression,
volume 72 of Sage University Papers. Quantitative Applications in the Social Sciences.
Sage, 1990. 27, 36, 48, 122

Kad95. C. M. Kadie. Seer: Maximum Likelihood Regression for Learning-Speed Curves. PhD
thesis, University of Illinois at Urbana-Champaign, 1995. 17

KB91. I. Kononenko and I. Bratko. Information based evaluation criterion for classifier’s
performance. Machine Learning, 6:67–80, 1991. 19

http://kdd.ics.uci.edu
http://ai.fri.uni-lj.si/aleks/orng

References 138

KL51. S. Kullback and R. Leibler. On information and sufficiency. Ann. Math. Stat., 22:76–86,
1951. 18, 121

KLMT00. P. Kontkanen, J. Lahtinen, P. Myllymäki, and H. Tirri. An unsupervised Bayesian
distance measure. In E. Blanzieri and L. Portinale, editors, EWCBR 2000 LNAI 1898,
pages 148–160. Springer-Verlag Berlin Heidelberg, 2000. 7

KN. E. Koutsofios and S. C. North. Drawing Graphs with dot. Available on
research.att.com in dist/drawdag/dotguide.ps.Z. 90

Koh95. R. Kohavi. Wrappers for Performance Enhancement and Oblivious Decision Graphs.
PhD dissertation, Stanford University, September 1995. 17

Koh96. R. Kohavi. Scaling up the accuracy of naive-Bayes classifiers: a decision-tree hybrid. In
Proceedings of the Second International Conference on Knowledge Discovery and Data
Mining, pages 202–207, 1996. 54

Kon90. I. Kononenko. Bayesovske nevronske mreže. PhD thesis, Univerza v Ljubljani, Slovenija,
1990. 46

Kon91. I. Kononenko. Semi-naive Bayesian classifier. In Y. Kodratoff, editor, European Working
Session on Learning - EWSL91, volume 482 of LNAI. Springer Verlag, 1991. 47, 60,
72, 126

Kon97. I. Kononenko. Strojno učenje. Fakulteta za računalnǐstvo in informatiko, Ljubljana,
Slovenija, 1997. 41

KR90. L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: An Introduction to Cluster
Analysis. Wiley, New York, USA, 1990. 88, 127, 132

KR92. K. Kira and L. A. Rendell. A practical approach to feature selection. In D. Sleeman and
P. Edwards, editors, Machine Learning: Proceedings of the International Conference
(ICML’92), pages 249–256. Morgan Kaufmann, 1992. 36

Kra94. S. Kramer. CN2-MCI: A two-step method for constructive induction. In Proc. ML-
COLT’94 Workshop on Constructive Induction and Change of Representation, New
Brunswick, New Jersey, USA, 1994. 59

KW01. L. I. Kuncheva and C. J. Whittaker. Measures of diversity in classifier ensembles and
their relationship with ensemble accuracy. Machine Learning, forthcoming, 2001. 55

LCB+02. G. Lanckriet, N. Cristianini, P. Bartlett, L. El Ghaoui, and M. I. Jordan. Learning
the kernel matrix with semi-definite programming. In C. Sammut and A. Hoffmann,
editors, Proceedings of the 19th International Conference on Machine Learning, Sydney,
Australia, 2002. Morgan Kaufmann. 7

LMM02. D. A. Lind, W. G. Marchal, and R. D. Mason. Statistical Techniques in Business and
Economics. McGraw-Hill/Irwin, 11/e edition, 2002. 20

LZ02. C. X. Ling and H. Zhang. Toward Bayesian classifiers with accurate probabilities. In
Proceedings of the Sixth Pacific-Asia Conference on KDD. Springer, 2002. 71

Mac91. D. MacKay. Bayesian Methods for Adaptive Models. PhD thesis, California Institute
of Technology, 1991. 15

Mac01. D. MacKay. Decision theory – a simple example.
http://www.inference.phy.cam.ac.uk/mackay/Decision.html, August 2001.
10

Mar99. J.-L. Marichal. Aggregation Operators for Multicriteria Decision Aid. PhD thesis,
University of Liège, Department of Management, 1999. 39, 40

research.att.com
dist/drawdag/dotguide.ps.Z
http://www.inference.phy.cam.ac.uk/mackay/Decision.html

References 139

Mil92. A. J. Miller. Algorithm AS 274: Least squares routines to supplement those of Gentle-
man. Appl. Statist., 41(2):458–478, 1992. 98

Min00. T. P. Minka. Distance measures as prior probabilities, 2000.
http://www.stat.cmu.edu/~minka/papers/metric.html. 7

MJ93. G. H. McClelland and C. M. Judd. Statistical difficulties of detecting interactions and
moderator effects. Psychological Bulletin, 114:376–390, 1993. 95, 108

MM00. T. Matsui and Y. Matsui. A survey of algorithms for calculating power indices of
weighted majority games. Journal of Operations Research Society of Japan, 43(1):71–
86, 2000. 39

MP69. M. L. Minsky and S. A. Papert. Perceptrons. MIT Press, Cambridge, MA, expanded
1990 edition, 1969. 36

MR99. J.-L. Marichal and M. Roubens. The chaining interaction index among players in
cooperative games. In N. Meskens and M. Roubens, editors, Advances in Decision
Analysis, volume 4 of Mathematical Modelling - Theory and Applications, pages 69–85.
Kluwer, Dordrecht, 1999. 67

MS63. J. N. Morgan and J. A. Sonquist. Problems in the analysis of survey data, and a
proposal. Journal of the American Statistical Association, 58:415–435, 1963. 35

MST92. D. Michie, D. J. Spiegelhalter, and C. C. Taylor, editors. Machine Learning, Neural
and Statistical Classification. Ellis Horwood, London, UK, 1992. 35

NJ01. A. Y. Ng and M. I. Jordan. On discriminative vs. generative classifiers: A comparison
of logistic regression and naive Bayes. In NIPS’01, 2001. 46

OBR89. M. Olave, M. Bohanec, and V. Rajkovič. An application for admission in public school
systems. In I. T. M. Snellen, W. B. H. J. van de Donk, and J.-P. Baquiast, editors,
Expert Systems in Public Administration, pages 145–160. Elsevier Science Publishers
(North Holland), 1989. 69

Ock20. W. of Ockham. Quodlibeta septem. scriptum in librum primum sententiarum. In Opera
Theologica, volume I, page 74. 1320. 6

Owe72. G. Owen. Multilinear extensions of games. Management Sciences, 18:64–79, 1972. 39

Paz96. M. J. Pazzani. Searching for dependencies in Bayesian classifiers. In Learning from
Data: AI and Statistics V. Springer-Verlag, 1996. 47, 58, 72, 126

Pea88. J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San Fran-
cisco, CA, USA, 1988. 33, 123

Pér97. E. Pérez. Learning Despite Complex Attribute Interaction: An Approach Based on
Relational Operators. PhD dissertation, University of Illinois at Urbana-Champaign,
1997. 36, 51

PF97. F. Provost and T. Fawcett. Analysis and visualization of classifier performance: Com-
parison under imprecise class and cost distributions. In Proc. of KDD’97. AAAI, 1997.
20

Pla99. J. C. Platt. Probabilistic outputs for support vector machines and comparisons to
regularized likelihood methods. In A. J. Smola, P. Bartlett, B. Schölkopf, and D. Schu-
urmans, editors, Advances in Large Margin Classifiers. MIT Press, 1999. 45

PPS01. C. Perlich, F. Provost, and J. S. Simonoff. Tree induction vs logistic regression: A
learning-curve analysis. CeDER Working Paper IS-01-02, Stern School of Business,
New York University, NY, Fall 2001. 97

http://www.stat.cmu.edu/~minka/papers/metric.html

References 140

PR96. E. Pérez and L. A. Rendell. Statistical variable interaction: Focusing multiobjective
optimization in machine learning. In Proceedings of the First International Workshop
on Machine Learning, Forecasting and Optimization (MALFO’96), Leganès, Madrid,
Spain, 1996. Universidad Carlos III de Madrid, Spain. 36

Qui93. J. R. Quinlan. C4.5: programs for machine learning. Morgan Kaufmann Publishers
Inc., San Francisco, CA, 1993. 90, 98

Qui94. J. R. Quinlan. Comparing connectionist and symbolic learning methods, volume I:
Constraints and Prospects, pages 445–456. MIT Press, 1994. 35

RH80. R. P. Runyon and A. Haber. Fundamentals of Behavioral Statistics. Addison Wesley
Publishing Company, Inc., Philipines, 4th edition, 1980. 36

RH97. Y. D. Rubinstein and T. Hastie. Discriminative vs informative learning. In Proceedings
of the Third International Conference on Knowledge Discovery and Data Mining, pages
49–53. AAAI Press, August 1997. 43, 45

RHJ01. I. Rish, J. Hellerstein, and T.S. Jayram. An analysis of data characteristics that affect
naive Bayes performance. Technical Report RC21993, IBM, 2001. 53

RR96. V. Rao and H. Rao. C++ Neural Networks and Fuzzy Logic. BPB Publications, New
Delhi, India, 1996. 36

Sar94. W. S. Sarle. Neural networks and statistical models. In Proceedings of the 19th Annual
SASUG International Conference, April 1994. 7

SAS98. SAS/STAT User’s Guide. SAS Institute Inc., Cary, NC, USA, 1998. 30, 75, 90

Ses89. R. Seshu. Solving the parity problem. In Proc. of the Fourth EWSL on Learning, pages
263–271, Montpellier, France, 1989. 36

Sha48. C. E. Shannon. A mathematical theory of communication. The Bell System Technical
Journal, 27:379–423, 623–656, 1948. 21, 124

SHR97. A. Struyf, M. Hubert, and P. J. Rousseeuw. Integrating robust clustering techniques
in S-PLUS. Computational Statistics and Data Analysis, 26:17–37, 1997. 88, 127, 132

Šik02. M. Robnik Šikonja. Theoretical and empirical analysis of ReliefF and RReliefF. Machine
Learning Journal, forthcoming, 2002. 36, 63

SW86. C. Stanfill and D. Waltz. Towards memory-based reasoning. Communications of the
ACM, 29(12):1213–1228, 1986. 7

Vap99. V. N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag New York,
2nd edition, 1999. 24, 46, 97, 133, 134

Ved02. V. Vedral. The role of relative entropy in quantum information theory. Reviews of
Modern Physics, 74, January 2002. 64, 65, 125

Ver02. J. Verhagen, editor. Science jokes. http://www.xs4all.nl/~jcdverha/scijokes/,
August 2002. 1

Wei02. E. W. Weisstein. Eric Weisstein’s World of Mathematics.
http://mathworld.wolfram.com/, 2002. 64

WM95. D. W. Wolpert and W. G. Macready. No free lunch theorems for search. Technical
Report SFI-TR-05-010, Santa Fe Institute, 1995. 13

Wol96. D. W. Wolpert. The lack of a priori distinctions between learning algorithms. Neural
Computation, 8:1341–1390, 1996. 13

http://www.xs4all.nl/~jcdverha/scijokes/
http://mathworld.wolfram.com/

References 141

WP98. G. I. Webb and M. J. Pazzani. Adjusted probability naive Bayesian induction. In
Proceedings of the Tenth Australian Joint Conference on Artificial Intelligence, pages
285–295, Brisbane, Australia, July 1998. Springer Berlin. 45

WW89. S. J. Wan and S. K. M. Wong. A measure for concept dissimilarity and its application
in machine learning. In Proceedings of the International Conference on Computing and
Information, pages 267–273, Toronto, Canada, 1989. North-Holland. 62

Zad02. B. Zadrozny. Reducing multiclass to binary by coupling probability estimates. In
Advances in Neural Information Processing Systems 14 (NIPS*2001), June 2002. 98

ZDS+01. B. Zupan, J. Demšar, D. Smrke, K. Božikov, V. Stankovski, I. Bratko, and J. R. Beck.
Predicting patient’s long term clinical status after hip arthroplasty using hierarchical
decision modeling and data mining. Methods of Information in Medicine, 40:25–31,
2001. 69

ZE01. B. Zadrozny and C. Elkan. Obtaining calibrated probability estimates from decision
trees and naive Bayesian classifiers. In Proceedings of the Eighteenth International
Conference on Machine Learning (ICML’01), pages 609–616, Williams College, Mas-
sachussetts, June 2001. Morgan Kaufmann. 45

ZLZ00. H. Zhang, C. X. Ling, and Z. Zhao. The learnability of naive Bayes. In Proceedings of
Canadian Artificial Intelligence Conference, pages 432–441. Springer, 2000. 44, 46

Zup97. B. Zupan. Machine Learning Based on Function Decomposition. PhD thesis, University
of Ljubljana, Faculty of Computer and Information Science, 1997. 34, 35, 57, 58, 59,
82, 102, 129

References 142

INDEX

m-error estimation, 42, 59, 60, 85, 102
0-1 loss, see classification accuracy

aggreement
measure of, 30

association, 28, 29, 31, 57, 82
homogenous, 31, 33
marginal, 34, 35
measure of, 30
pairwise, 29

attribute, 5, 6, 7
bound, 30, 34
conditional, 30
context, 34, 59, 106
discretization, 37, 87, 90
free, 30, 34
latent, 34, 52
marginal, 34
missing values, 43, 87
nominal, 6
numerical

continuous, 6
discrete, 6

ordinal, 6
reduction, 47, 58, 85, 102, 103, 106, 107
relevance, 54, 63
selection, 36, 43, 45, 50, 52, 53, 90, 103
structure, 69, 72, 75

subset, 43
uninformative, 43
weighting, 45

Bayes rule, 15, 41

Bayesian network, 33
binning, 45, 46

Cartesian product, 34, 35, 53, 58, 62, 75, 82,
101, 102

causality, 27
ceteris paribus, 38
class, see label
classification, 5

cost-based, 20
problem, 6, 7
rules, 24
tree, 24, 35

classification accuracy, 5, 9, 18, 44, 45, 71
classification trees, 6
classifier, 8, 8

majority class, 9
probabilistic, 9, 11, 13, 14
stochastic, 9

clustering, 8, 59, 88, 131

variable, 75, 90
collapsibility, 47
competition, 39
complementarity, 54
computational economy, 15
conditional table, 30
confounding, 28
constructive induction, 36, 47, 57, 58, 61, 82,

102
contingency table, 29, 34, 60, 82
cooperation, 39
correlation, 37
cost matrix, 9, 10, 12, 20
cross entropy, see Kullback-Leibler divergence
cross-validation, 9, 12, 17, 59, 71, 76, 98
cumulative gains, see learning curve

data compression, 18
decision-maker, 16

Index 144

decision-making, 9, 10, 15, 20, 22
decomposition, 58
dendrogram, 88
dependence, 28, 29
description length, 18
descriptor, 22
dichotomization, see attribute discretization
dimensionality, 23
diversity, 55
dummy coding, 44

economics, 38, 39
effect, 42
ensemble, 24, 55
entropy, 21, 61, 65
estimation, 14, 15, 23, 44, 45
evaluation, 16
evaluation function, 11, 16, 17, 45, 46, 49, 61,

71, 73, 101
evaluation set, 11
evidence, 15
example, see instance
expected value of perfect information, 20

feature, see attribute, see attribute
function decomposition, 35, 59, 82, 98
fuzzy, 39

gambling, 10, 18
game, 39
game theory, 67
generator function, 16

HINT, see function decomposition
holdout set, see validation set
hypergraph, 65
hyperplane, 23

ignorance, 13, 17, 20
inclusion-exclusion principle, 64, 65
independence, 34

complete, 32
conditional, 30, 33
joint, 32

independence assumption, 41, 42, 48
information

conditional mutual, 62
gain, 61

mutual, 61, 82
information score, 19
input vector, see attribute
instance, 5, 14

evaluation set, 7
training set, 7

interaction, 47, 48
n-way, 47
conditional, 53

false, 48, 51, 63, 71, 88, 103
gain, 62, 71, 76, 90, 101
index, 39, 67
negative, 39
positive, 39
resolution, 47, 51, 52, 97, 101
significance, 49, 73, 76, 92, 103
true, 48, 50, 63, 71, 90, 106

interactions
ordinal and disordinal, 37

joining, 47, 58, 60, 72

knowledge, 8, 10
Kullback-Leibler divergence, 18, 61, 65, 71, 98

label, 5, 7
learning

algorithm, 8, 22, 42
cost-based, 9, 20, 21
curve, 17
discriminative, 8, 43, 54
generative, 8, 61, 65
informative, 8
probabilistic, 8, 14, 98
subsymbolic, 6
symbolic, 6

learning curve, 13
leave-one-out, 12
lift chart, see learning curve
linear discriminant, 24
linear separability, 36, 44, 48, 51
link function, 24
logistic

distribution, 45
regression, 24, 97

marginal table, 30
maximum a posteriori, 12, 14
maximum entropy, 12, 22
maximum likelihood, 12, 14
maximum margin, 24
metric, 7, 24, 36
model, 14, 14, 16, 22, 42, 44, 46

fitting, 15
model fitting, 15
moderator, 28
multicollinearity, 37, 38
myopia, 36, 58, 63, 76

Index 145

näıve Bayesian classifier, 2, 6, 24, 41, 43, 44,
58, 97

neural network, 36, 46
noise, see ignorance
nomogram, 6, 46

Ockham’s razor, see simplicity
opportunity loss, see regret
output vector, see label
overfitting, 13, 21

plausibility, 16
player, 39
posterior, 8, 14, 15
power index, 39
prior, 6, 8, 12, 15, 16
probability distribution, 9, 12, 14, 15, 24, 42

of higher order, 12–14
probing, 57
projection, 23, 23, 45, 46, 48, 97

quality gain, 75

Receiver Operating Characteristic, 20
recursive partitioning, 24
regression, 5, 36, 42

regret, 20
relative entropy, see Kullback-Leibler diver-

gence
Relief, 36, 63
return on investment, 10
risk, 10, 12
rough set, 39
rules, 6

sampling, 12, 14, 15
scatter plot, 29
segmentation, 23, 24, 44, 46–49, 58, 61
simplicity, 6, 6, 10, 48, 82
Simpson’s paradox, 31
statistic

Cochran-Mantel-Haenszel, 30, 60, 76
Fisher’s Z, 37
Pearson’s X2, 19
Wilks’s likelihood ratio, 19

strategy
bold, 10, 21
timid, 11, 21, 24

substitutability, 54

test set, 8, 9
training set, 8, 17

uncertainty, 8, 13, 15
underfitting, 13, 21
unpredictability, 13
utility, 10, 19–21

validation set, 17
value, 39
value function, 67
variable, see attribute
vote aggregation, see voting
voting, 23, 24, 44, 45, 49, 50, 75

wrapper methods, 17, 43, 58, 76, 101

zero-one loss, see classification accuracy

	Introduction
	Contributions
	Overview of the Text

	Foundations
	Machine Learning
	Attributes and Labels
	Classifiers
	Uncertainty
	Probabilities and Decision Theory
	Gambling
	Probabilistic Evaluation
	Probability of a Probability
	Causes of Probability
	No Free Lunch Theorem

	Estimating Models
	Bayesian Estimation
	Estimation by Sampling

	Classifier Evaluation
	Generator Functions
	Evaluation Functions

	Constructing Classifiers
	Building Blocks

	Review
	Causality
	Dependence and Independence
	Marginal and Conditional Association
	Graphical Models
	Bayesian Networks
	Generalized Association

	Interactions in Machine Learning
	Interactions in Regression Analysis
	Interactions and Correlations
	Problems with Interaction Effects

	Ceteris Paribus
	Game Theory

	Interactions
	Naïve Bayesian Classifier
	Naïve Linear Regression
	NBC as a Discriminative Learner

	Improving NBC
	Interactions Defined
	Interaction-Resistant Bayesian Classifier
	A Pragmatic Interaction Test

	Types of Interactions
	True Interactions
	False Interactions
	Conditional Interactions

	Instance-Sensitive Evaluation

	Finding 3-Way Interactions
	Wrapper Probes
	Constructive Induction
	Association Probes
	Cochran-Mantel-Haenszel Statistic
	Semi-Naïve Bayes

	Information-Theoretic Probes
	3-Way Interaction Gain
	Visualizing Interactions
	Related Work

	Practical Search for Interactions
	True and False Interactions
	Classifier Performance and Interactions
	Replacing and Adding Attributes
	Intermezzo: Making of the Attribute Structure
	Predicting the Quality Gain
	Myopic Quality Gain

	Non-Wrapper Heuristics
	Interaction Gain
	Cochran-Mantel-Haenszel Statistic

	Heuristics from Constructive Induction
	Complexity of the Joint Concept
	Reduction in Error achieved by Joining

	Experimental Summary

	Interaction Analysis and Significance
	False Interactions
	True Interactions
	Applicability of True Interactions
	Significant and Insignificant Interactions

	Experimental Summary

	Better Classification by Resolving Interactions
	Implementation Notes
	Baseline Results
	Resolution of Interactions
	Attribute Reduction
	Resolving False Interactions
	Resolving True Interactions
	Experimental Summary

	Conclusion
	Interakcije med atributi v strojnem ucenju
	Uvod
	Negotovost v strojnem ucenju
	Negotovost
	Vrednotenje klasifikatorjev
	Gradnja klasifikatorjev

	Interakcije
	Vzrocnost
	Odvisnost
	Omejitve klasifikatorjev
	Teorija informacije

	Vrste interakcij
	Sodejavnosti
	Soodvisnosti

	Uporaba interakcij
	Pomembnost interakcij
	Interakcije in struktura atributov
	Odpravljanje interakcij

	Additional Materials
	Clustering
	Partitioning Algorithms
	Hierarchical Algorithms
	Fuzzy Algorithms
	Evaluating the Quality of Clustering

	Optimal Separating Hyperplanes

	References
	Index

