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1 Main result

The following proposition allow us to link the matching by propensity score and weighted least
squares methods.
Proposition: Consider the following estimator for the ATE
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where p; are the treatment probabilities or propensity scores (assumed known). Then,
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Proof: By elementary calculus, to solve the above program we have to set the derivatives of the
objetive (name it f) equal to zero. Upon calling 7; = 2= L+ ( ) we obtain: (using the relations
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Multiplying (1) by >0 2 o5 (2) by > .7 and taking the difference between the two resulting
equations we obtain
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which after rearrangement of the terms reduces to

~[=1-— D, "\ D, " 1-D; [<~_.D; "D, [<~.1-D;
(E52) (B0) -2 (B) S (Bn)

=1 im1 i i=1 i=1

from which the result follows.

This estimator is similar to the classical “matching by propensity” score one for the ATE (also
known as the Horvitz-Thompson),
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The difference is that Horvitz-Thompson is based only on relations of the type E(Y!) = E(Y'D/p(X))
while 7 also "uses’ the fact that F(D/p(x)) = 1, leading to gains in variance for finite samples at
the expense of some bias [AS13] (more on this below).

2 Commentary

At this point one may ask: in there any way to express a causal relation (a ’generative model’) so
that 7 is obtained as the WLS solution to that relation in some sense? This question comes from
the observation that the naive estimator £, (Y;|D = 1) — E,(Y;|D = 0) is the OLS solution to the
set of equations defined by

Y =a+ 8D +e. (5)

In the context of a randomized experiment (no possibility of a omitted variable bias) the above
estimator will be unbiased for the ATE, in virtue of the Gauss-Markov theorem.

Unfortunately, the above reasoning cannot be easily extended to account for a more general,
non-randomized situation. Indeed, in the more general case one may try to state a (tautological)
relation as the following,
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And then appeal to the Gauss-Markov theorem or its generalization, the Aitken’s theorem [Ait36]
to show that the corresponding WLS estimator is unbiased for p; — p1, the ATE. However, this is
impossible as 7, also known in the literature as the Hajek ratio estimator, although consistent, is
biased (by the tightness of Jensen’s inequality).

Then, a ’trickier’ decomposition would be needed. If that decomposition was possible the term
that goes with D in equation (4) must be the expectation of /i, and the residual error € should be
one such that its expected variance given D is equal to y 7; '

That does not look trivial.
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