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Abstract

Parametric models of the conditional intensity of a point process (e.g., generalized linear models)
are popular in statistical neuroscience, as they allow us to characterize the variability in neural
responses in terms of stimuli and spiking history. Parameter estimation in these models relies
heavily on accurate evaluations of the log-likelihood and its derivatives. Classical approaches use
a discretized time version of the spiking process, and recent work has exploited the existence of
a refractory period (during which the conditional intensity is zero following a spike) to obtain
more accurate estimates of the likelihood. In this brief note we demonstrate that this method
can be improved significantly by applying classical quadrature methods directly to the resulting
continuous-time integral.

1 Introduction
Point processes are a powerful theoretical tool to characterize the occurrence of random events in
time, and are widely used in statistical neuroscience (Truccolo, 2010) to represent neural spiking in
terms of intrinsic factors, including refractoriness and the activity of other neurons, and extrinsic
factors, such as stimulus-driven effects. One way to characterize such processes is through the
conditional intensity function (CIF). Intuitively, the CIF can be interpreted as an instantaneous
firing rate given the past history. This history, denotedHt, is meant to represent changes in spiking
probabilities due to previous activity, e.g., refractoriness. The log-likelihood of observing the
spikes at times t1, . . . , tN(T ) in the interval [0, T ] is given by (Brillinger, 1988; Daley & Vere-Jones,
2007)

l(t1, . . . tN(T )) =

N(T )∑
i=1

log(λ(ti|Hti))−
∫ T

0

λ(t|Ht)dt, (1)

1



with λ(t|Ht) denoting the CIF at time t.
Usually, an explicit functional model of the CIF is assumed. The most popular approach in-

volves generalized linear models (GLM) (Brillinger, 1988; Paninski, 2004; Truccolo, Eden, Fel-
lows, Donoghue & Brown, 2005), in which the CIF is a function of a linear transformation of the
stimulus and other known covariate terms. This leads to a parametric expression for the likelihood,
in which maximum likelihood (ML) or maximum a posteriori (MAP) estimates are computed using
standard optimization methods that evaluate the log-likelihood (and derivatives) at each iteration.
The main problem is that only approximations of the full continuous-time log-likelihood can be
computed, as there may not be a closed form expression for the cumulative CIF,

∫ T
0
λ(t|Ht)dt.

Previous approaches are based on discrete-time versions of the spiking process, which in turn
lead to discretizations of the log-likelihood that converge to the continuous version when the bin
size goes to zero. For point processes with refractory effects, in which the CIF jumps discontin-
uously to zero following a spike, (Citi, Ba, Brown & Barbieri, 2014) recently developed an im-
proved such discretization. Here we show that an alternative approach, in which we apply standard
quadrature methods directly to the original continuous time integral, leads to significant further
improvements beyond those offered by the approach of (Citi et al., 2014), with minimal additional
computational cost1.

2 A direct quadrature method for approximating the continuous-
time log-likelihood in refractory models

To begin, it is useful to discuss both the standard discretization approach and also the more re-
fined method of (Citi et al., 2014). Both of these approaches begin by discretizing the observed
continuous-time spike train process {ti} into a binary sequence ∆Nj , with a one in each bin (in-
dexed by j) containing a spike time ti, and a zero otherwise. The standard approach then applies a
simple discretization of eq. (1) to obtain the approximation

lδDR1(t1, . . . , tN(T )) =

Nb∑
j=1

∆Nj log(λj)− λjδ. (2)

Here λj denotes the CIF λ(t|Ht) evaluated at the center of the j-th bin, δ is the bin width, and
Nb = T/δ is the number of bins. The approach of (Citi et al., 2014) instead uses the formula

lδDR2(t1, . . . , tN(T )) =

Nb∑
j=1

∆Nj log(λj)−
(

1− ∆Nj

2

)
λjδ. (3)

Notice that the only difference between these two approaches is in the second term; as discussed
in (Citi et al., 2014), the latter approximation is more accurate because it accounts for the loss of
intensity due to refractoriness: roughly speaking, on average, spikes are in the center of bins, and
if bins are small then the CIF over the second half should be zero. See (Citi et al., 2014) for full

1Recently submitted independent work by K. Lepage makes a similar point (Lepage, 2014).
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details; we use the abbreviation “DR,” for discrete Riemann, for each of these approaches, with
DR1 corresponding to the standard method and DR2 for the approach of (Citi et al., 2014).

Our approach avoids the discretization of the observed spike train into a binary sequence
∆Nj , and instead works with the original continuous-time loglikelihood more directly. Define
a τ -refractory point process as a process with an absolute refractory period of length τ , i.e.,
λ(t|Ht) = 0 for t ∈ (ti, ti + τ ], for each spike time ti. In many applications, λ(t|Ht) is a smooth
function of time t away from the spike times {ti}. Thus it is sensible to break up eq. (1) into
two terms: the first term, a sum over i we can compute directly, and the second term, an integral
over [0, T ] that we must approximate numerically in most cases. Since there are discontinuities
at each spike time ti, we begin by breaking up this integral into N(T ) + 1 terms, to avoid these
discontinuities. Thus, defining t0 = 0 and tN(T )+1 = T , for a τ -refractory point process we have∫ T

0

λ(t|Ht)dt =

N(T )∑
i=0

∫ ti+1

ti

λ(t|Ht)dt =

∫ t1

0

λ(t|Ht)dt+

N(T )∑
i=1

∫ ti+1

ti+τ

λ(t|Ht)dt. (4)

Assuming λ(t|Ht) is smooth on each of these N(T ) + 1 subintervals, we can now simply apply
standard quadrature methods to each subinterval. (Of course, if we know a priori that λ(t|Ht)
is discontinuous at additional time points, then we can break these integrals into more terms as
necessary.)

We compare two such standard quadrature methods below: a simple trapezoidal rule with
quadrature points evenly spaced between ti+τ and ti+1 (abbreviated below as “CT,” for continuous
trapezoidal) and Gauss-Lobatto quadrature (“GL,” with quadrature points defined below). Both of
these are suitable for approximating the integral of a function f defined on an interval [a, b] for
which we know the endpoint values f(a) and f(b) (Dahlquist & Björk, 2008). In our case, by τ -
refractoriness, we know that λ(ti + τ |Hti+τ ) = 0 for each i > 0, and we have computed λ(ti|Hti)
already in order to compute the discrete sum in eq. (1). Therefore, once we have computed λ(t|Ht)
at t = 0 and t = T we indeed have the values of our integrand at the endpoints of each of
the intervals of interest. (Other quadrature rules are of course available, and may lead to better
performance in some special cases; for example, we examined a Clenshaw-Curtis rule here as well
(Trefethen, 2008), but found that the GL method performed better.)

Recall that a Gaussian quadrature is a numerical rule that approximates the integral of a func-
tion f defined on [−1, 1] via the weighted sum

∑m
j=1wj,mf(xj,m), with the quadrature points xj,m

and (nonnegative) weights wj,m depending only on m, not on f . Thus, once the array of pairs
{(xj,m, wj,m)}j=1...m has been precomputed for all required values of m (this is a standard calcu-
lation2; see e.g. (Dahlquist & Björk, 2008) for further details), to apply the GL method to each of
our integrands indexed by i, we simply need to apply a linear change of variables from [ti+τ, ti+1]
to [−1, 1], choose a value of m = mi, and then evaluate the sum

∑mi

j=1wj,mi
fi(xj,mi

), with fi a
suitably translated and rescaled version of λ(t|Ht).

For the purpose of fair comparison in the numerical analyses presented below, we allow each
approximation method to evaluate the CIF a total of M times over the interval [0, T ], where

2In detail, the GL quadrature nodes xj,m are the roots of (1 − x2)P ′m−1(x), where Pm(x) are the Legendre
polynomials defined recursively by (m+1)Pm+1(x) = (2m+1)Pm(x)−mPm−1(x), P0(x) = 0, P1(x) = 1. Also,
w1,m = wm,m = 2/(m(m− 1)) and for 1 < j < m,wj,m = 2/(m(m− 1)Pj−1(xj,m)2).
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M is an accuracy parameter we vary systematically. (Since the quadrature points and weights
{(xj,m, wj,m)}j=1...m need only be computed once, the amortized cost of the GL method is exactly
the same as that of the other three approximation methods considered here, if the same M is used
for each method.) For the discrete methods (DR1 and DR2), M = Nb, the number of bins. For
the continuous-time methods (CT and GL), we have found that an effective strategy is to allocate
a minimum number Mmin of quadrature points to each of our N(T ) + 1 intervals (Mmin = 2 or 3
works well in the cases we have examined, and for GL even Mmin = 1 works in most cases, since
this defaults to a triangular quadrature rule applied between ti + τ and ti+1), and then to allocate
the remaining points so that mi is roughly proportional to the length of the corresponding interval
ti+1 − ti − τ .

Numerical results
For concreteness, we tested the performance of the four methods (DR1, DR2, CT, GL) using three
different renewal processes, each with an absolute refractory period of length τ = 2 ms. For
the interspike interval (ISI) distributions of these three processes, we used a (τ -shifted) Rayleigh,
inverse gaussian and log-normal. For each of these, 50 samples were drawn from the process, each
with T = 200 s. Results are shown in Figure 1. In the top panels we show a sample of the CIF
of each process, from t = 0 until the sixth spike time, t = t6. In the center panel we show the
approximated log-likelihoods for a single sample as a function ofM , along with the corresponding
exact values. Finally, in the bottom panel we show the median approximation error (± quartiles).

For the Rayleigh distribution (left column) both the CT and GL methods have negligible error:
indeed, recall that GL is exact for polynomials of degree lower than roughly 2mi, where mi is
the number of quadrature points on the i-th interval, and in this case the CIF between spikes
is linear. In all cases, we see clear differences in performance: the GL method is much more
accurate (for sufficiently large M ) than the continuous-time approach with trapezoidal quadrature
(CT), which in turn is uniformly more accurate than the discrete time approximations DR1 and
DR2. Indeed, the difference between the performance of the best continuous-time approach (GL)
and the best discrete-time approach (DR2) is much larger than the difference between the two
discrete-time approaches (DR1 and DR2), largely because the continuous-time approaches handle
the discontinuities in the likelihood more accurately, and (as in the GL case) allow us to bring more
sophisticated numerical integration methods to bear on the resulting smooth integrands, even in low
firing rate regimes where refractory effects are less relevant. To summarize, the GL approach will
be preferred over the standard discrete approaches whenever high accuracy approximations of the
continuous time likelihood are required, and the CIF is piecewise smooth (and in particular when
the CIF is well-approximated by a piecewise low-order polynomial).

3 Application to generalized linear models
We close by discussing the application of the methods discussed above to the generalized linear
model (GLM) setting, where the CIF is specified in the form λ(t|Ht) = f(Xtθ) for some known
covariate vector Xt and an unknown parameter vector θ. Here f(.) is a nonnegative function
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Figure 1: Comparing the four different likelihood approximation methods on three example re-
newal processes with absolute refractory periods of τ = 2 ms. Left column: the ISI distribution

was given by a Rayleigh distribution shifted by τ , with scale σ = 1
10

√
2
π

. Center column: Inverse

gaussian, mean µ = 1
10

and shape λ = 1. Right column: Log-normal, shape σ = 1, and log-shape
µ = −2.5. Top row: CIF during the first six spikes of a single trial. Note that the CIF falls to
zero after each spike. Parameters were chosen so that all the mean firing rates were between 10
and 15 Hz. Middle row: One sample of the approximated log-likelihood as a function of M/T ,
the total number of CIF evaluations per second, for each of the four methods (the two discrete time
approximations, DR1 and DR2, the continuous time approximation based on Riemann sums, CT,
and the Gauss-Lobatto quadrature method, GL). Bottom row: Median and quartiles of the absolute
approximation error as a function of M/T (note log scale). The first plotted value of Ms−1 is
roughly the smallest for which it is possible to distribute Mmin = 3 CIF evaluation points (not
including ti + τ , where the CIF is known to be zero) into each integral. The GL approach clearly
produces the best results.
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which is typically assumed to be convex and log-concave, to ensure the concavity of the resulting
loglikelihood with respect to the parameter θ (Paninski, 2004). If we want to enforce an absolute
refractory effect of length τ , we can modify this model, e.g.:

λ(t|Ht) = f(Xtθ)r(t− tN(t)−)

where tN(t)− denotes the time of the last spike before t and r(t) is a continuous, increasing function
taking values in [0, 1], with r(u) = 0 for u ∈ [0, τ ].

An obvious question arises: can we utilize the proposed GL quadrature methods within stan-
dard likelihood optimization or MCMC approaches for inferring θ? This turns out to be straight-
forward once we write the output of the GL approximation in the familiar form

M∑
i=1

(
Nj log(λ(tj|Htj))− vjλ(tj|Htj)

)
where vj ≥ 0 and tj are the quadrature weights and nodes and Nj = 1 if tj is a spike time and 0
otherwise. Really the only difference between this form of the loglikelihood and that used in the
standard discrete-time approaches (whether DR1 or DR2) is that tj and vj are defined differently.
In either case, this is a sum of concave functions of θ, hence a concave function, whose gradient and
Hessian can be easily evaluated, and we can apply standard MCMC or iteratively reweighted least
squares (IRWLS; Newton-type) methods to perform inference, using a number of available GLM
packages. Similar points have been made earlier in the point process literature, e.g. Berman &
Turner (1992), where related numerical approximations are introduced as more flexible alternatives
to the standard approximations for the log likelihood based on binary time series.

To illustrate how better approximations provided by the GL quadrature can lead to improve-
ments in inference quality, we examined a simple two parameter GLM with a piecewise linear
refractory function r(t). Results are shown in figure 2. The main conclusion is that GL quadrature
approximate ML solutions are the fastest to converge to the limiting continuous-time ML values in
this case, as a function of M .

The above framework relies on the fact that the quadrature points and weights {(xj,m, wj,m)}j=1...m

are independent of the integrand, and therefore independent of θ. More sophisticated adaptive
quadrature methods are available that allocate quadrature points to regions in which the integrand
is varying most quickly. In some cases (for example, in settings where the CIF is mostly con-
stant as a function of time, interrupted by brief periods of high variance), these adaptive methods
can lead to much more accurate approximations, given a fixed computational budget (defined by
the parameter M ). However, the resulting approximation depends on the integrand, and there-
fore in turn depends on θ, which typically leads to a discontinuous approximate loglikelihood as
a function of θ (since the quadrature points may change discontinuously as a function of θ). This
complicates the application of standard GLM inference methods. An alternative approach that
could be useful in the context of maximum likelihood or maximum a posteriori approaches is to
use a coarse-to-fine method: start with some crude estimate of θ, compute the corresponding CIF,
compute the resulting quadrature points and weights adaptively using a small value of M based on
this estimated CIF, and then perform a few steps of IRWLS, holding these quadrature points fixed.
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Figure 2: Comparing the approximate ML solutions provided by the different methods. A spike
train was sampled for T = 40s with CIF given by λ(t|Ht) = exp(θ1 sin(4πt) + θ2)r(t − tN(t)−)
with r(t) = max(0,min( 1

τ2
(t − τ1), 1)), τ1 = 2ms, τ2 = 10ms, θ = (3, 2). Left: CIF during the

first ten spikes. Center and Right: Maximum likelihood approximate solutions of θ1 and θ2 using
the different methods, for different values of M/T .

This provides a “coarse-scale” estimate of θ. Then this process can be repeated, increasingM (and
therefore obtaining a refined estimate for θ) in an outer loop, holding the quadrature points fixed
within each inner loop. We leave the exploration of this coarse-to-fine method for future work.

To help the reader get a better sense of the utility and implementation of the methods presented
here, we have made available two Matlab examples. Essentially they reproduce the computations
needed to make both figure 1 and figure 2. These can be downloaded at
http://stat.columbia.edu/∼gonzalo/publications/. 3.
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