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1 Main result
The following proposition allow us to link the matching by propensity score and weighted least
squares methods.
Proposition: Consider the following estimator for the ATE

τ̂ = β̂, (α̂, β̂) = argmin
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where pi are the treatment probabilities or propensity scores (assumed known). Then,
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Proof : By elementary calculus, to solve the above program we have to set the derivatives of the
objetive (name it f ) equal to zero. Upon calling γi = Di

pi
+ (1−D)

1−pi we obtain: (using the relations
DiDi = Di and Di(1−Di) = 0)
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Multiplying (1) by
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equations we obtain
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which after rearrangement of the terms reduces to
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from which the result follows.

This estimator is similar to the classical ”matching by propensity” score one for the ATE (also
known as the Horvitz-Thompson),

ˆτHT =
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n
−
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n

.

The difference is that Horvitz-Thompson is based only on relations of the typeE(Y 1) = E(Y 1D/p(X))
while τ̂ also ’uses’ the fact that E(D/p(x)) = 1, leading to gains in variance for finite samples at
the expense of some bias [AS13] (more on this below).

2 Commentary
At this point one may ask: in there any way to express a causal relation (a ’generative model’) so
that τ̂ is obtained as the WLS solution to that relation in some sense? This question comes from
the observation that the naive estimator En(Yi|D = 1)− En(Yi|D = 0) is the OLS solution to the
set of equations defined by

Y = α + βD + ε. (5)

In the context of a randomized experiment (no possibility of a omitted variable bias) the above
estimator will be unbiased for the ATE, in virtue of the Gauss-Markov theorem.

Unfortunately, the above reasoning cannot be easily extended to account for a more general,
non-randomized situation. Indeed, in the more general case one may try to state a (tautological)
relation as the following,

Y = µ0 +D(µ1 − µ0) + εD, εD = Dν1 + (1−D)ν0, µi = E(Y i), νi = Y i − µi (6)

And then appeal to the Gauss-Markov theorem or its generalization, the Aitken’s theorem [Ait36]
to show that the corresponding WLS estimator is unbiased for µ1 − µ0, the ATE. However, this is
impossible as τ̂ , also known in the literature as the Hajek ratio estimator, although consistent, is
biased (by the tightness of Jensen’s inequality).
Then, a ’trickier’ decomposition would be needed. If that decomposition was possible the term
that goes with D in equation (4) must be the expectation of µ̂, and the residual error εD should be
one such that its expected variance given D is equal to y γ−1

i .
That does not look trivial.
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