Why is $\sum_{i=1} p_{i}<\infty$ for completely random measures?

Notes for Probabilistic Models of Discrete Data. Professor: David Blei Gonzalo Mena

April 1, 2016

Jonathan Auerbach asked in class why it is the case that $\sum_{i=1}^{\infty} p_{i}<\infty$ in the completely random measures (CRM) framework. Rajesh Ranganath provided a nice picture about the underlying intuition: we need this to have a properly normalized distributions. Here I complement the explanation with a 'measure theoretical' police proof.

1 Proposition

Consider a completely random measure $\mathcal{L}(\cdot)$ as in [ZC15]. That is, for each $A \subseteq \Omega$ consider the sum $\mathcal{L}(A)=\sum_{i} p_{i} \chi_{A}\left(\omega_{i}\right)$ of an underlying Poisson process in the product space $\mathbb{R}^{+} \times \Omega$ with intensity $\nu(p, \omega)$. Also, assume it is satisfied the 'Levy-like' integrability property: for each compact $A \subseteq \Omega$:

$$
\begin{equation*}
\int_{\mathbb{R}^{+}} \int_{A} \min (1, p) d \nu(p, \omega)<\infty \tag{1}
\end{equation*}
$$

Then, for such compacts A,

$$
S \equiv \sum_{\left(w_{i}\right) \in A} p_{i}<\infty, \quad \text { almost surely (a.s.). }
$$

Proof: We will show that S can be expressed as $S=S_{1}+S_{2}$, with S_{2} being finite a.s., and $E\left(S_{1}\right)<\infty$ from which it will follow, by an elementary measure theoretical property, that $S_{1}<\infty$ as well.

Indeed, we can break down the above sum as the sum for the p_{i} that are smaller than 1 , and the rest. In other words:

$$
S=S_{1}+S_{2}, \quad S_{1}=\sum_{\left(w_{i}\right) \in A} p_{i} 1_{p<1}, \quad S_{2}=\sum_{\left(w_{i}\right) \in A} p_{i} 1_{p \geq 1} .
$$

Now, recall the Campbell theorem for Poisson processes [Kin92]: Let N be a Poisson process in a space B with intensity measure λ. Then, for a measurable real valued function f :

$$
E\left(\sum_{x \in N} f(x)\right)=\int_{B} f(x) d \lambda(x)
$$

In terms of the Campbell's theorem statement one can express $S_{1}=\sum_{x \in N} f(x)$ where $N=$ $\sum_{i} \delta_{\left(p_{i}, w_{i}\right)}$ (the underlying Poisson process in the product space), $x=(p, w)$ and $f(x)=p 1_{p<1}$. Thus,

$$
E\left(S_{1}\right)=\int_{\mathbb{R}^{+}} \int_{A} p 1_{p<1} d \nu(p, \omega)=\int_{0}^{1} \int_{A} p d \nu(p, \omega)
$$

To conclude, let's re-state equation (1) as

$$
\begin{equation*}
\int_{0}^{1} \int_{A} p d \nu(p, \omega)+\nu([1, \infty], A)<\infty \tag{2}
\end{equation*}
$$

As this sum is finite, both terms are. The first term is actually $E\left(S_{1}\right)$, therefore $E\left(S_{1}\right)<\infty$. Additionally, the fact that $\nu([1, \infty], A)$ is finite implies that a.s. S_{2} contains only a finite number of terms, as the number of points in A such that $p_{i}>1$ has a poisson distribution with finite rate $\nu([1, \infty], A)$.

References

[Kin92] John Frank Charles Kingman. Poisson processes, volume 3. Clarendon Press, 1992.
[ZC15] MengChu Zhou and Lawrence Carin. Negative binomial process count and mixture modeling. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 37(2):307-320, 2015.

