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Normal Distribution Facts
Normal Distribution: Σ = UΛUt → Σ1/2 = UΛ1/2Ut

f(x) = det(2πΣ)−p/2 exp
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)
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Other Distributions
T with n degrees of freedom, N(0, 1)/
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fn(x) =
Γ(n+1

2
)

√
πnΓ(n

2
)

(
1 +

x2

n

)−n+1
2

F distribution (n,m) χ2n/n/χ2
m/m, mean m/(m− 2) Density√
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Beta Distribution, Mean α/(α+ β) density

f(x) =
xα−1(1− x)β−1

B(α, β)
B(α, β) =

Γ(α)Γ(β)

Γ(α+ β)

Gamma distribution: mean α/β, variance α/β2//
X ∼ χ2

k1
, Y ∼ χ2

k2
then X/(X + Y ) ∼ Beta(k1, k2)

Order Statistics
Joint density f(u1, . . . un) = n!1u1≤u2≤...un

∏n
i=1 f(ui)

Marginal of r-th order statistic

fr(u) = nf(u)
(n− 1

r − 1

)
(F (u))r−1(1− F (u))n−r

Joint of r, s-th order statistics fr,s(u, v) (for u ≤ v)
Minimum and maximum:

f1,n(u, v) = n(n− 1)F (v)− F (u))n−2f(u)f(v)

CDF of range: W = X(n) −X(1) then

FW (w) = n

∫ ∞
−∞

(F (x+ w)− F (x))n−1f(x)dx

nf(u)
(n− 1

r − 1

)
(F (u))r−1(n− r)f(v)

(n− r − 1

n− s

)
×

(1− F (v))n−s(F (v)− F (u))s−r−1

Example: in a Uniform(0, θ) context, it is easily seen that

f(x(1), . . . x(n−1)|x(n)) =
(n− 1)!

x(n)

10<x(1)<...<x(n)

From that, X1, . . . Xn\X(n) is uniform on [0, X(n)]

Example: Yi ∼ Exp(1) and Si ∼ij=1 Yj . Then

(S1/Sn+1, . . . Sn/Sn+1) given Sn+1 is the same as the order
statistics of the uniform. Use that to prove the consistency of
the order statistics k = αn of the uniform. For this order
statistics, if k1, k2→∞, and

√
n(
k1

n
− α1)→ 0,

√
n(
k2

n
− α2)→ 0

We have

√
n

(
U(k1)

U(k2)

)
−
(

α1

α2

)
d−→ N

(
(0,

[
α1(1− α1) α1(1− α2)
α1(1− α2) α2(1− α2)

])
To prove the above, define
(Z1, Z2, Z3) = (Sk1 , Sk2 − Sk1 , Sn+1 − Sk2 )/(n+ 1) and show
that

√
n+ 1(Z − (α1, α2 − α1, 1− α2))→ N(0,Σ) where

Σ = Diag(α1, α2 − α1, 1− α2) and finally use delta method
with g(x1, x2, x3) = 1

x1+x2+x3
(x1, x1 + x2)t

Using this we get asymptotics for the sample median!.√
n(X(n/2) −m)→ N(1/4f2(m))

Convex functions
Local minima of convex functions are global minima. If they
are strictly convex the minimum is unique.
If g is diff then it is convex if and only if (replace ≤ by < to
obtain strict convexity)

g(y) ≥ g(x) +∇g(x)t(y − x)∀y, x

Two times diff g it is convex iff g′′(y) ≥ 0 if g′′(y) > 0 then it
is strictly convex Jensen: E(|X|) <∞ g convex then
g(E(X)) ≤ E(g(X)). If g is strictly convex then inequality is
strict unless X = a a.s. Equality holds, for all X iff g is affine.
Convex functions are continuous
f : Rk → R is convex if and only if the function g : R→ R is
convex for every x ∈ Dom(f) and v ∈ Rn.

Fact: the function I(f) =
∫
f
′2(y)/f(y)dy is convex. To prove

that use

(αu+ (1− α)v)2

αf + (1− α)g
≤
αu2

f
+

(1− α)v2

g

Loss functions
Setting: X ∼ Pθ, want to estimate g(θ), g : E → G by ĝ(X)
Def: Loss function l : G × G → R is a loss function if

l(ĝ, g(θ) ≥ 0,∀θ∀ĝ l(g(θ), g(θ) = 0)∀θ

Examples of convex loss
l(x, y) = |x− y|, |x− y|1/2, (x− y)2, 1|x−y|>1 Def: δ1 is
inadmissible for g(θ) if there is another estimator of g(θ), δ2,
s.t. the following two conditions hold
R(δ, g(θ)) = Eθ(l(δ, g(θ)))

R(δ2, g(θ)) ≤ R(δ1, g(θ),∀θ ∃θ0 R(δ2, g(θ0)) < R(δ1, g(θ0)

Sufficiency & min sufficiency, definitions and
properties

The family is: P = {Pθ, θ ∈ Θ} Def: A function T of X ∼ Pθ
is sufficient for theta if X|T = t don’t depend on θ.
Factorization theorem: If all the P are dominated by the same
measure ν and let pθ denote the pdf. Then T is sufficient iff
pθ(X) = gθ(T (X))h(X) a.e. w/r to ν T is minimal sufficient
for θ iff T is sufficient and it is a function of any other
sufficient statistic. That is, if U is other suff statistic, there
exists g measurable such that Pθ(T 6= g(U)) = 0∀θ

Proposition: If |Θ| = s then T (X) =

(
pθ1 (X)

pθ0 (X)
, . . . ,

pθs (X)

pθ0 (X)

)
is

a minimal suff stat for θ. Prove that for any S sufficient
S(x) = S(y) implies T (x) = T (y)
T sufficient. If pθ(x) ∝θ pθ(y)⇒ T (x) = T (y) (doesn’t depend
on θ) then T is minimal sufficient

Completeness

T is complete iff Eθ(f(T )) = 0∀ θ ⇒ f(T ) = 0a.e., ∀p ∈ P
Basu: T complete and V ancillary, then T ⊥ V Theorem:
Complete sufficiency ⇒ minimal sufficiency
Claim: complete sufficient does not always exists: if the
minimal is not complete then no one can be complete
Let Pθ be a dominated family. Let T be MSS and U CSS.
Then there exists g such that U = g(T ). Take
gθ(T ) = Eθ(U |T ) = gθ0 (T )

Theorems with sufficiency,completeness and
Risk

Theorem: for any δ(X), if T is suff for g(θ) there is another
estimator δ1 based on T with the same risk: draw X, find
t = T (X) and draw a sample X̂ ∼ X|T = t. define

δ2(X) = δ1(X̂
Theorem (Rao Blackwell): T sufficient, δ an estimator with
E(|δ|) <∞ l convex function. Define ν(t) = E(δ(X)|T = t).
Then R(δ, g(θ)) ≥ E(ν, g(θ). If l is strictly convex then
inequality is strict unless Pθ(δ(x) = ν(t)) = 1, ∀θ

Sufficiency and completeness in
nonparametric families

Def: a family of distributions have common support iff
µ(A) = 0 ⇐⇒ ν(A) = 0 Let P be a family of distributions
with common support and let P0 ⊆ P . If T is sufficient for P
and minimal for P0 then T is minimal sufficient for P
Theorem: if all distributions in a family of distributions P are
dominated by another measure, then minimal sufficient
statistic exists.
If P0,P1 are two families of distributions, P0 ⊆ P1 and every
null set of P0 is a null set of P1, then a sufficient statistic T
that is complete for P0 is also complete for P1. The order
statistics are complete for the family of distributions with
continuous CDF: they are sufficient and consider
P0 = {C(θ) exp(

∑n
i=1 θi

∑n
j=1 x

i
j −

∑n
i=1 x

2n
i . Then show

that this statistic is equivalent to the sums of the j products.
Then construct polynomial Π(δ −Xi)



For (X(i), Yji ) is complete sufficient for F . To prove consider
the exponential family

exp

 n∑
j=1

αj

n∑
i=1

xji +

n−1∑
j=0

βj

n∑
i=1

yix
j
i −

n∑
i=1

x2n
i −

n∑
i=1

y2n
i


Then express the mixed products in terms of the vandermonde
(invertible) matrix and the Yji.

Examples on sufficiency, completeness and
UMVUE
for Xi ∼ U [θ − 1/2, θ + 1/2] both (X(1), X(n)) and
(X(1), X(n)−X(1)) are minimal sufficient for θ. However,
there is not CSS (X(n)−X(1) is ancilliary)
To prove

∑
Xi is min sufficient for Poisson(λ) use the

Po(1), Po(2)

Fisher,Pitman,Koopman,Darmois
Let X1, . . . XnPθ and there is a k dimensional sufficient
statistic, in a family where the support doesn’t vary with the
density, and continuous in x. For a sample of size k < n. Then
the family HAS to be an exponential family.
Completeness and sufficiency are preserved by one to one
maps!.
UMVUE estimation for σr, Xn ∼ N(0, σ2). Take
T =

∑
X2
i , Y = T/σ2 ∼ χ2

n and find

E(Y r/2) = K(r)σr, r/2 > −n/2 + 1. For smaller values there
is not UMVUE estimator. Find E(g(T )) = E(g(σ2Y ) and
make the change x = σ2y

Exponential Families

pθ(X1, . . . Xn) = h(X) exp

(
k∑
i=1

η(θ)Ti(X)−B(θ)

)
Natural parameter space is the set of θ such that

B(θ) = log

(∫
h(x) exp

(
k∑
i=1

η(θ)Ti(x)

)
dµ(x)

)
<∞

Theorem: if the convex hull of the parameter space spans a
rectangle of dimension k then T is minimal sufficient. (Proof:
take likelihood ratios and get T = AU where A is invertible
and U is the minimal sufficient. This case corresponds where
the parameters satisfies linear constraints. If the interior is
nonempty then T is complete. Proof: characteristic function
(need to define it in an open set)
Now consider the natural parametrization, η and call
A(η) = B(η(θ)). Prop: A(η) is convex.
Prop HA(η) = covη(T ),∇(A) = Eη(T ) (proof just take
derivatives of the integral of the density and make it equal
zero) Maximum likelihood: ∇pη(x) = 0 ⇐⇒ ∇A(η) = T . If
there are no linear constrains between the T there is an unique
solution (from above).

logMT (u) = A(n+ u)−A(n)

If X comes from an exponential family then T has density
qθ(t) = η(θ) · t−B(θ) with respect to
ν(A) =

∫
A exp(−η(θ0)t+B(θ0)dν∗(t), ν∗ is the marginal for

θ = θ0

Unbiased Estimation and UMVU
Def: δ is UMVU if it is unbiased and for all unbiased δ2

V arθ(δ) ≤ V arθ(δ2)∀θ

Theorem:Lehman-Scheffe T is complete sufficient, l is convex
in δ. For every unbiased estimable g(θ) there exists δ that
minimizes the risk for every θ. Furthermore, if l is strictly
convex the best unbiased estimator is unique (in any case, it is
given by E(δ1(x)|T ) where δ1 is any unbiased estimator.
Theorem (Bahadur): If every g(θ) admits UMVU, then a
complete sufficient statistic exists
If a complete sufficient statistic does not exist, there is at least
one U-estimable of g(θ) for which there is no UMVU They are
not admissible generally!
T, unbiased estimator of g(θ) is the UMVUE Iff for all
unbiased estimator of zero U,Eθ(UT ) = 0,∀θ. Proof: consider
estimators δ + ∆U and analyze ∆. We can take only functions
of the sufficient statistic!.

Unbiased Estimation:Examples
No unbiased estimator: X ∼ Binomial(n, p) Then no unbiased
estimator exists for 1/p

n∑
i=1

δ(i)
(n
i

)
pi(1− p)n−i =

1

p

Binomial: estimating p(1− p) in the binomial. Consider
ρ = p/(1− p), ρ+ 1 = 1/(1− p) then from the equality

n∑
i=0

δ(x)
(n
i

)
ρi = (ρ+ 1)n−2ρ

we obtain δ(T ) =
T (n−T )
n(n−1)

Unbiased estimator with zero risk

for θ0. Take an unbiased estimator δ and

δπ(x) =

{
g(θ0) with probability 1− π
1
π

(δ(x)− g(θ0)) + g(θ0) with probability π

Has zero risk at θ0 (as π ⇒ 0) and it is unbiased.
NO UMVUE exists for the common mean µ two normal family
problem with common mean. The reason is that there is a
UMVUE, function of the CSS, if the ratio of the variances is
known. The UMVUE is unique, and a function of the ratio
and thus cannot exist when the ratio is unknown.

Fisher Information
For θ0 being the true parameter, define
G(θ) = E(θ0)(log(pθ(x))). By Jensen, G(θ)−G(θ0) ≤ 0, that
is, G is minimized at θ0
Fisher Information: Θ open, all the densities are supported in
A = {x : pθ(x) > 0, ∀θ}. pθ is differentiable w/r to θ and can
swap integrals with derivatives. Then

I(θ) =

∫ (
∂ log(pθ(x)

∂θ

)2

dx = −
∫

∂2 log(pθ(x)

∂θ2
dx

Multiparameter

I(θ) = −Eθ(H(log(pθ(x)) = Eθ(∇ log(pθ(x))∇ log(pθ(x))t

X,Y independent, the Information of (X,Y ) is the sum of the
informations. The fisher information of the sufficient statistic
T (x) is the same as of X. If Y = g(X) then the information of
Y is less or equal than the information of X. To prove it ,
log pθ(x) = log pθ(x|g(x)) + log pθ(g(x)), use the variance

characterization and prove that Eθ(
∂ log pθ(X|Y )

∂θ
∂ log pθ(Y )

∂θ
For location families,

I(θ) =

∫
fracf ′(x)2f(x)dx

Change of parameter: x ∼ pθ(x), θ = f(µ) Denote I(µ), I(θ)
the relative mutual informations, then I(µ) = JI(θ)Jt

Cramer Rao bound

Suppose pθ is a family of densities for which information is
defined. Let δ be an statistic with Eθ(δ2) <∞ and such that
Eθ(δ) can be differentiated with respect to θ and we can swap
integrals. Then

V arθ(δ) ≥

(
dEθ(δ)
dθ

)2

I(θ)

The inequality is equality (by cauchy schwarts) only if

δ(x) = a(θ) log(pθ(x)) + b(θ)

, that is, if they come from a exponential family. If δ is an
unbiased estimator of g(x) we obtain b(θ) = g(θ) and
a(θ) = ∇Eθ(δ)tI(θ)−1 Multidimensional case

V arθ(δ) = ∇Eθ(δ)tI(θ)−1∇Eθ(δ)

It comes from

V arθ(δ) =
bt∇Eθ(δ)t∇Eθ(δ)b

bT (θ)b

If there are n unbiased estimators of gi(θ) and all of them
achieve the CR bound, and ∇gi(θ) are linearly independent,
then they come from an exponential family.

Linear Algebra

A symmetric,

A =

n∑
i=1

λiqiq
t
i = QΛQt, QtQ = QQt = I

sup
bt:btb 6=0

btAb

btb
= λmax(A)

inf
bt:btb 6=0

btAb

btb
= λmin(A)

Rayleigh Theorem: RA(x) =
xtAx

xtx

λk = max{min{RA(x)|x ∈ U, x 6= 0}dim(U) = k}

λk = min{max{RA(x)|x ∈ U, x 6= 0}dim(U) = n− k + 1}



Inadmissibility, James Stein
If XiN (θ, I) in p dimensions. Then X̄ is UMVUE, but not
admissible. In fact, take

σJS(X) =

(
1−

p− 2

nX̄tX̄

)
X̄

Theorem: σJS has smaller risk than barX for all θ (whose risk
is p/n). Its risk is given by

R(δJS , θ) = Eθ(||X̄ − θ||2)−
(p− 2)2

n2
Eθ

(
1

X̄tX̄

)
The estimator

δ2(X) = max

(
0, 1−

p− 2

XtX

)
X

Dominates the James Stein, use symmetry in the hemispheres!

Bayesian Framework
Minimize the integrated risk with prior Λ(θ)

R(δ) =

∫
R(δ, θ)dΛ(θ) =

∫ ∫
l(δ(x), θ)pθ(x)dΛ(θ)dµ(x)

Under squared loss, δopt = E(X|θ) under
l(δ, θ) = |X − θ|, δopt = Posterior median.
Under l(δ, θ) = 0 if |δ − θ| < 0 and 1 otherwise, the bayes
estimator is given by δ such that maximizes the probability
P (|δ − θ|X) Let θ have pdf π(θ). Given θ, x ∼ f(x|θ) we want
to estimate g(θ) with l(δ, g(θ). If

i There exists δ0 with finite bayesian risk

ii For almost all x with respect to f(x) =
∫
f(x|θ)π(θ)

there exists a value δπ(x) minimizing (E(l(δ(x), g(θ)|x).

Then δπ is an optimal Bayes estimator. Theorem: If the loss is
stricly convex and define the following distribution

Q(A) =

∫
Θ

∫
A
f(x|θ)π(θ)dµ(x)dθ

The if almost everywhere with respect to Q implies almost
everywhere with respect to f(x|θ), ∀θ ∈ Θ then the Bayes
estimator is unique (it seems uniqueness is defined almost sure,
for f(x|θ), for all theta.
Def: A family F of probability distributions on Θ is called
conjugate for f(x|θ) if and only if for all π ∈ F , it follows that
the posterior π(θ|x) ∈ F Theorem: Any unique Bayes
estimator is admissible.
If the risk function is continuous in θ and the prior are
continuous, then the bayes is admissible. Also, if f(x|θ) is
continuous and the loss is scrictly convex then the bayes
estimator is unique.

Bayes Examples
Xi ∼ N (θ, σ2), θ ∼ N (0, τ2)

Then for squared loss

δopt(X) =
nτ2

nτ2 + σ2
X̄

Let X ∼ Binomial(θ, n) with P (θ = 0) = ¶(θ = 1) = 1/2). For
squared loss then an optimal estimator assigns δπ(0) = 0 and
δpi(n) = 1 Xθ ∼ Binomial(n, θ) F = Beta(α, β) then
π(θ|x) ∼ B(x+ α, n− x+ β) Xθ ∼ N(θ, σ2) and F = N(µ,A)
then π(θ|x) = N (µ+B(x− µ), Bσ2

0), B = A
A+σ2

0

Kullback-Leiber Divergence
Suppose p(x) and q(x) are two pdf’s on Rp with common
supports, then the Killback-Liebler Divergence is defined as

KL(p, q) =

∫
p(x) log

p(x)

q(x)
dµ(x)

Props: KL(p, q) ≥ 0 and KL(p, q) = 0 iff p = q, µ a.s.

lim
θ′→θ

KL(pθ(x), p′θ(x))

(θ − θ′)2
=

1

2
I(θ)

Paralelogram law. p0, p1, Q and p the average of p0, p1

KL(p0, Q) +KL(p1, Q) = KL(p0, p) +KL(p1, p) + 2KL(p,Q)

Jeffrey’s Prior
Definition: π is called reference prior if it maximizes the
expected KL divergence between itself and the posterior, that
is

π = arg maxS(π∗) =

∫
KL(π∗(θ), π∗(θ|x)f(x)dµ(x)

Intuitively, it is a weak prior.
Theorem: Let X1, Xn be iid samples from f(x|θ) Then for n
large

Sn(π) ≈
p

2
log(

n

2πe
) +

∫
π(θ) log(

|I(θ)1/2

π(θ)
dθ

where p is the dimension of the parameter and I(θ) the fisher
information (of the whole sample) and ≈ means convergence of
real numbers. Instead of maximzing S one can maximize Sn
which leads to minimizing KL(π, cI(θ)1/2 That is the Jeffrey’s
prior. It may not exists (be improper).

Hierarchical Bayes
Framework:

x|θ ∼ f(x|theta), θ|λ ∼ π(θ|λ), λ ∼ ψ(λ)

Theorem

KL(ψ(λ|x), ψ(λ)) ≤ KL(π(θ|x)π(θ))

Hint: define

Z =
ψ(λ|x
ψ(λ)

= Eπ(θ|λ)
f(x|θ)
f(x)

, g(Z) = Z log(Z)

Bayes rule:
f(x|θ)
f(x)

=
π(θ|x)

π(θ)

Empirical Bayes
Estimate the hyper parameters using maximum likelihood,
UMVU or method of moments. Example:
x ∼ N (θ, σ2I), θN (0, τ2). Then for τ fixed

δopt = E(X|theta) =
τ2

τ2 + σ2

Also, f(x|τ) = N (0, (τ2 + σ2)I)

UMVUE for τ2. is τ̂ = xtx
p
− σ2 we obtain δ(x) = (1− pσ2

xtx
)x

UMVUE for σ2

σ2+τ2
is

(p−2)σ2

xtx
since E( 1

xtx
) = 1

(p−2)(τ2+σ2 .

We obtain the estimator δ(x) =
(

1− (p−2)σ2

xtx

)
x It is the

James Stein estimator!
ML for theta: τ̂ = max(x

tx
p
− σ2, 0)

MLE for σ2

σ2+τ2
is min(

(p)σ2

xtx
, 1)

Improper priors

Define, in any case

π(θ|x) =
pθ(x)π(x)

f(x)

Example: Prior for θ lebesgue measure in R, X|θ ∼ N (0, θ)
then δ(X) = X is the hayes estimator, even if f(x) is not a pdf
(but π(θ|x) is proper).

Numerical Integration, Monte Carlo and
MCMC

If [a, b] was partitioned into n subintervals

|
∫

[a, b]dh(θ)dθ −
n∑
i=1

h(θi)δ
d| ≤

c∗

n1/d

Monte Carlo error 1/
√
n (from CLT) Gibbs Sampler: Draw

from p(θi|θ−i, X)

Minimax Estimation

Sup Risk R(δ) = supθ R(δ, θ). Minimax estimator

δ∗ = arg min
δ
R(δ)

over a class of estimators (for example linear). infδ R(δ) is the
minimax risk, denoted by R(Θ) Lemma:
supπ:supp(π)⊆ΘB(π) ≤ R(Θ) Definition:Least favorable prior:
A least favorable prior π0 in a class of priors P is the
distribution such that B(π0) = supπ∈P B(π)
Definition: A least favorable sequence of priors in a class P is
a sequence that satisfies limB(πn) = supπ∈P B(π) Example:

X ∼ N (θ, I) and P = {N (0, σ2) for θ. Then E(θ|x) = σ2

1+σ2 x

and B(π2
σ) = pσ2

σ2+1
Then πn ∼ N (0, n) is a least favorable

sequence of priors. Theorem: let π0 be a prior with Bayes
estimator δπ0 . Suppose R(δπ0 ) = B(π0) then δπ0 is the
minimax estimator and π0 is the least favorable prior.
Furthermore, supπ B(π) = R(Θ)
Extension: let pin a sequence and δ0 such that
R(δ0) = limB(πn) then δ0 is minimax and pin is a l.f.s of
priors.
Example: squared lost, X ∼ Binomial(n, θ).
P = {Beta(α, β)} then

E(θ|X) =
a+X

a+ b+ n
R(δπ , θ) =

nθ(1− θ) + (a(1− θ)− bθ)2

(a+ b+ n)2



We want R(δpi) = B(π). Then, assuming R(δpi, θ) is
continuous in θ R(δπ , θ) must be constant in θ (the support is

(0,1)). Take a =
√
n

2
, b =

√
n

2
and R(δπ , θ) = 1

4(
√
n+1)2

and

δminimax(X) =
√
n/2+X√
n+n

Example: XN (θ, 1), |θ| < τ . Suppose R(δπ0 ) = B(π0) Since
the risk is an analytic function, There are two options: R(π, θ)
is constant or R(δπ , θ) takes its maximum in a finite number of
points.
Theorem: for |τ | < 1.05 piτ = 1/2δτ + 1/2δ−τ is the least
favorable prior Minimax is too pessimistic and conservative!
Example: x ∼ N (θ, 1) with |θ| < tau. assume δ(x) = αx

Minimax δ(x) = τ2

1+τ2
x

Example: x ∼ N (θ, 1) no constrain on theta. Notice that
δ(x) = x has constant risk equal to 1. Take πn ∼ N (0, n).
Then δn(x) = 1

1+1/n
x and B(πn) = 1/(1 + 1/n)→ 1. Thus,

δ(X) = x is minimax. Question: Under which circumstances
supπ B(π) = R(Θ)
Theorem: Let P be a set of prior distributions whose support
is a subset of Θ and contains all the δθ0 . Also, assume that

sup
π∈P

inf
δ
B(δ, π) = inf

δ
sup
π∈P

Then the minimax risk satisfies R(Θ) = supπ∈P B(π) (Use
point masses at the supremum of the risk function for an
arbitrary estimator).
Theorem: We can swap infimum and supremum and it is fine.
Suppose f : K × L→ r where K,L are subsets of a metric
space. Furthermore, assume f is convex in its first argument
and i concave in its second argument. Assume that K is
convex and compact, L is convex. Also, assume f is
continuous in the first argument. Then

inf
x∈K

sup
y∈L

f(x, y) = sup
y∈L

inf
x∈K

f(x, y)

Application: Suppose for each θ, l(δ, g(θ) is convex and
continuos in δ Assume that the class of estimators is compact
and convex. Then We can use the minimax framework!. It
seems that for the compactness of the estimator it is enough
compactness of the parameter space.
Extension to several dimensions:π(θ) = π1(θ1) . . .× πn(θn).
For squared loss the jth component of the Bayes estimator, is
a function only of j. Use jensen!.
For the problem X ∼ N (θ, In) θ ∈ [−τ, τ ]n there least
favorable prior exists and it is a product of priors. For the
condition ||θ||2 ≤ τ then the prior is uniform on the sphere.
Let X be a random variable with distribution F and let g(F )
be a function defined over a family mathcalF1. Suppose δ is
the minimax of g(F ) when defined over the family F0 ⊆ F1.
Then if

sup
F∈F0

R(F, δ) = sup
F∈F1

R(F, δ)

δ is also minimax when defined on F1.
If the hayes estimator is unique then the minimax estimator is
unique (in the minimax sense).

Analytic functions
Theorem: Let f : (a, b)→ R be analytic. If there is an
accumulation point in the set of zeroes of f in (a, b) then f is
zero in (a, b)
Theorem: the set of zeros of an analytic function is countable.

Stein Lemma
Z1, Z2 ∼ N (0, σ2) independent and g : R2 → R differentiable
in the first variable. If the expectations are finite then

E(Z1g(Z1, Z2)) = σ2E(
∂g(Z1, Z2)

∂Z1
)

If Z1, Z2 are not independent (not zero mean either) then

Cov(g(Z1), Y ) = E(g′(X))Cov(X,Y )

E( 1
xtx

) = 1
n−2

from stein lemma and using sum properties if x

is indep multivariate normal.

Regression
Y = Xβ + ε, ε ∼ N (0, σ2I), X ∈ Rnxp is full rank, n ≥ p. Then
βMLE and ||Y −XβMLE ||2 are complete sufficient for β, σ2.
Express the exponential family! (the complete sufficient is
XtY, Y TY but the rest is obtained from this. Furthermore,
these two are independent by ancilliarity. βML is the UMVU
for β and ||Y −XβMLE ||2/(n− p) is the UMVU for σ

Convergence in probability, distribution and
almost sure
Xi(t)→ X if Fi(t)→ F (t) for all continuity points of F
Let Xi ∼ fi(x) if fi(x) ∼ f(x) then we have convergence in
distribution.
Xi → X in distribution iif 〈t,Xn〉 → 〈t,X〉 for all t

Xn
p−→ X,Yn

p−→ Y then XnYn → XY,Xn/Yn → X/Y
Continuous mapping: under a.s., probability or distribution
convergence, if g is continuous in K and P (X ∈ K) = 1 then
g(Xn)→ g(X)

Xn
d−→ X iff E(g(Xn))→ E(g(X)) for all g continuous and

bounded. Also (Levy) iff the characteristic function converges.
If lim supE(|Xn|p) <∞ for p > 1 then the moments converge
until p− 1
Denote mk = E(xk). If the series

∑∞
i=1 mkr

k/k! has a positive
radius of convergence then the moments of X characterize the
distribution. If that is the case we have E(Xk

n)→ E(Xk) <∞
for all k implies Xn → X in distribution

Convergence notations
an = O(bn)⇔ |an|/|bn| < M ∀n ≥ n0

an = o(bn)⇔ |an|/|bn| → 0

h, g functions Then h(x) = O(g(X)) if there are δ,M such that
if |x| < δ then |h(x)/g(x)| < M . Also, h(x) = o(g(x)) if
h(x)/g(x)→ 0 when x→ 0 If f is differentiable at θ with
derivatives continuous then

||f(θ + h)− f(θ)− f ′(θ)h|| = o(||h||)

For the others use taylor!
Stochastic orders Xn = oo(Yn)⇔ Xn/Yn → 0 in probability.
Xn = O(Yn) if ∀ε > 0∃M such that P (|Xn/Yn| > M) ≤ ε for
all N (it is enough for all n ≥ n0 . If Xn → X in distribution
then Xn = Op(1). Xn = Op(1/

√
n)→ Xn = op(1)

If limP (|Xn| > M) = 0 for some M then Xn = Op(1)
If R(0) = 0 then if Xn → 0 in probability we have:
R(h) = op(||h||q)→ R(Xn) = op(||Xn||q), and the same
happens with O.
If for some k ≥ q, supn E(|Xn|k) <∞ then Xn = Op(1)
Xn = op(1), Yn = Op(1)→ XnYn = op(1), Xn + Yn = Op(1).
Moreover, if for all δ > 0, P (|Yn| > δ)→ 1 then Xn Yn → 1
If Xn = Op(1) and f is a continuous function, then
f(Xn) = Op(1). Also, show that if Xn = op(1) and f is a
continuous function and f(0) = 0, then f(Xn) = op(1).
Assume Xn → X in distribution. Then, Xn = Op(1). Now, if

Zn = op(1) and Xn
d−→ X then Zn = op(1)

Examples on Asymptotics
Xn ∼ F (x− θ) and want to find the asymptotics for the plug
in estimator for |θ|p when p ∈ (0,∞) and θ = 0. Then,√
n
p|x̄|p → |N(0, σ2)|p.

Xi ∼ U(0, θ) then n(θ −X(n))→ Exp(1/θ)

Delta Method
Let φ : Rk → Rm be a map differentiable. Suppose Tn is an
estimator of θ and rn(Tn − θ)→ T, rn →∞ Then

rn(φ(Tn)− φ(θ))→ A(θ)T

Example: Xi,∼ F i.i.d,
E(Xi) = θ, V ar(Xi) = 1, g(θ) = cos(θ). Then, if θ = 0
n(cos(X̄n − 1)→ −1/2χ2

1 For this, recall that
cos(h)− 1 + h2/2 = o(h2) and that we can replace o(h2) by
o(X̄2

n)

Uniform delta method: θn → θ and
√
n(Tn − θn)

d−→ T , φ
continuously differentiable at θThen, if for every ε and n large
enough we have |φ(θn + h)− φ(θn)− φ′(θ)h| ≤ ε||h|| we get
√
n(φ(Tn)− φ(θn))

d−→ φ′(θ)T

Consistency of the MLE and asymptotics
Define

Gn(θ) =
1

n

n∑
i=1

logPθ(Xi)

Prop: G(θ0) > G(θ)∀θ 6= θ0
To prove consistency: Show that P (θmle 6= θ) ≤ something
that goes to zero.
Theorem: Consistency of the MLE Suppose the two following
conditions hold

1.

sup
θ∈Θ
|
1

n

n∑
i=1

log pθ(xi)− Eθ0 (log pθ(xi))|
p−→ 0

2.

∀ε > 0 sup
||θ−θ0||>ε

Eθ0 (log pθ(x)) < Eθ0 (log pθ0 (x))



Then, θMLE
p−→ θ0

Cramer result: if log pθ(x) is two times continuously
differentiable and bounded by K(x) ∈ L1(?) in some
neighborhood of θ0. Then if the MLE is consistent we
have asymptotic normality

For the first condition to hold we use the Uniform law of large
numbers.
Theorem: Uniform law of large numbers. Assume the following
condition hold

1. Θ is compact

2. U(x, θ) is continuous of θ for every x

3. There exists k(x) ∈ L1 such that |U(x, θ)| < k(x) for
every x and θ.

Sketch of the proof: define Ũ(Xi, θ) = U(Xi, θ) by 3 it is
continuous in theta. It is also dominated by a function in L1,
uniformly in θ. Then, define
φ(x, ρ, θ) = supθ′:||θ′−θ≤ρ Ũ(x, θ′), We have

limρ→0 φ(x, ρ, θ) = Ũ(x, θ) and limρ→0 E(φ(Xi, ρ, θ)) = 0.

This needs the uniform bound of Ũ in θ. From the limits of
expectations one conclude there is a covering of balls
B(θi, ρθi ) such that U(x, θ) ≤ φ(x, ρθM , θM ) where θ belongs
to the Mth ball. Thus

P (sup
θ∈Θ

1

n

n∑
i=1

Ũ(x, θ) > 2ε) ≤
M∑
j=1

P (
1

n

∑
φ(xi, ρj , θj) > 2ε)

And each of the terms in the right converge to zero, as

1

n

∑
φ(xi, ρj , θj)→ E(φ(Xi, ρj , θj)) ≤ ε

Weakening the compactness condition: Suppose pθ(x)→ 0 as
||θ|| → ∞ ∀x. Furthermore, suppose the weak law of large
numbers hold for sup||θ||>b log pθ(x) ∀b and G(θ0) is finite.
Then, there exist b such that

P

(
sup
||θ||>b

1

n

n∑
i=1

log(pθ(xi)) ≥
1

n

n∑
i=1

log(pθ0 (xi))

)
→ 0

Extension: assume not necessarily θn maximizes Gn(θ) but
Gn(θn) ≥ Gn(θn) + op(1). Then θn → θ0 Asymptotic
distribution of the MLE. Theorem based on third order
derivative. Conditions:

1. θ0 ∈ Int(Θ) and
∫

(Θ) 6= ∅

2. θML is consistent

3. Fisher information is well defined (we can differentiate
log pθ(x) with respect to θ and pass the derivative
under the integral sign

4. Need also second order definition of Fisher Information

5. Third derivative also exists and
∃K3(x)st| ∂

3

∂θ3
log(pθ(x))| ≤ K3(x) and E(|K3(x)|) <∞

The key of this proof is to show that G′′n(θ) = O(1) using the
last condition Then, n1/2(θMLE − θ0)→ N(0, I(θ0)−1

Cramer theorem on asymptotics for the MLE: Θ is open,
second derivatives of log pθ(x) exists and are continuous and
information is well defined in both ways. Second derivatives
are bounded uniformly by K(x) ∈ L1, and I(θ0) is
differentiable. If θmle is consistent then we have asymptotics.
To prove this: Prove G′′(θ̃n)→ −I(θ0) using the uniform law
of large numbers.

Quadratic mean differentiability
Definition: the family pθ, θ ∈ Θ ⊆ Rk is called differentiable in
quadratic mean at θ0 if and only if there exists a function
η1(x, θ0) such that∫ [√

pθ0+h(x)−
√
pθ0 (x)− ηT1 (x, θ0)h

]2

dµ(x) = o(||h||2)

η1 should be, in some sense, the gradient of
√
pθ(x) Definition

2//∫ [√
pθ0+h(x)−

√
pθ0 (x)−

1

2
ηT (x, θ0)

√
pθ0 (x)h

]2

dµ(x) = o(||h||2)

Remark: if the support doesn’t depend on the parameter then
both definitions are essentially equivalent. In definition 2, η
should be the derivative of the log likelihood.Some examples,
normal, laplace. Uniform is not qmd
Theorem: θ ∈ Θ open set, assume

√
pθ(x) is continuously

differentiable for every x. If the elements of

Iθ =
∫ ∇pθ

pθ

∇ptθ
pθ

pθdµ are well defined and continuous in θ then

the family is qmd and η = ∇ log(pθ)
Theorem. Suppose Θ is open and the model is qmd at θ0, then

Eη(X, θ0) = 0 E(η(X, θ0), ηt(X, θ0) <∞

The second expectation is the generalized fisher information.
Theorem: Suppose Pθ is qmd at θ ∈ Int(Θ). Furthermore,
suppose that there exists a measurable function K with second
moment such that

| log(p θ1)− log(pθ2 )| ≤ K(x)||θ1 − θ2||

If I(θ0) is not singular and θn is consistent then
√
n(θn − θ)→ N(0, I−1(θ0))

Hilbert spaces identities (useful for qmd)
If f, g ∈ L2(µ) then f + g, f − g ∈ L2(µ)
If gn → g, f ∈ L2(µ) then fgn → fg
Examples: pθ(x) = (2− 2x/θ)1x≤θ is not qmd, but
pθ(x) = 3/θ3(x− θ)21x≤θ is qmd. In both cases, assume in
(θ, θ + h)c the integral is o(||h||2) so we focus on θ, θ + h

Counterexample for the consistency of the
MLE
Consider h(x) ≥ exp(1/x2) ≥ 1, c < 1 and ak defined such that∫ ak−1

ak

(h(x)− c)dx = 1− c

and fk(x) = h(x) in [ak, ak−1] and c otherwise. We have
X(1) = op(1), nX(1) = Op(1) for all k, and to prove
KMLE →∞ we show instead P (PK∗n(X) > Pj(X))→∞
where K∗n is the interval where X(1) recedes. The above

(using decreasingness of h) reduces to show 1
n

log(X(1))→∞
in probability

Robust Estimation

We used a general M estimator, θ̂ = arg min
∑n
i=1mθ(Xi).

Usually mθ(x) = m(x− θ). We want consistency, so
Eθ0m(X − θ) is minimized at θ0. Following the same
argument as for the asymptotics of the mle, we get the
following asymptotics

√
n(θ̂ − θ0)→ N(0,

Eθ0m
′2(Xi − θ0)

(Eθ0m
′′ (Xi − θ0))2

)

For robustness, we consider the escenario
Xi ∼ F (t− θ) = (1− ε)Φ(t− θ) + εH(t− θ) We want the most
robust estimator, the m function such that

m∗ = arg min
m convex

sup
H

Eθ0m
′2(Xi − θ0)

(E
′′
θ0

(Xi − θ0))2

Theorem: Huber. The asymptotic variance has the following
saddle point V (m0, f) ≤ V (m0, f0) ≤ V (m, f0), where f0 is the
least favorable distribution (h0 don’t have any mass on [−k, k]

m0(t) =

{
1/2t2 |t| < k

k|t| − 1/2k2 |t| ≥ k

Also, if f denote the pdf of F then we get the following
expression to find k as a function of ε

m′(t) = −
f ′

f

From the above condition one can find the least favorable
distribution H (solving a differential equation). It turns out
this distribution has density (and making it integrate up to
one gives us k as a function of ε

h0(y) =
1− ε
ε
√

2π

(
exp(−k|y| − k2/2)− exp(−y2/2)

)
1|y|≥h

Asymptotics for Robust estimation: Consider minimizing
β̂ = arg min

∑
m(yi − xtiβ) and

E(xxt) = Σ, ε = yi − xtiβ ⊥⊥ xi. Then

√
n(β̂ − β)

d−→ N(0, σ−1E(m′(ε)2)/E(m′′(ε))2)

To prove the above, express yi − xtiβ̂ = yi − xtiβ0 + xtiβ0 − xtiβ̂
and then taylor for m′ getting m′′(z̃in) with z̃n = yti − β̃in and
use the usual asymptotics and uniform law of large numbers.
(probably there is no dependence on i for the β̃



Hypothesis testing
For Kolmogorov Smirnov,
(F (X(1)), . . . F (X(n)) ∼ (U(1), . . . U(n))
Behrens-Fisher problem.
X1, . . . Xn ∼ N (µx, σ2

x), Y1, . . . Ym ∼∼ N (µy , σ2
y) Testing

µx = µy , the statistic X̄−Ȳ√
Sx2

n
+
S2
y
m

depends on the unknown

σy , σx
Neyman Pearson Fundamental lemma: Suppose p0, p1 are the
densities w.r. to µ. For testing H0 : p0 v. s.H1 : p1 then

1. There exists a test φ and a constant k such that
E0(φ(X)) = α and

φ(x) =

{
1 p1(x) > kp0(x)

0 p1(x) < kp0(x)

k = kα should be adjusted such that

kα = inf
k
P

(
p1(x)

p0(x)
≤ k

)
≥ 1− α

2. Sufficiency: if a test satisfies the above conditions it is
the most powerful test then it has to satisfy the above
for some k Also, E0(φ(X)) = α unless the
E1(φ(X)) = 1 We use the convention 0×∞ = 0

For composite null (finite) the optimal test is given by

φ(x) =

{
1 p1(x) >

∑n
i=1 cipθi (x)

0 p1(x) <
∑n
i=1 cipθi (x)

Theorem: if there exists ci ≥ 0 that satisfy the above (with a
randomized number for the equality) and it also satisfies∫

φ(x)pθi (x)dµ(x) ≤ α ∀i = 1 . . . k∫
φ(x)pθi (x)dµ(x) < α⇒ ci = 0

then φ is a most powerful α test
Theorem: if there exists c(θ) ≥ 0,

∫
c(θ)dλ(θ) <∞ that

satisfies

φ(x) =

{
1 p1(x) >

∫
c(θ)pθ(x)dλ(θ)

0 p1(x) <
∫
c(θ)pθ(x)dλ(θ)

(with a randomized number for the equality) and also satisfies∫
φ(x)pθ(x)dµ(x) ≤ α ∀θ ∈ Θ∫

{θ:
∫
φ(x)pθ(x)dµ(x)<α}

c(θ)dλ(θ) = 0

then φ is a most powerful α test Def:Least favorable
distribution at level α is the one that gives the least bayesian
power for the alternative (taking the uniformly most powerful
bayesian test).
Theorem: Suppose there exist a distribution Λ such that the
bayesian most powerful α test φΛ is also size α for the original
hypothesis. Then

1. φΛ is most powerful for the original hypothesis

2. if it is unique for the bayesian test it is also unique for
the original one

3. Λ is the least favorable distribution

Corollary: Suppose Λ is a probability distribution over ω and
ω′ is a subset of ω with probability Λ(ω′) = 1. Let φΛ be a
bayesian most powerful test. Then, if for
θ′ ∈ ω′, Eθ′ (φλ(X)) = supθ∈ω Eθ(φΛ(X)) = α φΛ is most
powerful!
Definition: For testing H0 : θ ∈ Θ0 vs H1 : θ ∈ Θ1 a level α
test φ is unbiased if it is of level α and E(φ(X)) ≥ α, ∀θ ∈ Θ1

For point hypothesis Unbiasedness is obtained via
minimization of the power at the null.

Examples on Hypothesis Testing
pθ ∼ N (0, 1), H0 : θ ∈ {−1, 1}H1 : θ = 0 Reject when |X| < K
By the lagrange multipliers lemma, for the test
pθ ∼ N (0, 1), H0 : θ ∈ {−1, 1, 4}H1 : θ = 0 we still will reject
when |X| < K
X ∼ N (θ, 1). H0θ < 0 vs H1 : θ = 1. The least favorable
distribution doesn’t exist, but we get a sequence of test
converging to the least favorable test with θ = 0
X ∼ N (θ, 1). H0θ ≤ −1 ∨ θ ≥ 1vsH1 : θ = 0.5. Regardless of
the value of θ we reject if |X| is small.
X ∼ N (θ, 1). H0|θ| ≤ 1 vs H1 : |θ| ≥ 1. No UMP for θ > 1
the least favorable distribution will be a delta at 1.
X ∼ N (θ, 1). H0|θ| ≥ 1 vs H1 : |θ| < 1. There is a UMP.
For each value of the alternative one chooses a least favorable
prior such that δβ(−1) + (1− δ)β(1) = α. From this,
β(1) = β(−1) = α (otherwise level constraints are not
satisfied).
For testing in the case where there are unknowns: find a
complete statistic T for the unknown parameters ν , assuming
the null. argue that (by completeness) that the problem is
equivalent to

maxE(φ(x1, . . . xn)|T ), ∀(µ, ν) ∈ Θ1

s.t E(φ(x1, . . . xn)|T ) = α,∀(µ, ν) ∈ ∂Θ0

Then find an ancillary statistic under the null

Hypothesis Testing from TSH
Theorem: suppose that the distribution of X given by

Pθ,µ = C(θ, µ) exp
[
θU(x) +

∑
µiTi(x)

]
and that V = h(U, T ) is independent of T when θ = θ0. Then
φ1 is UMP unbiased for testing H1 provided the function h is
increasing in u for each t, and φe is UMP unbiased for H4

provided h(u, t) = a(t)u+ b(t), a(t) > 0. The tests φ2, φ3 are
UMP unbiased for H2 and H3 if V is independent of T when
θ = θ1, θ2 and if h is increasing in u for each t. Here H1 is the
simple one sided hypothesis, H2 is θ < θ1 ∨ θ > θ2, H3 is
θ ∈ [θ1, θ2] and H4 is θ = θ0 The Rejection regions are
R1 = u > C0(t), R2 = C1(t) < u < C2(t),
R3, R4 = u < C1(t) ∨ u > C2(t). The new rejection regions are
expressed in terms of V , without any dependence on T . In this

case, R3 will also have a form like R2. The constants should
be adjusted such that E(φ(V )) = α or E(V φ(V )) = αE(σV )
Normal examples. Testing σ ≤ σ0 with unknown mean.
U =

∑
x2
i , T = x̄. For all means and σ0,h(U, T ) = U − T 2 is

independent of T (in fact always). Since h is increasing in U
the rejection region is V ≤ C0 For testing µ = 0 vs µ 6= 0 with
unknown variance use W = X̄/

∑
x2
i , then one can get the t

distribution (need linearity).
Let θ be a real parameter, and let X have density
pθ(x) = C(θ) exp (Q(θ)T (x))h(x) where Q is strictly
monotone. Then there exists a UMP test φ for testing θ < θ0
If Q is increasing it rejects when T is large. If it is decreasing,
it rejects for small delta

Likelihood Ratio Test
Assume X1, . . . Xn are i.i.d according to q.m.d family where Ω
is an open subset of Rk and I(θ) is positive definite.

1. Consider testing the simple null hypothesis θ = θ0.
Suppose θn is an efficient estimator for θ assuming
θ ∈ Ω in the sense that is satisfies asymptotic normality
conditions for θ = θ0 Then the likelihood ratio satisfies,
under H0

2 log(Rn)→ X2
k

2. Consider testing the composite null hypothesis θ ∈ Ω0

where

Θ0 = {θ = (θ1, . . . , θk) : A(θ − a) = 0}

And A is a p× k matrix of rank p and a is a fixed k × 1
vector. Ket θn,0 be an efficient estimator of θ assuming
θ ∈ Ω0, that is, asymptotic normality holds for all
θ ∈ Θ0. Then the likelihood ratio converges to a chi
square with p degrees of freedom

3. More generally, suppose Θ0 is represented as
Θ0 = {θ : g1(θ), . . . , gp(θ)T = 0} where gi(θ) is a
continuously differentiable function from Rk to R. Let
D = D(θ) be the p× k matrix with (i, j) entry
∂gi(θ)/∂thetaj , assumed to have rank p. Then the limit
is as above.
For testing H0 : Xi ∼ p(x) and H1 : Xi ∼ q(x) where
p(x), q(x) are discrete the optimal test is given by

KL(p̂, p)−KL(p̂, q) > T

Random facts
Law of total (co)variance
Cov(XY |Z) = E(X,Y |Z)− E(X|Z)E(Y |Z). Another formula
(for conditional variance): V ar(Y |X) = E((Y − E(Y |X))2|X)

Cov(X,Y ) = E(Cov(X,Y )|Z) + Cov(E(X|Z), E(Y |Z))

Suppose Z ∼ N (0, In) P projection matrix, P 2 = P with rank
r. Then ZtPZ ∼ χ2

r Use the diagonalization with eigenvalues 0
and 1.
If the covariance matrix is singular then the elements are
linearly dependents, a.e.
E(X) = µ,Cov(X) = Σ If A is symmetric, then
E(XtAX) = tr(AΣ) + µtAµ,



V ar(xtAx) = 2Tr(AΣAΣ) + 4µtAΣAµ. if X ∼ N (0, IN ) then
V ar(xtAx) = tr(A2) + tr(AAt)

Tr(ABC) = Tr(BCA) = Tr(CAB), det(AB) = det(A)det(B)

Ratio of 0, 1 normals is cauchy. Tan(Unif(−π/2, π/2) is
Cauchy. Characteristic function φ(t) = exp(−|t|)

Xi exp(λ) X(n) − log(n)/lambda converges to a Gumbell

Stirling Formula:

lim
n!

√
2πn

(
n
e

)n = 1

Xn
d−→ X and F continuous. Then

sup
x
|P (Xn ≤ x)− P (X ≤ x)| → 0

Levy inversion formula

f(x) =
1

2π

∫
R
φ(θ) exp(−iθx)dθ

The function F (x) = log det(X) is concave for X symmetric
positive definite

Poems, Prayers and Jokes
Song of Myself (1). Walt Whitman, Leaves of
grass
I celebrate myself, and sing myself,
And what I assume you shall assume,

For every atom belonging to me as good belongs to you.
I loafe and invite my soul,
I lean and loafe at my ease observing a spear of summer grass.
My tongue, every atom of my blood, form?d from this soil,
this air,
Born here of parents born here from parents the same, and
their parents the same,
I, now thirty-seven years old in perfect health begin,
Hoping to cease not till death.
Creeds and schools in abeyance,
Retiring back a while sufficed at what they are, but never
forgotten,
I harbor for good or bad, I permit to speak at every hazard,
Nature without check with original energy.

Oh Me, Oh Life, Walt Whitman

Oh me! Oh life! of the questions of these recurring,
Of the endless trains of the faithless, of cities fill?d with the
foolish,
Of myself forever reproaching myself, (for who more foolish
than I, and who more faithless?)
Of eyes that vainly crave the light, of the objects mean, of the
struggle ever renew?d,
Of the poor results of all, of the plodding and sordid crowds I
see around me,
Of the empty and useless years of the rest, with the rest me
intertwined,
The question, O me! so sad, recurring?What good amid these,
O me, O life?
Answer.

That you are here?that life exists and identity,
That the powerful play goes on, and you may contribute a
verse.

Love is the Water of Life, Rumi

Love is the Water of Life
Everything other than love for the most beautiful God
though it be sugar- eating.
What is agony of the spirit?
To advance toward death without seizing
hold of the Water of Life.

Serenity Prayer, Reinhold Niebuhr

God, give me grace to accept with serenity
the things that cannot be changed,
Courage to change the things
which should be changed,
and the Wisdom to distinguish
the one from the other.
Living one day at a time,
Enjoying one moment at a time,
Accepting hardship as a pathway to peace,
Taking, as Jesus did,
This sinful world as it is,
Not as I would have it,
Trusting that You will make all things right,
If I surrender to Your will,
So that I may be reasonably happy in this life,
And supremely happy with You forever in the next.
Amen.

(a) Mnemonic rule:The Mr T test is the uni-
formly most powerful (b) the paranormal distribution


