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In Brief

I Entropy regularization [3] has shown to be effective in optimal transportation (OT).
I We focus on permutations, a first-class citizen in the most elementary discrete OT.
I Using entropy regularization we conceive the choice of a matching (a transference

plan in the discrete case) as a limit involving the differentiable Sinkhorn operator.
I We define Sinkhorn Networks: i)we parameterize a matching using neural

networks, and ii)using Sinkhorn we enable automatic differentiation.
I We beat competitive baselines on problems involving permutations, and show an

original application to reconstructions of objects from pieces.

Introduction

OT is relevant in machine learning as it provides richer description on the
discrepancy between distributions than e.g., KL divergence. Entropy regularization
of OT has also proven to be helpful [3]. More recently, this technique has enabled
automatic differentiation (AD) for learning generative models based on OT [4]. Here
we slightly deviate from current uses of entropy regularization, and focus on the
most elementary discrete OT, where permutations arise naturally.

From the softmax to its permutation analog, the Sinkhorn operator

Softmax to approximate a category
With a temperature dependent softmax, one can approximate categories:

softmaxτ(x)i = exp(xi/τ )/
∑
j=1

exp(xj/τ ).

For τ > 0, softmaxτ(x)i is simplex-valued, and in the limit τ → 0, softmaxτ(x)i
converges to a point in the set V of vertices of the simplex S, a one-hot vector. This
approximation is key in [5, 7].

Sinkhorn operator is the analog in permutations
For a N dimensional square matrix X > 0 (elementwise) we define the Sinkhorn
operator S(·) [1] as

S0(X ) = exp(X ),

Sl(X ) = Tc

(
Tr(Sl−1(X ))

)
,

S(X ) = lim
l→∞

Sl(X ).

where Tr(X ), Tc(X ) as the row and column-wise normalization operators of a matrix.
Sinkhorn [9] proved S(X ) must belong to the Birkhoff polytope BN, the set of doubly
stochastic matrices.

Parameterizing permutations, the matching operator M(X )
Choosing a category is a maximization problem parameterized by a vector x . The
choice arg maxi xi given by

v∗ = arg max
i

xi = arg max
v∈S

〈x , v〉 = arg max
v∈S

〈x , v〉.

Likewise, one parameterizes the choice of a permutation P through a matrix X , as
the solution to the linear assignment problem [6]

M(X ) = arg max
P∈PN

〈P,X 〉F = arg max
P∈BN

〈P,X 〉F .

PN the set of permutation matrices and 〈A,B〉F = trace(A>B). M(·) is the matching
operator, through which we parameterize permutations (Figure 1a ).

Theorem

For a doubly-stochastic matrix P, define its entropy as h(P) = −
∑

i ,j Pi ,j log
(
Pi ,j
)
.

S(X/τ ) = arg max
P∈BN

〈P,X 〉F + τh(P).

If Xi ,j ∼ Fi ,j are ind and Fi ,j is a.c. w.r. to the Lebesgue measure in R, then, a.s.

M(X ) = lim
τ→0+

S(X/τ ).

Matching and Sinkhorn operators illustrated
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Figure: Matching and Sinkhorn operators. 5x5 grids represent a matrix, with shading indicating value
(a) Matching operator M(X ) applied to a parameter matrix X . (b) Sinkhorn Operator S(X/τ )
approximating M(X ) for different temperature τ and number of Sinkhorn iterations, L.

Optimal transportation perspective

Permutations naturally arise in discrete OT, as the transportation problem between the
discrete measures µ = 1

N

∑N
i=1 δxi and ν = 1

N

∑N
i=1 δyi for a cost c(·, )̇ is [10]:

inf
P∈PN

1
n

〈
CX ,Y ,P

〉
F
, CX ,Y

i ,j = c(xi, yi).

Our matrix X may be seen as an OT (negative) cost in the discrete transportation
problem, i.e. we collapse c and xi, yi into a single Xi ,j = −c(xi, yj).

Sinkhorn Networks

Objective Consider the supervised task of learning a mapping from scrambled objects
X̃ to non-scrambled X . Data are pairs (Xi, X̃i) with X̃i are random permutations of Xi.
We minimize reconstruction error using the permutation Pθ,X̃ .

f (θ,X , X̃ ) =
M∑

i=1

||Xi − P−1
θ,X̃i

X̃i||2.

Pθ,X̃ is parameterized as the solution of the assignment problem; Pθ,X̃ = M(g(X̃ , θ)),
where g(X̃ , θ) is a (possibly deep) transformation of the input. By Theorem 1 we
replace M(g(X̃ , θ)) by the differentiable S(g(X̃ , θ)/τ ).

Permutation equivariance

Pθ,P ′(X̃ )

(
P ′X̃

)
= P ′

(
Pθ,X̃ X̃

)
Reconstructions of objects should not depend on how pieces were scrambled, but only
on the pieces themselves.

Solving Jigsaw Puzzles
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Figure: Sinkhorn networks can be trained to solve Jigsaw Puzzles. Given a trained model, ‘soft’
reconstructions are shown at different τ using S(X/τ ). We also show hard reconstructions, made by
computing M(X ) with the Hungarian algorithm [8]. We tie with [2] with a much simpler architecture.

Reconstruction of arbitrary MNIST digits from pieces

O S Hard Reconstructions Soft Reconstructions
Figure: Sinkhorn networks can also be used to learn to transform any MNIST digit into another. To do this,
we use several layers to encode different labels. We show hard and soft reconstructions, with τ = 1. In
85% of cases a classifier is ’fooled’.
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