
The piranha problem: Large effects swimming in a small pond

Christopher Tosh∗, Philip Greengard†, Ben Goodrich‡, Andrew Gelman§, Aki Vehtari¶, and
Daniel Hsu‖

4 Nov 2022

Abstract

In some scientific fields, it is common to have certain variables of interest that are of particular
importance and for which there are many studies indicating a relationship with different explanatory
variables. In such cases, particularly those where no relationships are known among the explanatory
variables, it is worth asking under what conditions it is possible for all such claimed effects to exist
simultaneously. This paper addresses this question by reviewing some theorems from multivariate analysis
showing that, unless the explanatory variables also have sizable dependencies with each other, it is
impossible to have many such large effects. We discuss implications for the replication crisis in social
science.

1 Background

In this work, we discuss an inevitable consequence of having a stable system in which many explanatory
variables have large effects: these variables must have large interactions which will be unlikely to cancel
either other out to the extent required for general stability or predictability. We call this type of result a
“piranha theorem” (Gelman, 2017), the analogy being the folk wisdom that if one has a large number of
piranhas (representing large effects) in a single fish tank, then one will soon be left with far fewer piranhas
(Anonymous, 2021). If there is some outcome for which a large number of studies demonstrate effects of
novel explanatory variables, then we can conclude that either some of these effects are smaller than claimed
or that multiple the explanatory variables are essentially measuring the same phenomenon.

Identifying and measuring the effects of explanatory variables are central problems in statistics and drive
much of the world’s scientific research. Despite the substantial effort spent on these tasks, there has been
comparatively little work on addressing a related question: how many explanatory variables can have large
effects on an outcome? The present work follows up on Cornfield et al. (1959) and Ding and Vanderweele
(2014), considering quantitative constraints in the effects of additional variables.

Consider, by way of example, the problem of explaining voters’ behaviors and choices. A multitude of
researchers have identified and tested the effects of internal factors such as fear, hope, pride, anger, anxiety,
depression, and menstrual cycles (Parker and Isbell, 2010; Ladd and Lenz, 2011; Obschonka et al., 2018;
Durante et al., 2013), as well external factors such as droughts, shark attacks, and the performance of
local college football teams (Achen and Bartels, 2002; Healy et al., 2010; Fowler and Hall, 2018; Fowler
and Montagnes, 2015). Many of these findings have been questioned on methodological grounds (Fowler
and Montagnes, 2015; Fowler and Hall, 2018; Clancy, 2012; Gelman, 2015a), but they remain in the public
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discourse (e.g. Krugman, 2021). Beyond the details of these particular studies, it is natural to ask if all of
these effects can be real in the sense of representing patterns that will consistently appear in the future.

The implication of the published and well-publicized claims regarding ovulation and voting, shark attacks
and voting, college football and voting, etc., is not merely that some voters are superficial and fickle. No,
these papers claim that seemingly trivial or irrelevant factors have large and consistent effects, and this runs
into the problem of interactions. For example, the effect on your vote of the local college football team losing
could depend crucially on whether there’s been a shark attack lately, or on what’s up with your hormones
on election day. Or the effect could be positive in an election with a female candidate and negative in an
election with a male candidate. Or the effect could interact with your parents’ socioeconomic status, or
whether your child is a boy or a girl, or the latest campaign ad, or any of the many other factors that have
been studied in the evolutionary psychology and political psychology literatures. If such effects are large,
it is necessary to consider their interactions, because the average effect of a factor in any particular study
will depend on the levels of all the other factors in that environment. Similarly, Mellon (2020) has argued
against naive assumptions of causal identification in economics, where there is a large literature considering
rainfall as an instrumental variable, without accounting for the implication that these many hypothesized
causal pathways would, if taken seriously, represent violations of the assumption of exclusion restriction.

These concerns are particularly relevant in social science, where the search for potential causes is open-
ended. Our work here is partly motivated by the replication crisis, which refers to the difficulties that many
have had in trying to independently verify established findings in social and biological sciences (Ioannidis,
2005). Many of the explanations for the crisis have focused on various methodological issues, such as re-
searcher degrees of freedom (Simmons et al., 2011), underpowered studies (Button et al., 2013), and data
dredging (Head et al., 2015). In some cases, solutions to these issues have also been proposed, notably good
practice guidelines for authors and reviewers (Simmons et al., 2011) and preregistration of studies (Miguel
et al., 2014). Beyond the criticisms of practice and suggested fixes, these works have also provided much
needed statistical intuition. Groups of studies that claim to have found a variety of important explana-
tory variables for a single outcome should be scrutinized, particularly when the dependencies among the
explanatory variables has not been investigated.

This article collects several mathematical results regarding the distributions of correlations or coefficients,
with the aim of fostering further work on statistical models for environments with a multiplicity of effects.
What is novel in this paper is not the theorems themselves but rather viewing them in the context of trying
to make sense of clusters of research studies that claim to have found large effects.

There are many ways to capture the dependence among random variables, and thus we should expect
there to be a correspondingly large collection of piranha theorems. We formalize and prove piranha theorems
for correlation, regression, and mutual information in Section 4. These theorems illustrate the general
phenomena at work in any setting with multiple causal or explanatory variables.

2 Piranhas and butterflies

A fundamental tenet of social psychology and behavioral economics, at least how it is presented in the news
media, and taught and practiced in many business schools, is that small “nudges,” often the sorts of things
that we might not think would affect us at all, can have big effects on behavior.

The model of the world underlying these claims is not just the “butterfly effect” that small changes can
have big effects; rather, it’s that small changes can have big and predictable effects, a sort of “button-pushing”
model of social science, the idea that if you do A, you can expect to see B.

In response to this attitude, we present the piranha argument, which states that there can be some large
and predictable effects on behavior, but not a lot, because, if there were, then these different effects would
interfere with each other, a “hall of mirrors” of interactions (Cronbach, 1975) that would make it hard to
detect any consistent effects of anything in observational data.

In a similar vein, Cook (2018) writes:

The butterfly effect is the semi-serious claim that a butterfly flapping its wings can cause a
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tornado half way around the world. It’s a poetic way of saying that some systems show sensitive
dependence on initial conditions, that the slightest change now can make an enormous difference
later . . . Once you think about these things for a while, you start to see nonlinearity and potential
butterfly effects everywhere. There are tipping points everywhere waiting to be tipped!

But, Cook continues, it’s not so simple:

A butterfly flapping its wings usually has no effect, even in sensitive or chaotic systems. You
might even say especially in sensitive or chaotic systems. Sensitive systems are not always
and everywhere sensitive to everything. They are sensitive in particular ways under particular
circumstances and can otherwise be resistant to influence. . . . The lesson that many people draw
from their first exposure to complex systems is that there are high leverage points, if only you
can find them and manipulate them. They want to insert a butterfly to at just the right time
and place to bring about a desired outcome. Instead, we should humbly evaluate to what extent
it is possible to steer complex systems at all. We should evaluate what aspects can be steered
and how well they can be steered. The most effective intervention may not come from tweaking
the inputs but from changing the structure of the system.

Whether thinking in terms of butterflies or piranhas, we can think of an infinite series of potential effects,
which imply that only a few can be large and also create the possibility of interactions that, after some point,
overwhelm any main effects.

3 Example: hypothesized effect sizes in social priming

We demonstrate the possibility of quantitative analysis of the piranha problem using the example of an
influential experiment from 1996 reported that participants were given a scrambled-sentence task and then
were surreptitiously timed when walking away from the lab (Bargh et al., 1996). Students whose sentences
included elderly-related words such as “worried,” “Florida,” “old,” and “lonely” walked an average of 13%
more slowly than students in the control condition, and the difference was statistically significant.

This experimental claim is of historical interest in psychology in that, despite its implausibility, it was
taken seriously for many years (for example, “You have no choice but to accept that the major conclusions
of these studies are true” (Kahneman, 2011)), but it failed to replicate (Harris et al., 2013) and is no
longer generally believed to represent a real effect; for background see Wagenmakers et al. (2015). Now we
understand such apparently statistically significant findings as the result of selection with many researcher
degrees of freedom (Simmons et al., 2011).

Here, though, we will take the published claim at face value and also work within its larger theoretical
structure, under which weak indirect stimuli can produce large effects.

An effect of 13% on walking speed is not in itself huge; the difficulty comes when considering elderly-
related words as just one of many potential stimuli. Here are just some of the factors that have been
published in the social priming and related literatures as having large effects on behavior: male and female
hormones (Petersen et al., 2013; Durante et al., 2013), subliminal images (Bartels, 2014; Gelman, 2015b),
the outcomes of recent football games (Healy et al., 2010; Graham et al., 2022; Fowler and Montagnes, 2015,
2022), irrelevant news events such as shark attacks (Achen and Bartels, 2002; Fowler and Hall, 2018), a
chance encounter with a stranger (Sands, 2017; Gelman, 2018b), parental socioeconomic status (Petersen
et al., 2013), weather (Jessica L. Tracy, 2014; Gelman, 2018a), the last digit of one’s age (Alter and Hershfield,
2014; Kühnea et al., 2015), the sex of a hurricane name (Jung et al., 2014; Freese, 2014), the sexes of siblings
(Blanchard and Bogaert, 1996; Bogaert, 2006; Gelman and Stern, 2006), the position in which a person is
sitting (Carney et al., 2010; Cesario and Johnson, 2018), and many others. A common feature of these
examples is that the stimuli have no clear direct effect on the measured outcomes, and in many cases the
experimental subject is not even aware of the manipulation. Based on these examples, one can come up with
dozens of other potential stimuli that fit the pattern. For example, in addition to elderly-related words, one
could also consider word lengths (with longer words corresponding to slower movement), sounds of words
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(with smooth sibilance motivating faster walking), subject matter (sports-related words as compared to
sedentary words), affect (happy words compared to sad words, or calm compared to angry), words related to
travel (inducing faster walking) or invoking adhesives such as tape or glue (inducing slower walking), and so
on. Similarly, one can consider many different sorts of incidental events, not just encounters with strangers
but also a ringing phone or knocking at the door or the presence of a male or female lab assistant (which
could have a main effect or interact with the participant’s sex) or the presence or absence of a newspaper or
magazine on a nearby table, ad infinitum.

Now we can invoke the piranha principle. Imagine 100 possible stimuli, each with an effect of 13% on
walking speed, all of which could arise in a real-world setting where we encounter many sources of text, news,
and internal and external stimuli. If the effects are independent, then at any given time we could expect,
on the log scale, a total effect with standard deviation 0.5

√
100 log(1.13) = 0.61, thus walking speed could

easily be multiplied or divided by e0.61 = 1.8 based on a collection of arbitrary stimuli that are imperceptible
to the person being affected. And this factor of 1.8 could be made arbitrarily large by simply increasing the
number of potential primes.

It is outrageous to think that walking speed could be randomly doubled or halved based on a random
collection of unnoticed and essentially irrelevant stimuli—but that is the implication of the embodied cogni-
tion literature. It is basically a Brownian motion model in which the individual inputs are too large to work
out.

We can think of four ways to avoid the ridiculous conclusion. The first possibility is that the different
factors could interact or interfere in some way so that the variance of the total effect is less than the sum
of the variances of the individual components. Second, effects could be much smaller. Change those 13%
effects to 1% effects and you can get to more plausible totals, in the same way that real-world Brownian
oscillations are tolerable because the impact of each individual molecule in the liquid is so small. Third, one
could reduce the total number of possible influences. If there were only 10 possible stimuli rather than 100
or 1000 or more, then the total effect could fall within the range of plausibility. Fourth, there could be a
distribution of effects with a few large influences and a long tail of relatively unimportant factors, so that
the infinite sum has a reasonable bound.

All four of these options have major implications for the study of social priming and, more generally,
for causal inference in an open-ended setting with large numbers of potential influences. First, if large
interactions are possible, this suggests that stable individual treatment effects might be impossible to find:
a 13% effect of a particular intervention in one particular experiment might be −18% in another context or
+2% in the presence of some other unnoticed factor, and this in turn raises questions about the relevance of
any particular study. Second, if effects are much smaller than reported, this suggests that existing studies
are extremely underpowered (Button et al., 2013), so that published estimates are drastically overestimated
and often in the wrong direction (Gelman and Carlin, 2014), thus essentially noise. Third, a restriction of
the universe of potential stimuli would require an overhaul of the underlying theoretical framework in which
just about any stimulus can cause a noticeable change. For example, if we think there cannot be more
than five or ten large effects on walking speed, it would seem a stretch that unnoticed words in a sentence
scrambling test would be one of these special factors. Fourth, if the distribution of effects is represented by
a long series, most of whose elements are tiny, this implies a prior distribution with a spike near zero, which
in turn would result in near-zero estimated effect sizes in most cases. Our point is not that all effects are
zero but rather that in a world of essentially infinite possible causal factors, some external structure must
be applied in order to be able to estimate stable effects from finite samples.

4 Piranha theorems

In this section, we present piranha theorems for linear and nonlinear effects. We consider two different ways
of measuring linear effects. The first of these, correlation, is straightforward to interpret. We show that it is
impossible for a large number of explanatory variables to be correlated with some outcome variable unless
they are highly correlated with each other. The second examines linear regression coefficients. We show that
if a set of explanatory random variables is plugged into a regression equation, the `2-norm ‖β‖ of the least
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squares coefficient vector β can be bounded above in terms of (the eigenvalues of) the second-moment matrix
of the predictors. Thus, there can only be so many individual coefficients with a large magnitude. Finally, we
consider a general (nonlinear) form of dependency, mutual information, and present a corresponding piranha
theorem for that measure.

4.1 Correlation

The first type of pattern we consider is correlation. In particular, we will show that if all the covariates are
highly correlated with some outcome variable, then there must be a reasonable amount of correlation among
the covariates themselves. This is formalized in the following theorem, which is known as Van der Corput’s
inequality (Tao, 2014). We offer a proof here for completeness.

Theorem 1 (Van der Corput’s inequality). If X1, . . . , Xp, y are real-valued random variables with finite
nonzero variance, then

p∑
i=1

| corr(Xi, y)| ≤
√
p+

∑
i 6=j

| corr(Xi, Xj)|.

In particular, if | corr(Xi, y)| ≥ τ for each i = 1, . . . , p, then
∑
i6=j | corr(Xi, Xj)| ≥ p(τ2p− 1).

Proof. Without loss of generality, we may assume that X1, . . . , Xp, y have mean zero and unit variance.
Define Z1, . . . , Zp by

Zi =

{
Xi if E(yXi) > 0,

−Xi else.

Thus E(yZi) = |E(yXi)| and E(Z2
i ) = E(X2

i ) for each i = 1, . . . , p. By Cauchy-Schwarz,

p∑
i=1

E(yZi) = E

(
y

p∑
i=1

Zi

)
≤

√√√√√E

( p∑
i=1

Zi

)2
.

This is also easily seen from applying Cauchy-Schwarz to the p+ 1-dimensional correlation matrix via e′1Ra
with e′1 = (1, 0, . . . , 0) and a′ = (0, b′) with bj set to ±1 depending on the sign of the y,Xj correlation.
Therefore,

p∑
i=1

|E(yXi)| =

p∑
i=1

E(yZi) ≤

√√√√ p∑
i=1

E(Z2
i ) +

∑
i 6=j

E(ZiZj) ≤
√
p+

∑
i 6=j

|E(XiXj)|.

Rearranging gives us the theorem statement.

A direct consequence of Theorem 1 is that if X1, . . . , Xp are independent (or uncorrelated) random
variables and each has correlation at least τ with y, then τ ≤ 1/

√
p.

In some situations, the outcome variable may change from study to study, for example a program eval-
uation in economics might look at employment, income, or savings; a political intervention might target
turnout or vote choice; or an education experiment might look at outcomes on several tests. Although the
different outcomes in a study are not exactly the same, we might reasonably expect them to be highly cor-
related. However, if we have mean-zero and unit-variance random variables x, y, z satisfying E(xy) ≥ τ and
E(yz) ≥ 1− ε, then

E(xz) = E(x(z − y + y)) ≥ τ + E(x(z − y)),

and by Cauchy-Schwarz, we have

E(x(z − y))2 ≤ E(x2)E((z − y)2) ≤ 2− 2(1− ε).

Thus, E(xz) ≥ τ −
√

2ε. This gives the following corollary of Theorem 1.
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Corollary 2. Suppose X1, Y1, . . . , Xp, Yp are real-valued random variables with finite nonzero variance. If
corr(Yi, Yj) ≥ 1− ε and | corr(Xi, Yi)| ≥ τ for i, j = 1, . . . , p, then

∑
i6=j | corr(Xi, Xj)| ≥ p((τ −

√
2ε)2p− 1).

The bound in Theorem 1 is essentially tight for large p. To see this, pick any 0 ≤ τ ≤ 1, and take
X1, . . . , Xp to be mean-zero random variables with covariance matrix Σ given by

Σij =

{
1 if i = j,

τ2 if i 6= j.

If y =
∑p
j=1Xj , then for each i = 1, . . . , p,

corr(Xi, y) =
E
(
Xi

∑p
j=1Xj

)
√

E
(∑

j,kXjXk

) =
1 + (p− 1)τ2√
p+ p(p− 1)τ2

p→∞−→ τ.

One drawback of Theorem 1 is that the upper bound depends on a coarse measure of interdependence
of the covariates, namely the sum of all pairwise correlations

∑
i,j | corr(Xi, Xj)|. One might hope that if

we have a finer-grained control on the correlation matrix, we should be able to get a stronger result. This is
accomplished by the following piranha theorem, which shows that we can instead get an upper bound that
depends on the largest eigenvalue of the correlation matrix. However, this comes at the expense of bounding
the sum of squared correlations | corr(Xi, Y )|2, rather than the sum of their absolute values.

Theorem 3. If X1, . . . , Xp, y are real-valued random variables with finite nonzero variance, then

p∑
i=1

| corr(Xi, y)|2 ≤ λmax,

where λmax is the maximum eigenvalue of the correlation matrix Σi,j = corr(Xi, Xj).

Observe that Theorems 1 and 3 are generally incomparable since
∑p
i=1 | corr(Xi, y)|2 ≤

∑p
i=1 | corr(Xi, y)|

but

λmax ≤
√∑

i,j

| corr(Xi, Xj)|2 ≤
√∑

i,j

| corr(Xi, Xj)|.

The proof of Theorem 3 relies on the following technical lemma, essentially a consequence of orthogonality.

Lemma 4. If U1, . . . , Up, y are real-valued random variables with mean zero and unit variance such that
E(UiUj) = 0 for all i 6= j, then

p∑
i=1

(EUiy)
2 ≤ 1.

Proof. Denote the covariance matrix of the random vector (U1, . . . , Up, y)T as

Σ =

(
I a
aT 1

)
,

where ai = E (Uiy) for i = 1, . . . , p. Define the vector v = (−aT, ‖a‖)T ∈ Rp+1. Then

vTΣv = 2(1− ‖a‖)‖a‖2 ≥ 0,

where the inequality follows from the fact that Σ is a covariance matrix and hence positive semi-definite.
We conclude that ‖a‖ ≤ 1.

With the above in hand, we turn to the proof of Theorem 3.
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Proof of Theorem 3. Assume without loss of generality that X1, . . . , Xp, y have mean zero and unit variance.
Denote the eigendecomposition of Σ as Qdiag(λ1, . . . , λp)Q

T , where λ1 ≥ · · · ≥ λp ≥ 0 and Q is orthogonal.

Let X̃ = QTX, where X = (X1, . . . , Xp). Then X̃ = (X̃1, . . . , X̃p) is a mean-zero random vector whose

covariance matrix is diag(λ1, . . . , λp). For j ∈ {1, . . . , p} with λj = var(X̃j) = 0, we have X̃j = 0 almost
surely. Thus, we may apply Lemma 4 to get

‖E(yX̃)‖2 =

p∑
j=1

E(yX̃j)
2 =

∑
j:λj>0

λjE(yX̃j/
√
λj)

2 ≤ λ1
∑
j:λj>0

E(yX̃j/
√
λj)

2 ≤ λ1.

Thus, we have

p∑
i=1

| corr(Xi, y)|2 = ‖E(yX)‖2 = ‖QQTE(yX)‖2 = ‖E(yX̃)‖2 ≤ λ1,

where we have used the fact that Q is orthogonal.

4.2 Linear regression

We next turn to showing that least squares linear regression solutions cannot have too many large coefficients.
Specifically, letting β = (β1, . . . , βp)

T ∈ Rp denote the regression coefficients of least squared error,

β = argmin
α=(α1,...,αp)T∈Rp

E
(

(α1X1 + · · ·+ αpXp − y)
2
)
, (1)

we bound the number of βi’s that can have large magnitude. This is formalized in our next piranha theorem.

Theorem 5. Suppose X1, . . . , Xp, y are real-valued random variables with mean zero and unit variance. If
β ∈ Rp satisfies equation (1), then the squared `2 norm of β satisfies

‖β‖2 ≤ 1

λmin
,

where λmin is the minimum eigenvalue of the second-moment matrix E(XXT) of X = (X1, . . . , Xp)
T.

Consider again the setting where X1, . . . , Xp are independent. In this case, the second-moment matrix
E(XXT) will be the identity matrix, and its minimum eigenvalue will be 1. Thus, Theorem 5 states for
independent covariates, there may be at most 1/τ2 regression coefficients βi with magnitude larger than τ .

Proof of Theorem 5. The case where λmin = 0 is trivial. Thus, assume λmin > 0. In this case, the second-
moment matrix E(XXT) is invertible, its inverse has eigenvalues bounded above by 1/λmin, and

β = (E(XXT))−1E(yX).

Define X̃ = (E(XXT))−1/2X, so X̃ = (X̃1, . . . , X̃p)
T is a vector of mean-zero and unit-variance random

variables with E(X̃iX̃j) = 0 for all i 6= j. By Lemma 4,

‖E(yX̃)‖2 =

p∑
j=1

E(yX̃j)
2 ≤ 1.

Therefore

‖β‖2 = ‖(E(XXT))−1/2E(yX̃)‖2 = E(yX̃)T(E(XXT))−1E(yX̃) ≤ 1

λmin
‖E(yX̃)‖2 ≤ 1

λmin
,

where the first inequality uses the upper-bound of 1/λmin on the eigenvalues of (E(XXT))−1.

Theorem 5 implies that we cannot have a regression coefficient bigger than 1/
√
λmin. If the predictors

are standardized and uncorrelated, λmin = 1. In general λmin cannot get small without the explanatory
variables having sizable correlations with each other.
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4.3 Mutual information

Though many statistical analyses hinge on discovering linear relations among variables, not all do. Thus,
we turn to a more general form of dependency for random variables, mutual information. Our mutual
information piranha theorem will be of a similar form as the previous results, namely that if many covariates
share information with a common variable, then they must share information among themselves.

To simplify our analysis, we assume that all the random variables we consider in this section take values
in discrete spaces. For two random variables x and y, their mutual information is defined as

I(x; y) = H(x)−H(x | y) = H(y)−H(y |x),

where H(·) and H(· | ·) denote entropy and conditional entropy, respectively. These are defined as

H(x) =
∑
x∈X

p(x) log
1

p(x)
,

H(y |x) =
∑

x∈X ,y∈Y
p(x, y) log

p(x)

p(x, y)
,

where X (resp. Y) is the range of x (resp. y), p(x, y) is the joint probability mass function of x and y, and
p(x) is the marginal probability mass function of x.

We use the following facts about entropy and conditional entropy.

Fact (Chain rule of entropy). For random variables X1, . . . , Xp,

0 ≤ H(X1, . . . , Xp) =

p∑
i=1

H(Xi |X1, . . . , Xi−1).

Moreover, we also have for any other random variable y,

0 ≤ H(X1, . . . , Xp | y) =

p∑
i=1

H(Xi | y,X1, . . . , Xi−1).

Fact (Conditioning reduces entropy). For random variables x, y, z,

H(x|y, z) ≤ H(x | y) ≤ H(x).

Using these facts, we can prove the following mutual information piranha theorem.

Theorem 6. Given random variables X1, . . . , Xp and y, we have

p∑
i=1

I(Xi; y) ≤ H(y) +

p∑
i=1

I(Xi;X−i),

where X−i = (X1, . . . , Xi−1, Xi+1, . . . , Xp).

Proof. Using the definition of mutual information, we have

H(Xi |X−i) ≥ H(Xi)− I(Xi;X−i).

Since conditioning reduces entropy, this implies

H(Xi |X1, . . . , Xi−1) ≥ H(Xi |X−i) = H(Xi)− I(Xi;X−i).
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Thus, we have by the chain rule of entropy

H(X1, . . . , Xp) =

p∑
i=1

H(Xi |X1, . . . , Xi−1) ≥
p∑
i=1

H(Xi)− I(Xi;X−i). (2)

The chain rule of entropy combined with the fact that conditioning reduces entropy implies

H(X1, . . . , Xp | y) ≤
p∑
i=1

H(Xi | y). (3)

Plugging equations (2) and (3) into our formula for I(X1, . . . , Xp; y) gives

I(X1, . . . , Xp; y) = H(X1, . . . , Xp)−H(X1, . . . , Xp | y)

≥
p∑
i=1

H(Xi)− I(Xi;X−i)−H(Xi | y)

=

p∑
i=1

I(Xi; y)− I(Xi;X−i).

Now, we can also write

I(X1, . . . , Xp; y) = H(y)−H(y |X1, . . . , Xp) ≤ H(y).

Rearranging gives us the theorem.

One corollary of Theorem 6 is that for any random variable y, there can be at most p ≤ H(y)/α random
variables X1, . . . , Xp that (a) are mutually independent and (b) satisfy I(Xi; y) ≥ α.

5 Correlations in a finite sample

We now turn our focus back to correlations, this time in a finite sample. Suppose we conduct a survey with
data on p predictors X and one outcome of interest y on a random sample of n people, and then we evaluate
the correlations between the outcome and each of the predictors.

We collect the data in an n× p matrix X with n > p, where each of the columns X1, . . . , Xp ∈ Rn of X
has mean zero and unit `2 norm, and we will use corr(x, y) for x, y ∈ Rn (neither in the span of the all-ones
vector 1) to denote the sample correlation:

corr(x, y) =

∑n
i=1(xi − µx)(yi − µy)√∑n

i=1(xi − µx)2
∑n
i=1(yi − µy)2

,

where µx = 1
n

∑n
i=1 xi and µy = 1

n

∑n
i=1 yi.

An application of Theorem 3 tells us that any non-constant vector y ∈ Rn satisfies

0 ≤
p∑
j=1

| corr(Xi, y)|2 ≤ σ2
1 ,

where σ1 ≥ · · · ≥ σp ≥ 0 denote the singular values of X. Moreover, it is not hard to see there exists a
vector that achieves the upper bound, namely the top singular vector of X.

This analysis shows a worst-case piranha theorem: a bound on the number of large correlations with
all possible response vectors. Stronger results can be obtained if we consider average behavior. Here, we
consider a stochastic piranha theorem in which we assume that y is uniformly distributed on the unit sphere
in Rn. Our result will hold for any choice of radially symmetric random vector y (that is independent of
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X), but we state it for the uniform distribution over the unit sphere for concreteness. We choose a radially
symmetric distribution because we have no reason to give preference to one direction over another. Recall
the value of studying average as well as worst-case behavior in areas of numerical analysis such as random
matrix theory (Edelman and Rao, 2005).

The following theorem demonstrates this principle, showing that the maximum sum of squared corre-
lations, a constant independent of n (i.e., σ2

1), is generally much larger than the expected sum of square
correlations. Specifically, the following theorem shows that the expected sum of squared correlations decays
like 1/n.

Theorem 7. Let y be uniformly distributed on the unit sphere in Rn. Then

E

(
p∑
i=1

corr(Xi, y)2

)
=

p

n− 1
.

If y is uniformly distributed on the unit sphere in Rn, then for large n, the distribution of y is well
approximated by (Z1, . . . , Zn) the n-dimensional multivariate Gaussian with mean zero and covariance 1

nI.
In particular, (Z1, . . . , Zn) is spherically symmetric and

E(Z2
1 + · · ·+ Z2

n) = 1 and var (Z2
1 + · · ·+ Z2

n) = O(1/n2).

As a consequence, for large n, the distribution of sum of squared correlations is well approximated by a linear
combination of independent χ2 random variables, each with one degree of freedom: 1

n−1 (λ21ξ1 + · · ·+ λ2pξp).
Combining this observation with Theorems 3 and 7, for any n × p matrix (or sample of data) X, if a

vector y is distributed according to a spherically symmetric distribution, then

p∑
i=1

corr(Xi, y)2

is supported on [0, σ2
1 ], has expectation p/(n− 1), and for large n has O(1/n2) variance.

6 Discussion and directions for future work

The piranha problem is a practical issue: as discussed in the references in Sections 1 and 3, it has interfered
with research in fields including social priming, evolutionary psychology, economics, and voting behavior.
An understanding of the piranha problem can be a helpful step in recognizing fundamental limitations of
research in these fields along with related areas of application such as marketing and policy nudges (Carroll,
2017; Szászi et al., 2022). We suspect that a naive interpretation of the butterfly effect has led many
researchers and policymakers to believe that there can be many large and persistent effects; thus, there is
value in exploring the statistical reasons why this is not likely. In this way, the piranha problem resembles
certain other statistical phenomena such as regression to the mean and the birthday coincidence problem
(Mosteller, 1965), in that there is a regularity in the world that surprises people, and this regularity can be
understood as a mathematical result. This motivates us to seek theorems that capture some of this regularity
in a rigorous way. We are not all the way there, but this seems to us to be a valuable research direction.

6.1 Bridging between deterministic and probabilistic piranha theorems

Are there connections between the worst-case bounds in Section 4, the probabilistic bounds in Section 5,
priors for the effective number of nonzero coefficients (Piironen and Vehtari, 2017), and models such as
the R2 parameterization of linear regression as proposed by Zhang et al. (2020)? We can consider two
directions. The first is to consider departures from the parametric models such as the multivariate normal
and t distributions and work out their implications for correlations and regression coefficients. The second
idea is to obtain limiting results in high dimensions (that is, large numbers of predictors), by analogy to
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central limit theorems of random matrices. The idea here would be to consider a n× (p+1) matrix and then
pull out one of the columns at random and consider it as the outcome, y, with the other p columns being
the predictors, X.

6.2 Regularization, sparsity, and Bayesian prior distributions

There has been research from many directions on regularization methods that provide soft constraints on
models with large numbers of parameters. By “soft constraints,” we mean that the parameters are not
literally constrained to fall within any finite range, but the estimates are pulled toward zero and can only
take on large values if the data provide strong evidence in that direction.

Examples of regularization in non-Bayesian statistics include wavelet shrinkage (Donoho and Johnstone,
1994), lasso regression (Tibshirani, 1996), estimates for overparameterized image analysis and deep learning
networks (Bora et al., 2017), and models that grow in complexity with increasing sample size (Geman and
Hwang, 1982; Li and Meng, 2021). In a Bayesian context, regularization can be implemented using weakly
informative prior distributions (Greenland and Mansournia, 2015; van Zwet, 2019) or more informative
priors that can encode the assumed sparsity (Mitchell and Beauchamp, 1988; George and McCulloch, 1993;
Carvalho et al., 2009; Polson and Scott, 2011; Bhattacharya et al., 2015; Ghosh et al., 2018; Zhang et al.,
2020) or assumed correlation and sparsity (Liu et al., 2018). Classical regularization is motivated by the
goal of optimizing long-run frequency performance, and Bayesian priors represent additional information
about parameters, coded as probability distributions. The various piranha theorems correspond to different
constraints on these priors and thus even weakly informative priors should start by encoding these constraints.

From a different direction is the “bet on sparsity principle” based on the idea that any given data might
allow some only some small number of effects or, more generally, a low-dimensional structure, to be reliably
learned (Hastie et al., 2001; Tibshirani, 2014). More generally, models such as the horseshoe (Carvalho et al.,
2010) assume a distribution of effect sizes with a sharp peak near zero and a long tail, which represent a
solution to the piranha problem by allowing a large number of predictors without overflowing variance.

6.3 Nonlinear models

So far we have discussed linear regression, with theorems capturing different aspects of the constraint that
the total R2 cannot exceed 1. We can make similar arguments for nonlinear regression.

For example, consider a model of binary data with 20 causal inputs, each of which is supposed to have
an independent effect of 0.5 on the logistic scale. Aligning these factors in the same direction would give
an effect of 10, enough to change the probability from 0.01 to 0.99, which would be unrealistic in applied
fields ranging from marketing to voting where no individual behavior can be predicted to that level of
accuracy. One way to avoid these sorts of extreme probabilities would be to suppose the predictors are
highly negatively correlated with each other, but in practice, input variables in social science tend to be
positively, not negatively correlated (consider, for example, conservative political ideology, Republican party
identification, and various issue attitudes that predict Republican vote choice and have positive correlations
among the population of voters). The only other alternative that allows one to keep the large number of large
effects is for the model to include strong negative interactions, but then the effects of the individual inputs
would no longer be stable, and any effect would depend very strongly on the conditions of the experiment
in which it is studied. It should be possible to express this reasoning more formally.

6.4 Implications for social science research

Although we cannot directly apply these piranha theorems to data, we see them as providing some relevance
to social science reasoning.

As noted at the beginning of this article, there has been a crisis in psychology, economics, and other areas
of social science, with prominent findings and apparently strong effects that do not appear in attempted
replications by outside research groups; see, for example, Open Science Collaboration (2015), Altmejd et al.
(2019), and Gordon et al. (2020). Discussions of the replication crisis have touched on many aspects of the

11



problem, including estimating its scale and scope, identifying the statistical errors and questionable research
practices that have led researchers to systematically overestimate effect sizes and be overconfident in their
findings, and studying the incentives of the scientific publication process that can allow entire subfields to
get lost in the interpretation of noise.

The research reviewed in the present article is related to, but different from, the cluster of ideas corre-
sponding to multiple comparisons, false discovery rates, and multilevel models. Those theories correspond to
statistical inference in the presence of some specified distribution of effects, possibly very few nonzero effects
(the needle-in-a-haystack problem) or possibly an entire continuous distribution, but without necessarily any
concern about how these effects interact.

The present article goes in a different direction, asking the theoretical question: under what conditions
is it possible for many large effects to coexist in a multivariate system? In different ways, our results rule
out or make extremely unlikely the possibility of multiple large effects or “piranhas” among a set of random
variables. These theoretical findings do not directly call into question any particular claimed effect, but they
raise suspicions about a model of social interactions in which many large effects are swimming around, just
waiting to be captured by researchers who cast out the net of a quantitative study.

To more directly connect our theorems with social science would require some modeling of the set of
candidate predictor and outcome variables in a subfield, similar to multiverse analysis (Steegen et al., 2016).
Any general implications for social science would only become clear after consideration of particular research
areas.
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A Proofs from Section 5

In this section, we give the proof of Theorem 7.

A.1 Notation

For any x = (x1, . . . , xn)T ∈ Rn such that x 6= λ1 for all λ ∈ R (i.e., x is not in the span of 1), we write
x∗ ∈ Rn to denote the “standardized” vector given by the formula

x∗ =
x− 1

n (xT
1)1

‖x− 1
n (xT1)1‖

=
x− ( 1

n

∑n
j=1 xj)1√∑n

i=1(xi − 1
n

∑n
j=1 xj)

2
.

The unit vector x∗ in Rn is orthogonal to 1. Using this notation, we have

corr(x, y) = (x∗)T(y∗) (4)

for any x, y ∈ Rn not in the span of 1.
Write the singular value decomposition of X as

X =

p∑
k=1

σkUkV
T

k , (5)

where U1, . . . , Up ∈ Rn are orthonormal left singular vectors of X, V1, . . . , Vp ∈ Rp are orthonormal right
singular vectors of X, and σ1 ≥ · · · ≥ σp ≥ 0 are the singular values of X.

Recall that we assume X1, . . . , Xp satisfy 1
TXi = 0 and ‖Xi‖ = 1 for all i = 1, . . . , p. This implies the

following lemma.

Lemma 8. Xi = X∗i for all i = 1, . . . , p, and Uk = U∗k for all k = 1, . . . , p.

Proof. The assumption on Xi implies that X∗i = Xi for each i. Moreover, the assumptions imply that the
all-ones vector 1 is orthogonal to the range of X, which is spanned by U1, . . . , Up. Hence Uk = U∗k for each
k as well.

A.2 Proof of Theorem 7

We will take advantage of the following lemma for expressing the sum of squared correlations.

Lemma 9. For any vector y ∈ Rn such that y 6= λ1 for all λ ∈ R,

p∑
i=1

corr(Xi, y)2 =

p∑
k=1

λ2k(U T

ky
∗)2.

Proof. By direct computation:

p∑
i=1

corr(Xi, y)2 =

p∑
i=1

((X∗i )T(y∗))
2

(by equation 4)

=

p∑
i=1

(XT

i y
∗)

2
(by Lemma 8)

= ‖XTy∗‖2

=

∥∥∥∥∥
p∑
k=1

λkVkU
T

ky
∗

∥∥∥∥∥
2

(by equation 5)

=

p∑
k=1

λ2k(U T

ky
∗)2 (by Pythagorean theorem).
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Proof of Theorem 7. By Lemma 8, the vectors U1, . . . , Up are orthogonal to the unit vector 1√
n
1. We extend

the collection of orthonormal vectors U1, . . . , Up,
1√
n
1 with orthonormal unit vectors Up+1, . . . , Un−1 to obtain

an orthonormal basis for Rn. With probability 1, the random vector y is not in the span of 1. Hence, y∗ is
well-defined and can be written uniquely as a linear combination of the aforementioned basis vectors:

y∗ = a1U1 + · · ·+ an−1Un−1 + an
1√
n
1,

where

ak =

{
U T

ky
∗ if 1 ≤ k ≤ n− 1,

0 if k = n (since 1Ty∗ = 0),

and
1 = a21 + · · ·+ a2n−1

(since y∗ is a unit vector). In particular,

1 = E(a21) + · · ·+ E(a2n−1),

which implies

E(a2k) =
1

n− 1

for each k = 1, . . . , n− 1, by symmetry. By Lemma 9,

E

(
p∑
i=1

corr(Xi, y)2

)
= E

(
p∑
k=1

λ2k(U T

ky
∗)2

)
=

p∑
k=1

λ2kE(a2k) =
1

n− 1

p∑
k=1

λ2k

Since λ2i are the eigenvalues of XtX and the columns of X have unit `2 norm,

1

n− 1

p∑
k=1

λ2k =
p

n− 1

due to the fact that the trace of XtX is equal to the sum of its eigenvalues.
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