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Summary

Overarching goal:
I To develop methods for the analysis of large-scale electrophysiological recordings in MEAs with

electrical stimulation, a potentially powerful tool for closed-loop feedback control and
perturbation of neural networks.

Context: retina
I Interest in understanding how retinal ganglion cells (RGC) respond to electricity.
I Useful for the development of high-resolution prostheses [1].
I Despite the context specificity, developed methods should extend to other settings.

Challenge
I Electrical stimulation induces transient distortions, or artifacts, on the recordings. Their

magnitude is much greater than of spikes, making separation difficult [2].
I Existing artifact subtraction methods cannot handle with short latency or low time variability in

spikes, the norm in our context. Human labeling does not scale!
Strategy
I We propose a probabilist generative model: data is made up by the superposition of spikes,

artifact and noise. The artifact is highly structured and we represent this structure by imposing a
Gaussian Process (GP) prior, enabling a fast and scalable implementation [3].

Results
I We developed an algorithm that achieves an accuracy greater than 99% on a large-scale

dataset (512 electrodes, ∼ 1.000.000 spikes and around 15 retinal preparations). This algorithm
admits a simplification that is easier to code and faster, but with lower accuracy guarantees.

I We illustrate how to apply the algorithm to infer quantities relevant for closed-loop experiments.
Important!!
I The corresponding manuscript is currently under review, and the pre-print is available in the

bioRxiv/Neuroscience under the title Electrical Stimulus Artifact Cancellation and Neural Spike
Detection on Large Multi-Electrode Arrays

Experimental Setup

I Experimental design: stimulation is available for a series of
stimulus of increasing magnitude. Some repetitions are
available for the same stimulus.

I Visual stimulation allows to infer action potentials.
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Figure: Action potential templates or Electrical Images of many cells obtained after visual stimulation.

Why spike sorting can be hard here?
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Figure: Inferring the activity of two neurons can be hard. A Activation curves. B a stimulating electrode:
templates (top), raw traces (center) and artifact-subtracted traces (or residuals, bottom) for different repetitions
of three increasing stimulus. C same as B but on a different, non-stimulating electrode.

Stimulus Artifact

I Artifacts, although unknown, are highly structured in time, space and magnitude of stimulation
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Figure: TTX experiments. A electrode-wise, artifact magnitude increases with stimulus strength and it it
oscilates more wildly in stimulating(s) electrode(s). B artifact has a characteristic spatio-temporal decay in the
non-stimulating electrodes.

Math and algorithm details

I Recorded traces Y = (Y )t ,e,j ,i are stacks of movies (t=times, e= space, j =stimulus magnitude
and i= stimulus repetition).

I Linear decomposition: Y = A + s + ε, i.e., Yt ,e,j ,i = At ,e,j + st ,e,j ,i + εt ,e,j
I Neural activity s decomposes into individual activities s =

∑n
i sn, each expressed as a

time-shifted Electrical Image.
I Prior on artifact p(A) ∼ GP(0,K ) with K = ρKt ⊗ Ke ⊗ Kj + φ2I acts as a (structured)

regularization term to further constrain the problem.
I The Kronecker product ⊗ leads to tractable computations. Each kernel is expressed as a

smoothing kernel (e.g. Matérn) times a gamma envelope.

Algorithm Summary
I Input: Traces Y = (Yj)j=1,...,J and Electrical

images of the n targeted neurons.
I Step 0: Estimation of Kernel Hyperparams:

translates into maximizing a likelihood.
I Step 1: For each of the J stimuli:

I Construct an estimate of the artifact by extrapolating
from previous stimulus (using a GP extrapolation
formula).

I Alternate between estimation of the artifact (using
the GP filtering formula) and estimation of neural
activity (template matching [4]) until no further
changes are observed.

I Output: Estimates of artifact Â and neural
activity ŝn for each neuron.

Figure: Inferred Kernels (top) and their corresponding
diagonals (bottom).
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Figure: Example of the (correct) inference of an artifact and three spikes.
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Figure: By comparison to human annotated data, we establish very low error rates, unlike a reference estimator
based on an alternative method.

Application I: local analysis
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Figure: Analysis of responses of neurons in a
neighborhood of the stimulating electrode. Grey dots
indicate results of human analysis.
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Figure: Analysis of differential responses to single and
two-electrode stimulation.

Application II: large-scale analysis
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Figure: Electrical receptive field of a neuron to
stimulation at different sites.
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Figure: Large-scale analysis of the stimulation of a
population of parasol cells.
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