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Summary

Overarching goal:
I To develop methods for the analysis of large-scale

electrophisiological recordings (MEAs) with electrical stimulation.
I Potentially a powerful tool for closed-loop feedback control and

perturbation of neural networks.
Context: retina
I Interest in understanding how retinal ganglion cells (RGC)

respond to electricity.
I Useful for the development of high-resolution prosthetic devices

[2].
I Here we aim to extend the model-based spike sorting [1]

framework to the context of electrical stimulation.
I Despite the context specificity, developed methods should extend

to other settings.
Challenge
I Electrical stimulation induces transient distortions, or artifacts, on

the recordings.
I With the presence of artifacts, it is difficult to tell which are the

spike and artifact contributions to data.
I Existing artifact subtraction methods cannot handle with short

latency or low time variability in spikes, the norm in this context.
I Current method: hybrid human-automatic, does not scale.

Strategy
I Algorithm is based on a generative model of data. Artifact

structure and response properties of RGC are encoded in suitable
priors.

I We leverage an experimental design and from the availability of
action potentials shapes obtained from spike sorting in the
absence of electrical stimuli.

Results
I We demonstrated the plausibility of automating spike sorting in

electrical stimulation paradigms.
I Next step: extend this framework to account for spatial structure.

Experimental Setup
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I Visual stimuli to obtain action potential templates.

I Triphasic current pulses with relative amplitudes of 2:-3:1 and
phase widths of 50s were applied to electrodes. Currents ranged
between 0.20µA and 4.79µA

I In some experiments tetrodotoxin (TTX) was perfused into the
retina to inhibit all action potentials in order to directly measure
the stimulus artifact in a retinal preparation.

I Experimental design: given an stimulating electrode, for each
current amplitude j = 1, . . . J (also called conditions) there are Ij
recordings of responses, or trials. Consecutive amplitudes
increase: aj+1 = faj .

I We refer to this collection of trials as an amplitude series (AS), the
minimal data unit for which the algorithm is applied.

Templates and electrical image from visual stimuli
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Figure: Voltage patterns recorded from four neurons in the absence of electrical
stimulation are distinct and can be used as templates for spike sorting
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Figure: Electrical image of action potential at a fixed time

Stimulus Artifact

I Any contribution to data beyond noise and spikes of targeted
RGCs.

I Properties: continuous in time, magnitude increases with
amplitude of stimulus, stabilizes eventually. Also, it affects
primarily the stimulating electrode and the effect decreases with
distance to the stimulating electrode.

I Made up by hardware [3] and axonal contributions.
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Figure: Artifact estimates (mean voltage across trials). Each colored trace
corresponds to a different amplitude of stimulation (equivalently, condition)

Activation curves
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Activation Curves (Logistic Regression)

Figure: Logistic Regression fit of activation curves for many AS. Spike probabilities
increase smoothly as a function of stimulus amplitude.

Why spike sorting is hard: an example
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Electrode 1, condition j=9
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Electrode 1, condition j=13
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time (ms)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

re
c
o

rd
e

d
 d

a
q

s

-550

-500

-450

-400

-350

-300

-250

-200

Electrode 2, condition j=15
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Figure: Examples of recordings for an AS with two electrodes (one stimulating) and
two neurons. First and second rows show recordings in the stimulating and
non-stimulating electrodes, respectively. Only red traces contain spikes

Generative Model

I Observed voltage Y i ,j
t ,e

Y i ,j
t ,e = Aj

t ,e +
N∑

n=1

(Knsi ,j
n )t ,e + ε

i ,j
t ,e ,

ε
i ,j
t ,e
σe,j
∼ N (0,1) i.i.d.

I t =time, e =electrode, j =condition(stimulus), i =trial, A =Artifact.
sn = are binary vectors indicating spike times for neuron n. Kn
encodes action potentials at all possible times

s = (0,0,0,0)
Ks

=⇒

s = (0,1,0,0)
Ks

=⇒

s = (0,0,1,0)
Ks
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I Equivalently,

p(Y |A, s,Σ) ∝ exp
(
−1

2
(Y − XA− Ks)tΣ−1(Y − XA− Ks)

)
.

I Gaussian prior for the artifact to account for its structure (D is a
Brownian-motion-like inverse-covariance matrix) and to exploit
conjugacies:

p(A|λ) ∝ exp

(
−1

2

∑
e

λeAt
eDeAe

)
I Spike probability increases smoothly with stimulus amplitude

(r i ,j
n ≡

∑
l si ,j

n (l) indicate presence or absence of spikes):

p(r i ,j
n = 1|αn) =

1

1 + exp
(
−α0

n − jα1
n

)
I Non-informative prior for the variances:

p(Σ) = p(σ2
e,j ,e = 1 . . .E , j = 1 . . . J) ∝

∏
e,j

1
σ2

e,j

Algorithm Description

Main idea
I Inferences based on the (multimodal) posterior:

p(s,A,Σ, α|Y , λ) ∝ p(Y |s,A,Σ)p(Σ)p(r |α)p(A|λ)

Step One: Initialization
I Solve a similar quadratic problem, a ’relaxation’ where spikes can

be probability vectors and Artifact has a polynomial structure.
I Compute λ maximizing the likelihood of obtaining the above

’initial’ artifact.
Step Two: Gibbs sampler
I Sample from the conditionals of s,A,Σ and α given the rest and

data.
I Repeat until s does not change (local maximum of the posterior)

Step Three: Post-processing
I Evaluate plausibility of the current solution based on residuals

(e.g. compare ’empirical’ activation curves with logistic regression.
I If lack of fit is detected, artifact is interpolated at the conditions

where fit is the worst. Then, Gibbs sample again.

Algorithm Example
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Initial activation curves

Stimulus amplitude (µA)
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Activation after Gibbs sampling

Stimulus amplitude (µA)
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Activation after after heuristic
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Figure: Top: activation curves after different stages. Bottom: Artifact estimates at
different stages of algorithm. Green circle denotes detected false positive, corrected
via artifact interpolation (yellow-ish trace)

Results

Occurrence Performance
Type (%) Accuracy (%) Sensitivity (%) Specificity (%)

Spikes 9.66 98.16± .02 90.03± .19 99.03± .02
Activation 44.1 93.4± 1.8 93.3± 2.8 93.5± 2.4

Table: Spike-by-spike and AS-by-AS results. Dataset: 710 AS, 924,118 trials, eight
retinal preparations. One neuron and electrode per AS
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Figure: Large-scale application: RGC spatial sensitivity to electrical stimuli

Extension: Gaussian process artifact model

I Artifact does possess a clearly defined spatial structure. We can
use that shared structure to estimate artifact.

I Instead of the ’naı̈ve’ brownian motion prior consider suitable
Kronecker products (to mantain tractability [4]) of non-stationary
Kernels.

I For example, K = Kt ⊗ Kr ⊗ Kj + σ2Id . Kt ,Kr can be
non-stationary extensions of the usual Matérn Kernels.
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