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Summary

Overarching goal
I State and infer Bayesian hierarchical models for the activity in C.elegans combining

information (calcium traces) from several worms.
I This is possible as C.elegans nervous system is stereotypical, neurons and

connectome don’t change across individuals.
Challenge
I If neural identity is known for each trace, one can apply standard Bayesian

methodology.
I In practice, laborious human supervision is needed to match recorded traces to

canonical neural identities (i.e. names).
Our contribution
I We developed three methods for learning latent matchings. These can be used in

variational inference (VI) to jointly estimate a dynamical system and the matching
between traces and true neural identities.

I Potentially it may serve to automatize the matching procedure.
I Our method outperforms standard MCMC samplers for inferring permutations.

Future work
I We used real connectome and position information. In the future we plan to use real

traces.
I Two new levels of complexity: partially observed brain recordings, more sophisticated

dynamical systems.

Model

Simple linear autoregressive model for neural dynamics,

Ỹ (j)
t = (W � A)Ỹ (j)

t−1 + ε
(j)
t , (1)

where W ∈ RN×N is the weight matrix (gaussian prior); A ∈ {0,1}N×N is the
connectome; ε(j)t ∼ N (0, σ2I); and Ỹ (j)

t ∈ RN is the measured neural activity at time t in
worm j . The catch is that Ỹ (j)

t is assumed to be in canonical order; i.e. in the same
order as the rows and columns of W and A. We actually observe,

Y (j)
t = P(j)Ỹ (j)

t . (2)

We aim to perform posterior inference of p({W ,P(j)} |A, {Y (j)}).

The permutations are constrained by side information: we use neural position along
the worm’s body to constrain the possible neural identities for a given recorded neuron.
We only allow an observed neuron to be mapped to a known identity if the observed
location is within η of the expected location.

Experimental setup
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Figure:

Hierarchical Bayesian framework. A Adjacency matrix (connectome) A from [11]. We wish to infer the
corresponding weight matrix W . B We know the typical locations of the neurons [12, 8]. We constrain
possible assignments to neuron identities within η of the observed location. C These constraints are

represented as a matrix C(j) for worm j specifying possible assignments of observed neurons to identities.
D To infer the weights, we must first infer the permutation P(j) that matching observed neurons to the set

of known identities. E The observed data is a matrix Y (j) with non-canonical order.

Three reparameterizations for permutations

We extend to permutations the Concrete or Gumbel softmax relaxations [2, 9] in three
different ways. In all relaxations we are concerned with BN, the Birkhoff polytope or set
of doubly-stochastic matrices.

Stick-Breaking and Rounding

Our stick-breaking construction generalizes from the simplex [6] to the Birkhoff
polytope. For the rounding construction, we start with a noise distribution and force it to
be close to permutation matrices by rounding them towards the extreme-points of BN.
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Figure: Rounding and Stick-breaking transformations of noise, and relation to constructions in the simplex

Gumbel-Sinkhorn (G.S) distribution

We use the Sinkhorn operator S(·), the successive row and column normalization of a
matrix. This approximates the choice of a permutation M(X ); i.e.
M(X ) = limτ→0 S(X/τ ). By adding Gumbel noise we conceive the Gumbel Matching
distribution and its approximation, the G.S. distribution.
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Figure: Matching and Sinkhorn operators, and the Gumbel-Matching and Gumbel-Sinkhorn distributions.

Results

We compared against: (i) naı̈ve variational inference, where we do not enforce the
constraint that P(j) be a permutation; (ii) MCMC, where we alternate between sampling
from the conditionals of W (Gaussian) and P(j), from which one can sample by
proposing local swaps, as described in [1], and (iii) MAP estimation.

Table: Accuracy in the C.elegans neural identification problem, for varying mean number of candidate neurons (10, 30, 45, 60)
and number of worms.

10 30 45 60
1 worm 4 worms 1 Worm 4 worms 1 worm 4 worms 1 worms 4 worms

NAIVE VI .34 .32 .16 .16 .13 .12 .11 .12
MAP .34 .32 .17 .17 .14 .13 .13 .12
MCMC .34 .65 .18 .28 .14 .17 .13 .15
VI .79 .94 .4 .69 .25 .51 .21 .44

Table: Accuracy in inferring true neural identity for different of proportion of known neurons and η.

40.% 30.% 20.% 10.%
η = 0.1 η = 0.2 η = 0.1 η = 0.2 η = 0.1 η = 0.2 η = 0.1 η = 0.2

Naive VI .43 .41 .33 .31 .23 .22 .12 .1
MAP .42 .41 .33 .32 .23 .22 .12 .11
MCMC .85 .80 .52 .46 .3 .26 .15 .12
VI .97 .96 .92 .84 .74 .58 .44 .23
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