COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Introducing large-scale spike sorting for simultaneous electrical stimulation and recording

Gonzalo E. Mena¹*, Lauren E. Grosberg²*, Frederick Kellison-Linn², E.J. Chichilnisky² and Liam Paninski^{1,3}, 1. Department of Statistics, Columbia University; 2. Department of Neurosurgery and Hansen Experimental Physics Laboratory, Stanford University d; 3. Center for Theoretical Neuroscience and Grossman Center for the Statistics of Mind, Columbia University. (*these authors contributed equally to this work),

Summary

Overarching goal:

- To develop methods for the analysis of large-scale electrophisiological recordings (MEAs) with electrical stimulation.
- Potentially a powerful tool for closed-loop feedback control and perturbation of neural networks.

Context: retina

Stimulus Artifact

- Any contribution to data beyond noise and spikes of targeted RGCs.
- Properties: continuous in time, magnitude increases with amplitude of stimulus, stabilizes eventually. Also, it affects primarily the stimulating electrode and the effect decreases with distance to the stimulating electrode.

Algorithm Description

Main idea

- Inferences based on the (multimodal) posterior:
 - $p(s, A, \Sigma, \alpha | Y, \lambda) \propto p(Y | s, A, \Sigma) p(\Sigma) p(r | \alpha) p(A | \lambda)$

Step One: Initialization

Solve a similar quadratic problem, a 'relaxation' where spikes can

- Interest in understanding how retinal ganglion cells (RGC) respond to electricity.
- Useful for the development of high-resolution prosthetic devices
 [2].
- Here we aim to extend the model-based spike sorting [1] framework to the context of electrical stimulation.
- Despite the context specificity, developed methods should extend to other settings.

Challenge

- Electrical stimulation induces transient distortions, or artifacts, on the recordings.
- With the presence of artifacts, it is difficult to tell which are the spike and artifact contributions to data.
- Existing artifact subtraction methods cannot handle with short latency or low time variability in spikes, the norm in this context.
- Current method: hybrid human-automatic, does not scale.

Strategy

- Algorithm is based on a generative model of data. Artifact structure and response properties of RGC are encoded in suitable priors.
- We leverage an experimental design and from the availability of action potentials shapes obtained from spike sorting in the absence of electrical stimuli.

Results

- We demonstrated the plausibility of automating spike sorting in electrical stimulation paradigms.
- Next step: extend this framework to account for spatial structure.

Made up by hardware [3] and axonal contributions.

Figure: Artifact estimates (mean voltage across trials). Each colored trace corresponds to a different amplitude of stimulation (equivalently, condition)

Activation curves

Figure: Logistic Regression fit of activation curves for many AS. Spike probabilities increase smoothly as a function of stimulus amplitude.

Why spike sorting is hard: an example

be probability vectors and Artifact has a polynomial structure.

 Compute \u03c0 maximizing the likelihood of obtaining the above 'initial' artifact.

Step Two: Gibbs sampler

- Sample from the conditionals of s, A, Σ and α given the rest and data.
- ► Repeat until *s* does not change (local maximum of the posterior)

Step Three: Post-processing

- Evaluate plausibility of the current solution based on residuals (e.g. compare 'empirical' activation curves with logistic regression.
- If lack of fit is detected, artifact is interpolated at the conditions where fit is the worst. Then, Gibbs sample again.

Algorithm Example

Experimental Setup

- Visual stimuli to obtain action potential templates.
- Triphasic current pulses with relative amplitudes of 2:-3:1 and phase widths of 50s were applied to electrodes. Currents ranged between 0.20µA and 4.79µA
- In some experiments tetrodotoxin (TTX) was perfused into the retina to inhibit all action potentials in order to directly measure the stimulus artifact in a retinal preparation.
- Experimental design: given an stimulating electrode, for each current amplitude j = 1, ..., J (also called conditions) there are I_j recordings of responses, or trials. Consecutive amplitudes increase: $a_{j+1} = fa_j$.
- We refer to this collection of trials as an amplitude series (AS), the minimal data unit for which the algorithm is applied.

Templates and electrical image from visual stimuli

Figure: Examples of recordings for an AS with two electrodes (one stimulating) and two neurons. First and second rows show recordings in the stimulating and non-stimulating electrodes, respectively. Only red traces contain spikes

Generative Model

• Observed voltage
$$Y_{t,e}^{i,j}$$

 $Y_{t,e}^{i,j} = A_{t,e}^{j} + \sum_{n=1}^{N} (K_n s_n^{i,j})_{t,e} + \epsilon_{t,e}^{i,j}, \quad \frac{\epsilon_{t,e}^{i,j}}{\sigma_{e,j}} \sim \mathcal{N}(0,1) \quad i.i.d.$

t =time, e =electrode, j =condition(stimulus), i =trial, A =Artifact.
 s_n = are binary vectors indicating spike times for neuron n. K_n encodes action potentials at all possible times

different stages of algorithm. Green circle denotes detected false positive, corrected via artifact interpolation (yellow-ish trace)

Results				
	Occurrence	Performance		
Туре	(%)	Accuracy (%)	Sensitivity (%)	Specificity (%)
Spikes	9.66	$98.16\pm.02$	$90.03\pm.19$	$99.03\pm.02$
Activation	44.1	93.4 ± 1.8	93.3 ± 2.8	93.5 ± 2.4

Table: Spike-by-spike and AS-by-AS results. Dataset: 710 AS, 924,118 trials, eight retinal preparations. One neuron and electrode per AS

Figure: Large-scale application: RGC spatial sensitivity to electrical stimuli

Extension: Gaussian process artifact model

- Artifact does possess a clearly defined spatial structure. We can use that shared structure to estimate artifact.
- Instead of the 'naïve' brownian motion prior consider suitable
 Kropocker products (to montain tractability [4]) of page stationers

Figure: Voltage patterns recorded from four neurons in the absence of electrical stimulation are distinct and can be used as templates for spike sorting

Figure: Electrical image of action potential at a fixed time

Equivalently,

$$p(Y|A, s, \Sigma) \propto \exp\left(-\frac{1}{2}(Y - XA - Ks)^{t}\Sigma^{-1}(Y - XA - Ks)
ight).$$

Gaussian prior for the artifact to account for its structure (D is a Brownian-motion-like inverse-covariance matrix) and to exploit conjugacies:

• Spike probability increases smoothly with stimulus amplitude $(r_n^{i,j} \equiv \sum_l s_n^{i,j}(l)$ indicate presence or absence of spikes):

$$p(r_n^{i,j} = 1 | \alpha_n) = \frac{1}{1 + \exp\left(-\alpha_n^0 - j\alpha_n^1\right)}$$

Non-informative prior for the variances:

$$p(\Sigma) = p(\sigma_{e,j}^2, e = 1 \dots E, j = 1 \dots J) \propto \prod_{e,j} \frac{1}{\sigma_{e,j}^2}$$

Kronecker products (to mantain tractability [4]) of non-stationary Kernels.

► For example, $K = K_t \otimes K_r \otimes K_j + \sigma^2 I_d$. K_t, K_r can be non-stationary extensions of the usual Matérn Kernels.

Pillow J. et al., A Model-Based Spike Sorting Algorithm for Removing Correlation Artifacts in Multi-Neuron Recordings, PloS ONE, 2013.

- Jepson, L. et al. Focal electrical stimulation of major ganglion cell types in the primate retina for the design of visual prostheses, *The Journal of Neuroscience*, 2013.
- Hottowy, P. et al., Properties and application of a multichannel integrated circuit for low-artifact, patterned electrical stimulation of neural tissue, *J. neural. eng.* 2012.
- Gilboa, E. et al., Scaling multidimensional inference for structured Gaussian processes, Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2015.

Acknowledgements

L.E.G. was funded by NIH Grant 1F32EY025120 and E.J.C. by NEI grant EY021271. Thanks to John Cunningham for

usoful discussions

References

Email: gem2131@columbia.edu