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Abstract

Bayesian inference requires all unknowns to be represented by probability distributions,
which awkwardly implies that the probability of an event for which we are completely ignorant
(e.g., that the world’s greatest boxer would defeat the world’s greatest wrestler) must be assigned
a particular numerical value such as 1/2, as if it were known as precisely as the probability of
a truly random event (e.g., a coin flip).

Robust Bayes and belief functions are two methods that have been proposed to distinguish
ignorance and randomness. In robust Bayes, a parameter can be restricted to a range, but
without a prior distribution, yielding a range of potential posterior inferences. In belief func-
tions (also known as the Dempster-Shafer theory), probability mass can be assigned to subsets
of parameter space, so that randomness is represented by the probability distribution and un-
certainty is represented by large subsets, within which the model does not attempt to assign
probabilities.

Through a simple example involving a coin flip and a boxing/wrestling match, we illustrate
difficulties with robust Bayes and belief functions. In short: pure Bayes does not distinguish
ignorance and randomness; robust Bayes allows ignorance to spread too broadly, and belief
functions inappropriately collapse to simple Bayesian models.
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Figure 1: Wrestler Antonio Inoki delivers a flying kick to Muhammad Ali’s during their exhibition
on June 26, 1976. (© Stars and Stripes.

1 Using probability to model both randomness and uncer-
tainty

We define two binary random variables: the outcome X of a coin flip, and the outcome Y of a

hypothetical fight to the death between the world’s greatest boxer and the world’s greatest wrestler:

Y - 1 if the coin lands “heads”
o 0 if the coin lands “tails”
v — 1 if the boxer wins
o 0 if the wrestler wins.

In the Bayesian framework, X and Y must be given probability distributions. Modeling X is easy:
Pr(X =1) = Pr(X = 0) = 1/2, probabilities that can be justified on physical grounds.*

Modeling Y is more of a challenge, since we have little information to directly bear on the
problem and (let us suppose) no particular reason for favoring the boxer or the wrestler in the bout.
We shall consider this a problem of ignorance, the modeling of which has challenged Bayesians for
centuries and, indeed, has no clearly-defined solution (hence the jumble of “noninformative priors”
and “reference priors” in the statistical literature). The distinction between X and Y is between
randomness and ignorance or, as characterized by O’Hagan (2004), between aleatory and epistemic

uncertainty.

I The outcomes of a coin caught in mid-air can be reasonably modeled as equiprobable (see, e.g., Jaynes, 1996, and
Gelman and Nolan, 2002) but if this makes you uncomfortable, you can think of X as being defined based on a more
purely random process such as a radiation counter.
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Figure 2: (a) Prior predictive distribution and (b) posterior predictive distribution (after condition-
ing on X =Y) for the coin-flip/fighting-match example, under pure Bayesian inference. X, which
we understand completely, and Y, for which we have complete ignorance, are treated symmetrically.

Here we will model Y as a Bernoulli random variable, with Pr(Y = 1) = =, and assign a
uniform prior distribution to 7 on the range [0,1]. That is, we assume complete ignorance about
the probability that the boxer wins.?

Finally, the joint distribution of X and Y must be specified. We shall assume the coin flip is

performed apart from and with no connection to the boxing/wrestling match, so that it is reasonable

to model the two random variables as independent.

2 A simple example of conditional inference, from general-
ized Bayesian perspectives

As in the films Rashomon and The Aristocrats, we shall tell a single story from several different
perspectives. The story is as follows: X and Y are defined above, and we now learn that X =Y
either the coin landed heads and the boxer won, or the coin landed tails and the wrestler won. To
clarify the information available here: we suppose that a friend has observed the fight and the coin
flip and has agreed ahead of time to tell us if X =Y or X # Y. It is thus appropriate to condition
on the event X =Y in our inference.

Conditioning on X =Y would seem to tell us nothing useful—merely the coupling of a purely
random event to a purely uncertain event—but, as we shall see, this conditioning leads to different

implications under different modes of statistical inference.

2As reviewed by Bernardo and Smith (1994) and Kass and Wasserman (1996), a uniform distribution on the
probability scale is only one of the many ways to define “ignorance” in this sort of problem. Our key assumption here
is symmetry: that we have no particular reason to believe either the boxer or the wrestler is superior.
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Figure 3: (a) Prior predictive distribution and (b) posterior predictive distribution (after condition-
ing on X =Y) for the coin-flip/fighting-match example, under robust Bayesian inference in which
the parameter 7 is allowed to fall anywhere in the range [0,1]. After conditioning on X =Y, we
can now say nothing at all about X, the outcome of the coin flip.

In straight Bayesian inference the problem is simple. First off, we can integrate the parameter
7 out of the distribution for Y to obtain Pr(Y = 1) = Pr(Y = 1) = 1/2. Thus, X and Y—the coin
flip and the fight—are treated identically in the probability model, which we display in Figure 2.
In the prior distribution, all four possibilities of X and Y are equally likely; after conditioning on
X =Y, the two remaining possibilities are equally likely. (We label the plots in Figures 2 and 3 as
predictive distributions because they show the probabilities of observables rather than parameters.)

There is nothing wrong with this inference, but we might feel uncomfortable giving the model for
the uncertain Y the same inferential status as the model for the random X. This is a fundamental
objection to Bayesian inference—that complete ignorance is treated mathematically the same as an

event with probabilities known from physical principles.

Robust Bayes

Robust Bayes is a generalization of Bayesian inference in which certain parameters are allowed to fall
in a range but without being specified a prior distribution. Or, to put it another way, a continuous
range of models is considered, yielding a continuous range of possible posterior inferences (Berger,
1984, 1990, Wasserman, 1992).

For our example, we can use robust Bayes to model complete ignorance by allowing m—the
probability that Y equals 1, that the boxer defeats the wrestler—to fall anywhere in the range [0, 1].
Figure 3a displays the prior distribution, and Figure 3b displays the posterior distribution after

conditioning on the event X =Y.



Because we are allowing the parameter 7 to fall anywhere between 0 and 1, the robust Bayes
inference leaves us with complete uncertainty about the two possibilities X =Y =0and X =Y = 1.
This seems wrong in that it has completely degraded our inferences about the coin flip, X. Equating
it with an event we know nothing about—the boxing/wrestling match—has led us to the claim that
we can say nothing at all about the coin flip. It would seem more reasonable to still allow a 50/50
probability for X—but this cannot be done in the robust Bayes framework in which the entire range
of 7 is being considered.? This is an issue that inevitably arises when considering ranges of estimates
(e.g., Imbens and Manski, 2004), and it is not meant to imply that robust Bayes is irredeemably
flawed, but rather to indicate a counterintuitive outcome of using the range = € [0, 1] to represent
complete ignorance. Seidenfeld and Wasserman (1993) show that this “dilation” phenomenon—
conditional inferences that are less precise than marginal inferences—is inevitable in robust Bayes.

By modeling m with complete ignorance, we have constructed an extreme example of dilation.

Belief functions

The method of belief functions (Dempster, 1967, 1968) has been proposed as a generalization of
Bayesian inference that more directly allows the modeling of ignorance (Shafer, 1976). In belief
functions, probability mass can be assigned to arbitrary subsets of the sample space—thus general-
izing Bayesian inference, which assigns probability mass to atomic elements of the space.

We briefly review belief functions and then apply them to our example. For a binary variable,
the probability mass of a belief function can be distributed over all nonempty subsets of the sample
space: {0}, {1}, and {0,1}. For example, a coin flip would be assigned probability masses p({0})=0.5,
p{1}) = 0.5, p{0,1}) = 0; and a random outcome with probability p of success would be assigned
probability masses p({0}) = 1—p, p{1}) = p, p{0,1}) = 0. These are simply Bayesian probability
assignments.

Belief functions become more interesting when used to capture uncertainty. For example, consider
a random outcome with probability p of success, with p itself known to fall somewhere between 0.4
and 0.9. This can be represented by a belief function with probability masses p({0}) =0.1, o({1})=0.4,
p{0,1})=0.5. In this model, the probability of the event “0” is somewhere between 0.1 and 0.6, and
the probability of the event “1” is somewhere between 0.4 and 0.9. Each of these pairs is called a
lower and upper probability. In belief functions, the lower probability of a set A is defined as the sum
of the probability masses assigned to subsets of A (including A itself), and the upper probability
is the sum of the probability masses of all sets that intersect with A. For a binary variable, this

definition just reduces to: Pr(0) € [p{0}), p{0}) + p({0,1})] and Pr(1) € [p({1}), p{1}) + p{0,1})].

3More precise inferences would be obtained by restricting 7 to a narrower range such as [0.4,0.6], but in this
example we specifically want to model complete ignorance.
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Figure 4: (a) Prior belief function and (b) posterior belief function (after conditioning on X =Y") for
the coin-flip/fighting-match example, under Dempster-Shafer inference in which 100% of the prior
mass for Y is placed on the set {0, 1}. After combining with the information that X =Y, the belief
function for Y has collapsed to the simple case of equal probabilities.

Statistical analysis is performed by expressing each piece of available information as a belief
function over the space of all unknowns, then combining them using “Dempster’s rule,” a procedure
which we do not present in general here but will illustrate for our simple problem. Dempster’s rule
differs from the robust Bayes approach described earlier in combining the underlying probability
masses of the belief functions, not the upper and lower probablities which are computed only at the
end of the analysis.

Belief functions can be applied to the boxer/wrestler problem in two steps. First, X is given
a straight probability distribution, just as in Bayesian inference, with 50% probability on each
outcome. Second, Y is given a so-called vacuous belief function, assigning 100% of the probability
mass to the set {0,1}, thus stating our complete ignorance in the outcome of the fight. The events
X and Y would still be independent, and their joint belief function is shown in Figure 4a—it has
two components, each assigned belief 0.5.

Conditioning on X = Y (that is, combining with the belief function that assigns 100% of its
probability mass to the set {(0,0),(1,1)}) yields the belief function shown in Figure 4b. Oddly
enough, all the vacuity has disappeared and the resulting inference is identical to the pure Bayes
posterior distribution in Figure 2b. This does not seem right at all: coupling the fight outcome Y to
a purely random X has caused the belief function for Y to collapse from pure ignorance to a simple
50/50 probability distribution. No information has been added, yet the belief function has changed
dramatically. Once again, we would not use this example to dismiss belief functions (see Shafer,

1990, for some background on their theory and application), but this example does suggest that the



belief-function modeling of ignorance is potentially fragile.

3 Discussion

Bayesian inference is an extremely powerful tool in applied statistics (see, for example, Carlin and
Louis, 2001, and Gelman et al., 2003), but an ongoing sticking point is the necessity for prior distri-
butions, which are particularly controversial when used to model ignorance.* Various generalizations
of Bayesian inference, including robust Bayes and belief functions, have been proposed to ease this
difficulty by mathematically distinguishing between uncertainty and randomness. Using a simple
example coupling a completely-known probability (for a coin flip) with a completely unknown proba-
bility (for the fight), we have shown that robust Bayes and belief functions can yield counterintuitive
results. We conclude that the challenge of assigning prior distributions is real, and we do not see
any easy way of separating uncertainty from probability. However, we have not considered other
forms of inference such as fuzzy logic (Zadeh, 1965), which can perhaps resolve these problems, at
least for some categories of examples.

Another approach is the frequentist or randomization approach to inference, under which proba-
bility can only be assigned to random events (that is, those defined based on a physical randomization
process with known probabilities) and never to uncertainties, which must be represented purely by
unmodeled parameters (see, for example, Cox and Hinkley, 1974.) For our example, ¥ will not be
assigned a probability distribution at all, and so the operation of conditioning on X = Y cannot
be interpreted probabilistically, and no paradox arises. The difficulty of frequentist inference is its
conceptual rigidity—taking its prescriptions literally, one would not be allowed to model business
forecasts, industrial processes, demographic patterns, or for that matter real-life sample surveys,
all of which involve uncertainties that cannot be simply represented by physical randomization.’
Our point here is not to debate Bayesian vs. frequentist notions of probability but rather to note
that the difficulty of modeling both uncertainty and randomness is tied to the flexibility of Bayesian
modeling.

Finally, how can the distinction between uncertainty and randomness be understood in Bayesian
theory? O’Hagan (2004) provides a clear explanation, comparing a coin flip to an equivalent of our
boxer/wrestler example. In Bayesian inference, our prior distributions for X and for Y are identical,
which doesn’t seem quite right, since we understand the process generating X so much better than

that of Y. The difficulty is that the integral of a probability is a probability: for the model of Y,

4Prior probabilities and Bayesian inference can also be motivated as necessary for coherent decision making (Keynes,
1921, Cox, 1925, von Neumann and Morgenstern, 1944) but this just shifts the problem to a requirement of coherent
decision making under ignorance, which in practice might be no easier than assigning prior probabilities directly.

5Jaynes (1996) and Gelman et al. (2003, Chapter 1) discuss various examples of probability models that are
empirically-defined but do not directly correspond to long-run frequencies.



integrating out the uncertainty in 7 simply yields Pr(Y =1) = Pr(Y =0) = 1/2.

As discussed by O’Hagan, the resolution of the paradox is that probabilities, and decisions, do
not take place in a vacuum. If the only goal were to make a statement, or a bet, about the outcome
of the coin flip or the boxing/wrestling match, then yes, p = 1/2 is all that can be said. But
the events occur within a context. In particular, the coin flip probability remains at 1/2, pretty
much no matter what information is provides (before the actual flipping occurs, of course). In
contrast, one could imagine gathering lots of information (for example, reports of previous fights
such as the exhibition match between Antonio Inoki and Muhammad Ali pictured in Figure 1) that
would refine one’s beliefs about 7. Averaging over uncertainty in 7, the probability the boxer wins
is Pr(Y =1) = E(w), which equals 1/2 for a uniform prior distribution on = but can change as
information is gathered about 7. Uncertainty in = (in O’Hagan’s terms, “epistemic uncertainty”)
necessarily maps to potential information we could learn that would tell us something about 7. So
in this larger, potentially hierarchical, context, Bayesian inference can distinguish between aleatory
uncertainty (randomness) and epistemic uncertainty (ignorance).

Such an approach does not eliminate the difficulties of using probability to model uncertainty—in
particular, “noninformative” or similarly weak prior distributions still must be chosen in some way
(Kass and Wasserman, 1996) but it can limit the damage resulting from an inappropriate choice of

prior.
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