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Abstract

Recently, Optimal Transport (OT) has received significant attention in the Machine
Learning community. It has been shown to be useful as a tool for generative
modeling, in which the density estimation problem is cast as the minimization
of a linear function on the transportation polytope. Entropy regularization of
this problem (Cuturi, |2013) has been demonstrated to be particularly useful, as
its solution can be characterized in terms of the Sinkhorn operator, which i) can
be computed more efficiently than the original problem and ii) enables efficient
automatic differentiation (AD). We show that this technique extends to the Birkhoff
polytope, and we use it to understand the solution of the linear assignment problem
as a limit of the Sinkhorn operator. This observation justifies and enables the use of
AD in computation graphs containing permutations as intermediate representations.
As a result, we are able to introduce Sinkhorn networks for learning permutations,
extending the work of|[Adams & Zemel (2011)), and apply them to a variety of tasks.
The success of our extension suggests entropy regularization might be used in other
polytopes as well, enabling AD in other discrete structures.

1 Introduction

Optimal Transport (OT) |Villani| (2003)) has received increased interest among the Machine Learning
community, as it provides a renewed perspective to the question on how to compare two distributions.
Indeed, the interpretation of the OT program as the minimum amount of total mass moved in
order to transform one distribution into another |Arjovsky et al.| (2017) provides two advantages
over the classical information paradigm for learning, based on minimization of KL divergence (e.g.
maximum likelihood): first, it is not ill-posed when the true distribution lies on a low-dimensional
manifold (Montavon et al.,|2016;/Genevay et al.,[2017), and second, it provides a rich parameterization
of the distance between distributions, given by the ‘schedule’ that minimizes the moved mass, the
transportation plan.

The main drawback to applying OT is that it requires solving a linear problem that, although having
polynomial complexity, in practice entails a substantial computational burden. An appealing solution
was proposed by [Cuturi| (2013)), where the original problem is replaced by an entropy-regularized
version, whose solution is shown to be equivalent to the application of the so-called Sinkhorn operator
(Sinkhornl [1964)), with a reduced computational cost. Since then, entropy regularization has gained
popularity among practitioners, and more recently, has enabled automatic differentiation (AD) for the
training of generative models based on OT |Genevay et al.|(2017)), thanks to the differentiability of the
Sinkhorn operator.
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In this work, we extend this entropy regularization technique to show that the solution of the
linear assignment problem can also be approximated with the Sinkhorn operator, enabling AD in
computation graphs containing parameterized permutations as intermediate nodes, by replacing them
by their differentiable approximations (section [2)). Notably, by doing this we introduce Sinkhorn
networks (section [3) which are able to learn the right permutation from training examples. We apply
Sinkhorn networks to a variety of tasks, where we achieve state-of-the-art results (section E])

2 An analog of the softmax for permutations

In this section we state our theoretical contribution, a rule to approximate matchings with the Sinkhorn
operator, based on entropy regularization. We motivate it as an extension of a most elementary,
discrete case, and defer a discussion of its relation to OT to section[3]

One sensible way to approximate a discrete category by continuous values is by us-
ing temperature-dependent softmax function, component-wise defined as softmax,(z;) =
exp(2i/7)/ > ;-1 exp(z;/T). For positive values of 7, softmax,(;) is a point in the probabil-
ity simplex. Also, in the limit 7 — 0, softmax, (x;) converges to a vertex of the simplex, a one-hot
vector, corresponding to the largest x; ﬂ This approximation is a key ingredient in the successful
implementations by (Jang et al.| 2016; Maddison et al., 2016), to enable AD in computation graphs
containing discrete nodes, and here we extend it to permutations.

To do so, we first note that the Sinkhorn operator (the iterative normalization of rows and columns of
a matrix) is an analogue of the softmax, for permutations. Specifically, for an N dimensional matrix
X, we deﬁneﬁ(X) =X0(X1y1}),and T,(X) = X @ (151} X) as the row and column-wise
normalization operators of a matrix, with @ denoting the element-wise division and 1 a column
vector of ones. Then, we define the Sinkhorn operator S(-) as follows:

SUX) = exp(X), (1
S™X) = T (T(S""Y(X))),
S(X) = lim S™(X).

A theorem due to (Sinkhorn, [1964) E], proves that S(X) must belong to the Birkhoff polytope, the set
of doubly stochastic matrices, that we denote B .

To continue our analogy with categories, first notice that choosing a category can always be cast as a
maximization problem: the choice arg max; x; is the one that maximizes the function {x, v) (with v
being a one-hot vector), since the maximizing v* is the one that indexes the largest x;. By paralleling
this construction, one may parameterize the choice of a permutation P through a matrix X, as the
solution to the linear assignment problem (Kuhnl [1955)), with Py denoting the set of permutation
matrices:

M(X) = arg max trace(P' X). (2)

PePN

Our theoretical contribution is to notice that the hard choice of a permutation, M (X '), can be obtained
as the limit of S(X/7), meaning that one can approximate M (X) ~ S(X/7) with a small 7.
Theorem 1 summarizes our finding. We provide a rigorous proof in Appendix [A] where we also
comment on its relation to the simpler discrete case. This proof is based on showing that S(X/7)
solves a certain entropy-regularized problem in B,,, which in the limit converges to the matching
problem in equation 2]

Theorem 1. For a doubly-stochastic matrix P, define its entropy as h(P) = —>_, . P; jlog (P, ;).

Then, one has,
S(X/7) = arg max trace(P' X) + Th(P). 3)
ebn

Now, assume also the entries of X are drawn independently from a distribution that is absolutely
continuous with respect to the Lebesgue measure in R. Then, almost surely, the following convergence

2Unless the degenerate case of ties.

*Notation borrowed from|Adams & Zemel (2011)

“This theorem requires certain technical conditions which are trivially satisfied if X has positive entries,
motivating the use of the component-wise exponential exp(-) in the first line of equation



holds:
M((X)= lim S(X/7). 4)
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3 Sinkhorn Networks

Now we show how to apply the approximation stated in Theorem 1 in the context of artificial neural
networks. We construct a layer that encodes the representation of a permutation, and show how to
train networks containing such layers as intermediate representations.

We define the components of this network through a minimal example: consider the supervised task
of learning a mapping from scrambled objects X to actual, non-scrambled X. Data, then, are M
pairs (X;, X;) where X; can be constructed by randomly permuting pieces of X*. We state this

problem as a permutation-valued regression X' = We_iz_ (Xl) + ¢;, where ¢; is a noise term, and
xq

Tg. %, is the permutation (represented as a matrix) that maps X;; to X;, and that depends on X, and
some parameters §. We are concerned with minimization of the reconstruction error[’}

M
10.X,%) =3 11X -k (%) I )
=1

One way to express a complex parameterization of this kind is through a neural network: this network
receives X* as input, which is then passed through some intermediate, feed-forward computations of
the type g;(W,z; + b;), where g; are nonlinear activation functions, x; is the output of a previous layer,
and 6 = {(W;,b;)} are the network parameters. To make the final network output be a permutation,
we appeal to constructions developed in section E} by assuming that the final network output 7, ¢

can be parameterized as the solution of the assignment problem; i.e., 7, ¢ (X ) = M(g(X,0)),
where g(X, 0) is the output of the computations involving f;.

Unfortunately, the above construction involves a non-differentiable f (in #). We use Theorem 1
as a justification for replacing M (g(X,#)) by the differentiable S(g(X,#)/7) in the computation
graph. The value of 7 must be chosen with caution: if 7 is too small, gradients vanishes almost
everywhere, as S(g(X,6)/7) approaches the non-differentiable M (g(X,6)). Conversely, if T is too

large, S(X/7) may be far from the vertices of the Birkhoff polytope, and reconstructions 7r9_;2 (X )

may be nonsensical (see Figure ). Importantly, we will always add noise to the output layer g(f( ,0)

as a regularization device: by doing so we ensure uniqueness of M (g(X ,0)), which is required for
convergence in Theorem 1.

3.1 Permutation equivariance

Among all possible architectures that respect the aforementioned parameterization, we will only
consider networks that are permutation equivariant, the natural kind of symmetry arising in this
context. Specifically, we require networks to satisfy:

9,7/ (X) (W/(X)> = (WG(X) )

where 7’ is an arbitrary permutation. The underlying intuition is simple: reconstructions of objects
should not depend on how pieces were scrambled, but only on the pieces themselves. We achieve
permutation equivariance by using the same network to process each piece of X, which we require
to have an IV dimensional output. Then, these N outputs (each with N components) are used to
conform the rows of the matrix g(X,#), to which we finally apply the (differentiable) Sinkhorn
operator. One can interpret each row as representing a vector of local likelihoods of assignment, but
they might be inconsistent. The Sinkhorn operator, then, mixes those separate representations are
mixed, and ensures that consistent (approximate) assignment are produced.

5This error arises from gaussian ;. Other choices may be possible, but here we stick to the straightest
formulation



N =80 N =100 N =120
Test distribution PW. PAW. PW. PAW. PW. PAW

U(,1) 0 .0 0 .0 0 .01
U(0,10) 0 .0 0 .02 0 .03
U(0, 1000) 0 .01 0 .02 0 04
U(1,2) 0 .01 0 .04 0 .08
U(10,11) 0 .08 0 .08 1 6
U(100, 101) 02 .65 09 .99 121
U(1000,1001) .22 1. 39 L 49 1.

Table 1: Results in the number sorting task, for test data sampled from different uniform distributions.
*Results from |Vinyals et al.| (2015)

With permutation equivariance, the only consideration that will be left to the practitioner is the
choice of the particular architecture, which will depend on the particular kind of data. In Section[4]
we illustrate the uses of Sinkhorn Networks with three examples, each of them using a different
architecture.

4 Experiments

4.1 Sorting numbers

To illustrate the capabilities of Sinkhorn Networks in the most elementary case, we considered the
task of sorting numbers using artificial neural networks, first described in (Vinyals et al., 2015).

Specifically, we sample uniform random numbers X in the [0, 1] interval and we train our network

with pairs (X, X') where X are the same X but in order. The network has a first fully connected
layer that links a number with an intermediate representation (with 32 units), and a second (also fully
connected) layer that turns that representation into a row of the matrix g(X, ).

Table [T] shows our network learns to sort up to N = 120 numbers. We used two evaluation measures:
the proportion of wrong responses (P.W.), and the proportion of sequences where there was at least
one error (P.A.W.). Surprisingly, the network learns to sort number even when test examples are
not sampled from U (0, 1), but on a considerably different interval. This indicates the network is not
overfitting. These results may be compared with the ones in [Vinyals et al.|(2015), where a much
more complex (recurrent) network was used, but performance guarantees were obtained only with
at most N = 15 numbers. In that case, the reported P.A.W is 0.9, ours is negligible for most test
distributions.

4.2 Jigsaw Puzzles

A more complex scenario for learning a permutation relates to images, which has been addressed
in (Noroozi & Favaro, |2016; Cruz et al., 2017). There, we would like to solve a Jigsaw puzzle, to
recover an image X given their scrambled pieces X, at a certain level of atomicity. In this example,
our network differs from the one in[4.1]slightly: now, the first layer is a simple CNN (convolution +
max pooling), which maps the puzzle pieces to an intermediate representation.

For evaluation on test data we report [1 and [2 (train) losses and the Kendall tau, a ‘correlation
coefficient’ for ranked data. In Table|2| we benchmark results for the MNIST, Celeba and Imagenet
datasets, with puzzles between 2x2 and 6x6 pieces. In MNIST we achieve very low /1 and [2 errors
on up to 6x6 puzzles, although a high proportion of errors. This is a consequence of our loss being
agnostic to particular permutations, but only caring about reconstruction errors: as the number of
black pieces increases with the number of puzzle pieces, most of them become unidentifiable under
this loss.

In Celeba, we are able to solve puzzles of up to 5x5 pieces with only 21% of pieces of faces being
incorrectly ordered (see Figure [lp for examples of reconstructions). However, learning in the the
Imagenet dataset is much more challenging, as there isn’t a sequential structure that generalizes
among images, unlike Celeba and MNIST. In this dataset, our network ties with the .72 Kendall tau



score reported in (Cruz et al.,|2017). Their network, named DeepPermNet, is based on stacking up to
the sixth fully connected layer of AlexNet (Krizhevsky et al.,|2012), which finally fully connects to a
Sinkhorn layer through two additional layers. We note, however, that our network is much simpler,
with only two layers and far fewer parameters.

6
MNIST Celeba Imagenet

2x2 3x3 4x4 5x5 6x6 2x2 3x3 4x4 5x5 2x2 3x3
Prop. wrong .0 09 45 45 59 0 03 .1 21 12 .26
Prop. any wrong .0 28 97 1L 1. .0 09 36 73 19 .53
Kendall tau L. 83 43 39 27 10 96 88 .78 .85 .73(0.72%)
11 .0 .0 04 02 03 0 01 04 08 05 .12
2 .0 .0 26 18 19 0 A1 18 24 22 31

Table 2: Jigsaw puzzle results. *Result from |Cruz et al.|(2017)

4.3 Assembly of arbitrary MNIST digits from pieces

We also consider an original application, motivated by the observation that the Jigsaw Puzzle task
becomes ill-posed if a puzzle contains too many pieces. Indeed, consider the binarized MNIST
dataset: there, reconstructions are not unique if pieces are sufficiently atomic, and in the limit case
of pieces of size 1x1 squared pixels, for a given scrambled MNIST digit there are as many valid
reconstructions as MNIST digits are there with the same number of white pixels. In other words,
reconstructions stop being probabilistic and become a multimodal distribution over permutations.

We exploit this intuition to ask whether a neural network can be trained to achieve arbitrary digit
reconstructions, given their loose atomic pieces. To address this question, we slightly changed the
network in[4.2] this time stacking several second layers linking an intermediate representation to the
output. We trained the network to reconstruct a particular digit with each layer, by using digit identity
to indicate which layer should activate with a particular training example.

Our results demonstrate a positive answer: Figure shows reconstructions of arbitrary digits
given 10x10 scrambled pieces. In general, they can be unambiguously identified by the naked eye.
Moreover, this judgement is supported by the assessment of a neural network. Specifically, we trained
a two-layer CNN[°lon MNIST (achieving a 99.2% accuracy on test set) and evaluated its performance
on the test set generated by arbitrary transformations of each digit of the original test set into any
other digit. We found the CNN made an appropriate judgement in 85.1% of the times.

5 Related work

We recognize two relevant sources of influence, besides the motivation given by the success of Jang
et al.| (2016)) and Maddison et al.|(2016): from OT and previous uses of the Sinkhorn operator for
inference of permutations. Below, we explain how our work benefits from them, and elaborate on the
relation between them.

The first part of Theorem 1 is very similar to an intermediate result from |Cuturi (2013), linking
the entropy-regularized transportation problem and the computation of a ‘Sinkhorn distance’. Our
contribution is to verify that the same argument does not only apply to the transportation polytope,
the optimization set that arises in the mostly adopted Kantorovich formulation of OT (Genevay et al.}
2016)), but can also be applied to the Birkhoff polytope as well. Also, unlike usual OT that is bound
to specific choices of cost functions (or transportation metrics), we are freed from attaching such an
interpretation to our matrix X, which for us simply parameterizes a matching.

There are clear connections between the usual Kantorovich OT problem and ours, though: first, the
Birkhoff polytope simply corresponds to the transportation polytope between uniform histograms
U(ly/N,1x/N), multiplied by N. Also, the set of permutations is the one that naturally appears

SSpecifically, we used the one described in the Deep MNIST for experts tutorial. in Tensorflow’s (Abadi
et al.,[2016) online documentation.


https://www.tensorflow.org/get_started/mnist/pros
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Figure 1: Results on images. (a) Sinkhorn networks can be trained to solve Jigsaw Puzzles. Given
a trained model, ‘soft’ reconstructions are shown at different 7 using S(X /7). We also show hard
reconstructions, made by computing M (X) with the Hungarian algorithm (Munkres, [1957). (b)
Sinkhorn networks can also be used to learn to transform any MNIST digit into another. We show
hard and soft reconstructions, with 7 = 1.
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when stating the discrete OT problem with the slightly stricter Monge formulation (Villani, 2008)),
which explicitly requires a one-to-one assignment. However, to our understanding, this extension has
not been established elsewhere, with the exception of recent work by [Ferradans et al.|(2014). That
work, however, used a different penalization, losing access to the Sinkhorn operator.

Connections between permutations and the Sinkhorn operator have been known for at least twenty
years. Indeed, first, the limit stated in Theorem 1 was also presented in|Kosowsky & Yuille] (1994);
however, their interpretation and motivation were more linked to statistical physics and economics.
Second, in|Gold et al.| (1996)) a similar theorem is introduced, but their proof is not rigorous. Third,
we understand our work as extending the pioneering contribution of/Adams & Zemel| (2011)), which
enabled neural networks to learn a permutation-like structure; a ranking. However, there, as in
Helmbold & Warmuth| (2009) as well, the objective function was linear, and the Sinkhorn operator
was instead used to approximate the expectation of the objective. In consequence, there was no need
to introduce a temperature parameter and consider a limit argument, which is critical to our case.

The extension from |Adams & Zemel| (2011); i.e., training neural networks to learn permutations
with nonlinear objectives, was simultaneously introduced in|Cruz et al.| (2017), although their work
substantially differs from ours: while their interest lies on the representational aspects of CNN’s,
we are more concerned with the more fundamental properties. In their work, they don’t consider a
temperature parameter 7, but their network still successfully learns, as 7 = 1 happens to fall within
the range of reasonable values. We hope our more general theory; particularly, our limit argument and
the notion of equivariance, may aid further developments aligned with the work of |Cruz et al.| (2017).

Finally, we mention that a connection between the approach by | Kosowsky & Yuille|(1994) and OT
exists: In|Genevay et al.|(2016)), related formulations of the entropy regularized OT were given, based
on the notion of Fenchel duality (Rockatellar,|1970). One of these formulations, named ‘semi-dual’
in|Genevay et al.|(2016), essentially corresponds to the one presented in|Kosowsky & Yuille|(1994).

6 Discussion

We have shown that techniques that improved computational aspects of OT can also be used to tackle
problems involved in permutations. This is critical in the AD era, which requires us to formulate
ways in which the computation of a discrete entity can be thought of as the limit of another lying
in the continuum. We hypothesize other extensions of the entropy regularization method may be
possible to address more general structures: for example, the ones that put cardinality constraints on
objects (Swersky et al.| [2012; [Tarlow et al., [2012)).
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A Proof of Theorem 1

In this section we give a rigorous proof of Theorem 1. Also, in ?? we briefly comment on how
Theorem 1 extend a perhaps more intuitive results, in the probability simplex.

Before stating Theorem 1 we need some preliminary definitions. We start by recalling a well-known
result in matrix theory, the Sinkhorn theorem.

Sinkhorn’s theorem, (Sinkhorn, [1964): Let A be an NV dimensional square matrix with positive
entries. Then, there exists two diagonal matrices D1, D5, with positive diagonals, so that P =
D1 AD, is a doubly stochastic matrix. These Dy, Do are unique up to a scalar factor. Also, P can be
obtained through the iterative process of alternatively normalizing the rows and columns of A. For
our purposes, it is useful to define the Sinkhorn operator S(-) as follows:

Definition 1: Let A be an arbitrary matrix with dimension N. Denote 7.(X) = X ©
(X1n1}), To(X) = X @ (1514 A) (with © representing the element-wise division and 1,, the n
dimensional vector of ones) the row and column-wise normalization operators, respectively. Then,
we define the Sinkhorn operator applied to A4; S(X), as follows:

SUX) = exp(X),
SMX) = T (T(S" (X)),
$(X) = lim $"(X).

Here, the exp(-) operator is interpreted as the component-wise exponential. Notice that by Birkhoff’s
theorem, S(X) is a doubly stochastic matrix.

Finally, we review some key properties related to the space of doubly stochastic matrices.

Definition 2: We denote by By the N-Birkhoff polytope, i.e., the set of doubly stochastic matrices
of dimension N. Likewise, we denote P,, be the set of permutation matrices of size N. Alternatively,

By ={Pc[0,1]]c RN PTiy =1x,P 1y = 1y},

Py ={Pc{0,1} e RN PT1y =1y,P 1y = 1x}.

(Birkhoff’s Theorem, Birkhoff (1946)) Py is the set of extremal points of 5. In other words, the
convex hull of By equals Py .



A.1 An approximation theorem for the matching problem

Let’s now focus on the standard combinatorial assignment (or matching) problem, for an arbitrary N
dimensional matrix X. We aim to maximize a linear functional (in the sense of the Frobenius norm)
in the space of permutation matrices. In this context, let’s define the matching operator M (-) as the
one that returns the solution of the assignment problem:

M(X) = PTX).
(X) = arg max trace ( ) (6)

Likewise, we define M () as a related operator, but changing the feasible space by the Birkhoff
polytope:
M(X)= t PTX). 7

(X) = arg [max trace ( ) 7
Notice that in general M (X), M (X) might not be unique matrices, but a face of the Birkhoff
polytope, or a set of permutations, respectively (see Lemma 2 for details). In any case, the relation
M(X) € M(X) holds by virtue of Birkhoff’s theorem, and the fundamental theorem of linear
programming.

Now we state the main theorem of this work:

Theorem 1. For a doubly stochastic matrix P define its entropy as h(P) = —>_, . P; jlog (P, ;).

Then, one has,
S(X/7) = arg nax trace(PT X) + Th(P). (8)
€bn

Now, assume also the entries of X are drawn independently from a distribution that is absolutely
continuous with respect to the Lebesgue measure in R. Then, almost surely the following convergence
holds:

M(X)= lim S(X/7). )
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We divide the proof of Theorem 1 in three steps. First, in Lemma 1 we state a relation between
S(X/7) and the entropy regularized problem in equation (8). Then, in Lemma 2 we show that under
our stochastic regime, uniqueness of solutions holds. Finally, in Lemma 3 we show that in this
well-behaved regime, convergence of solutions holds. states that and Lemma 2b endows us with the
tools to make a limit argument.

A.1.1 Intermediate results for Theorem 1

Lemma 1:
S(X/7) = arg max trace(P' X) + 7h(P).
PeBn

Proof: We first notice that the solution P, of the above problem exists, and it is unique. This is a
simple consequence of the strict concavity of the objective (recall the entropy is strictly concave [Rao
(1984)).

Now, let’s state the Lagrangian of this constrained problem
L(a, B, P) = trace(PTX) + 7h(P) + o' (Ply — 1n) + BT (PT1x — 1n),
It is easy to see, by stating the equality L/OP = 0 that one must have for each i, j,
pid = exp(a; /T — 1/2) exp(X; ;/7) exp(B; /T — 1/2),

in other words, P, = D;exp(X; ;/7)D, for certain diagonal matrices D1, Do, with positive
diagonals. By Sinkhorn’s theorem, and our definition of the Sinkhorn operator, we must have that
S(X/7)=Pr.

Lemma?2: Suppose the entries of X are drawn independently from a distribution that is absolutely

continuous with respect to the Lebesgue measure in R. Then, almost surely, M (X) = M(X) is a
unique permutation matrix.

Proof: This is a known result from sensibility analysis on linear programming which we prove for
completeness. Notice first that the problem in (2) is a linear program on a polytope. As such, by
the fundamental theorem of linear program, the optimal solution set must correspond to a face of



the polytope. Let F be a face of By of dimension > 1, and take P, P» € F, P; # P». If Fis an
optimal face for a certain X r, then X7 € {X : trace(PL X) = trace(P] X)}. Nonetheless, the
latter set does not have full dimension, and consequently has measure zero, given our distributional
assumption on X . Repeating the argument for every face of dimension > 1 and taking a union bound
we conclude that, almost surely, the optimal solution lies on a face of dimension 0, i.e, a vertex. From
here uniqueness follows.

Lemma 3 Call P; the solution to the problem in equation[8] i.e. P, = P-(X) = S(X/7). Under
the assumptions of Lemma 2, P, — Py whenif 7 — 0.

Proof Notice that by Lemmas 1 and 2, P, is well defined and unique for each 7 > 0. Moreover,
at 7 = 0, Py = M(X) is the unique solution of a linear program. Now, let’s define f.(-) =
trace(-" X) + Th(-). We observe that fo(P;) — fo(Pp). Indeed, one has:

fo(Po) — fo(Pr) = trace(Py X) — trace(P] X)
= trace(R} X) = f+(P,) +Th(P,)
< trace(Py X) — fr(Py) 4+ Th(P;)
< 7 (h(Pr) = h(P))
< 7 max h(P).
PeBn

From which convergence follows trivially. Moreover, in this case convergence of the values implies
the converge of P;: suppose P, does not converge to Fy. Then, there would exist a certain J and
sequence 7, — 0 such that || P, — Pyl > ¢. On the other hand, since P, is the unique maximizer of
an LP, there exists £ > 0 such that fy(Py) — fo(P) > € whenever ||P — Py|| > d, P € By. This
contradicts the convergence of fo(P, ).

A.1.2 Proof of Theorem 1

The first statement is Lemma 1. Convergence (equation[J) is a direct consequence of Lemma 3, after
noticing P, = S(X/7) and Py = M (X).

A.2 Relation to softmax

Finally, we notice that all of the above results can be understood as a generalization of the well-known
approximation result arg max; 2; = lim,_,g+ softmax(xz/7). To see this, treat a category as a
one-hot vector. Then, one has

AIgMAX T; = arg Wax (e, x), (10)
ecSN

where S,, is the probability simplex, the convex hull of the one-hot vectors (denoted #,,). Again, by
the fundamental theorem of linear algebra, the following holds

arg max x; = arg max (e, x). (11
i ecHN

On the other hand, by a similar (but simpler) argument than of the proof of theorem 4 one can easily
show that

exp(z/7) arg max(e, z) + Th(z), (12)

> exp(z; /1) €Sy
where the entropy A(-) is not defined as h(z) = — Y. | ; log(z;)

softmax(z/T) =

10
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