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1 Introduction

In recent years, the use of multi-electrode arrays (MEAs) for simultaneous electrical stimulation
and recording has shown to be a useful technique in systems neuroscience and neural engineering
applications: for example, for the assessment of functional connectivity in neural circuits by
targeted activation of specific cells while recording from others [1], to give better experimental
access to axonal function [2], and for the design of retinal prosthetic devices [3]. At the same time,
the big data era in neuroscience has brought about new scientific questions in large-scale settings,
opening the doors for new uses of this technique. Specifically, simultaneous stimulation and
recording in large-scale MEAs could be a powerful tool for online control and perturbation of neural
networks and lead to much higher retinal prosthesis resolution through closed-loop feedback control.

However, for this to be possible, an important technical hurdle have to be overcome: most of
the aforementioned applications rely on an intermediate spike sorting stage from which voltage
activations are matched to their underlying neuronal identities. Although in the past decades
many different spike sorting methodologies have been developed [4, 5, 6, 7, 8], all of them fail to
assign neuronal identity when electrical stimulation is introduced experimentally, primarily because
recordings with stimulation are corrupted with stimulus-induced distortions or artifacts. Indeed, in
the context of retinal stimulation the only method for spike identification that can be used heavily
relies on human intervention [3], making it unsuitable for the study of even modestly sized neural
populations.

In this article, a method for automated spike sorting for MEA recordings with electrical stimulation
is presented, and its effectiveness is demonstrated with experimental data from the primate retina.
The algorithm is based on a probabilistic generative model of the data: it is assumed that recorded
voltage traces following electrical stimulation are made up by the sum of electrical signals from
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cells with known spike waveforms, stimulus artifact with certain regularities, and gaussian noise.
Priors on the shapes of both the response probability of neurons and the artifact as functions of
stimulus current amplitude are used to constrain the model and improve algorithm performance.
Moreover, these priors are used for post-processing purposes, to come up with diagnostic measures
that assess the plausibility of solutions, and to construct an artifact resampling device to correct
erroneous solutions. We begin with a description of the method, and then proceed to demonstrate its
effectiveness in analyzing large-scale multi-electrode data.

2 Methods

Electrophysiology was recorded on a 512-electrode MEA capable of electrical stimulation [9] from
primate retinas as described previously [3]. Data is comprised of voltage recordings following elec-
trical stimulation arranged in amplitude series. We refer to an amplitude series (AS) as a collection
of responses to J increasing current amplitudes repeatedly applied on one or more electrodes. At
the j-th amplitude (also called condition j) a number of Ij voltage traces, or trials, are recorded over
a time window t = 1, . . . , T and on a collection of e = 1, . . . , E recording electrodes. An AS is the
minimal data unit for which the algorithm can be applied, and define the underlying experimental
design for data collection. Given an AS, the goal is to identify spikes of N neurons provided their
action potential waveforms (templates) on all electrodes. In the present case, templates are obtained
separately, from data collected in the presence of visual stimuli rather than electrical stimuli.

2.1 Generative Model

Let Y i,jt,e denote the observed voltage for trial i of condition j at time t and electrode e. Then the
model is:

Y i,jt,e = Ajt,e +

N∑
n=1

(Kns
i,j
n )t,e + εi,jt,e ,

εi,jt,e
σe,j

∼ N (0, 1) i.i.d. (1)

Here Ajt,e is the artifact at time t, electrode e and condition j (fixed over trials i), and si,jn is a binary
spiking vector: si,jn (l) = 1 if a spike of neuron n occurs at time tl on trial i of condition j. We
impose that the sum of any of these vectors is at most one; that is, at most one spike occurs per trial.
Kn is a convolution matrix whose rows contain copies of template of neuron n as recorded in all
electrodes but with spike onset aligned at all different possible spike times.

We also consider a vectorized version of equation 1 to state the generative model as a gaussian
likelihood for the data vector Y in terms of artifactA, suitable artifact covariatesX , template matrix
K, spiking vector s and covariance matrix Σ:

p(Y |A, s,Σ) ∝ exp

(
−1

2
(Y −XA−Ks)tΣ−1(Y −XA−Ks)

)
. (2)

We impose structure on artifact by penalizing squared time and condition differences, to represent a
continuity requirement in these two dimensions. This structure can be expressed as a gaussian prior:
to see this, notice that penalized differences can be written as quadratic formsAteDe,kAe, and the
amount of penalization can be set by some parameters λe,k. The prior is, then:

p(A|λ) ∝ exp

−1

2

∑
e,k

λe,kA
t
eDe,kAe

 or Ae|λe ∼ N

0,

(∑
k

λe,kDe,k

)−1
 . (3)

Spike probabilities increase smoothly as a function of condition [9], and these physiologically char-
acteristic sigmoidal activation curves are used to further constrain the model. To this end we use a
logistic regression prior for the activation curve of each neuron (variables ri,jn indicate presence or
absence of spikes):

p(ri,jn = 1|αn) =
1

1 + exp (−α0
n − jα1

n)
. (4)
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Finally, for the entries of the diagonal of the matrix (i.e. the variances σ2
e,j) we consider a non-

informative prior [10], only to exploit conjugacies:

p(Σ) = p(σ2
e,j , e = 1 . . . E, j = 1 . . . J) ∝

∏
e,j

1

σ2
e,j

. (5)

2.2 Algorithm

Our algorithm is based on a thorough exploration of the parameter space based on the posterior
distribution formed from the product of the data likelihood (equation 2) and the parameter priors
(equations 3-5):

p(s,A,Σ, α|Y, λ) ∝ p(Y |s,A,Σ)p(Σ)p(r|α)p(A|λ). (6)

Computing the MAP solution here can be intractable: since the variables sni,j are integer valued,
maximization of 6 is a non-concave and multimodal problem. Also, using maximization of the
posterior as the unique suitable device for doing spike sorting can be unsatisfying because of model
misspecification: in practice, correct spike sorting solutions correspond to one high probability pos-
terior mode, but there can be nonsensical solutions associated with modes of even higher probability.

This motivates the pursuit of an algorithm possessing the following features: i) it explores the
parameter space looking for regions of high posterior probability ii) it is computationally tractable,
iii) it can assess the plausibility of solutions and in the negative case propose an improved one. To
do so, our algorithm is made up of an initialization step to obtain a reasonable first guess, a Gibbs
sampling stage that iterates until convergence to a spike sorting solution, and a post-processing
stage where changes to the current possibly erroneous solutions are proposed.

The initialization has two steps. In the first, a surrogate quadratic program (QP) is solved. Essen-
tially, it corresponds to a convex relaxation of a much less complex problem that nevertheless cap-
tures the structure of the original one. In the QP the objective function is the RSS, spiking vectors are
allowed to belong to the probability simplex, the artifact prior is replaced by a polynomial structure
and logistic regression priors for activation curves are replaced by a requirement of increasingness in
spike probabilities as a function of condition, which is a simple linear constraint. The solution of the
QP leads to initial estimates of all the values, except the hyperparameters λ. These hyperparameters
are found in the second step, by maximizing the likelihood of having obtained the artifact initial
solution A0,e, that is:

min
λe

1

2
At0,e

(∑
k

λe,kDe,k

)
A0,e − log

∣∣∣∣∑
k

λe,kDe,k

∣∣∣∣
s.t. λe ≥ 0,

∑
k

λe,kDe,k � 0 .

(7)

The Gibbs sampler stage is straightforward and alternates between sampling conditional spikes
(multinomial), artifact (gaussian), variances (inverse gamma) and logistic regression parameters
given the rest of the variables and data. Sampling is performed until iterations no longer lead to
changes in s(convergence to local optimum).

Finally, in the post-processing stage the agreement between the empirical activation curves and their
logistic regression counterparts is assessed. If lack of fit is diagnosed (based on residual statistics,
which follow a χ2 distribution) the artifact is interpolated at the set of conditions that contribute the
most to the mismatch, based on the rest of the conditions. This interpolation is implemented via
resampling from the gaussian conditional distributions that arise from equation 6. After resampling,
the Gibbs stage is executed again to converge to a new solution, and the procedure is repeated until
no lack of fit is detected.
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3 Results

Analysis was based on 710 AS, coming from eight retinal preparations, making up a total of 924,118
trials. For each AS, an individual neuron was targeted for spike sorting based on the voltage record-
ings of its closest electrode. To assess performance, results of the algorithm were compared to
human sorted data, which serves as ground ”truth”, applying the usual accuracy, sensitivity and
sensitivity measures. Comparisons were based on two events: spikes (from individual trials) and ac-
tivation (whether or not the activation curve surpassed a threshold of 50%, obtained from individual
AS). Results are summarized in table 1, and overall are satisfactory.

Occurrence Performance

Type (%) Accuracy (%) Sensitivity (%) Specificity (%)

Spikes 9.66 98.16± .02 90.03± .19 99.03± .02
Activation 44.1 93.4± 1.8 93.3± 2.8 93.5± 2.4

Table 1: Spike-by-spike and AS-by-AS results.

We also assessed performance in a more practical context: for the assessment of selective activation
strategies in the development of retinal prosthesis, it is of particular interest to create spatial sensi-
tivity maps: images that depict to which extent electrodes in the MEA can elicit spiking on a set of
targeted neurons. These maps are made by doing spike sorting on a large set of AS, one for each
electrode, and subsequently finding the corresponding activation thresholds. Information contained
in the maps is useful for the determination of stimulation patterns across electrodes that will elicit
activity in some neurons but not in others. Figure 1 shows that human and algorithm sorting are in
close agreement.

Activation thresholds using algorithm

 

 

Activation thresholds by human inspection
g
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Figure 1: Comparison of spatial sensitivity maps, human v.s. algorithm. Individual neurons are
shown in black overlaid with the MEA. Colored dots represent electrodes that activated the nearest
neuron, and the color scale indicates the current amplitude required for activation.

4 Discussion and further work

We have demonstrated the plausibility of automating spike sorting in electrical stimulation
paradigms, opening a possibility for the development of closed-loop, online data analysis during
experiments. However, further improvements are required to permit the simultaneous sorting of
many nearby cells, and to reduce the computational costs. Future implementations will heavily
benefit from state-of-the-art machine learning methods.
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