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Abstract

E!ect sizes typically vary among the studies of the same interven-

tion. In a random e!ects meta-analysis, this source of variation is

properly taken into account. However, when we have only one study,

the heterogeneity remains hidden and unaccounted for. Treating the

e!ect in the study as if it is the population average e!ect leads to un-

derestimation of the uncertainty. We propose an empirical Bayesian

approach to address this problem. We start by estimating the distribu-

tion of treatment e!ects and heterogeneity among 1,636 meta-analyses

from the Cochrane Database of Systematic Reviews (CDSR). Using

both synthetic data and cross validation, we assess the consequences

of using these estimated distributions as prior information for the anal-

ysis of single trials. We find that our Bayesian “meta-analyses of single

studies” perform much better than naively assuming non-varying ef-

fects. The prior on the heterogeneity results in better quantification of

the uncertainty. The prior on the treatment e!ect reduces the mean

squared error both for estimating the study-level and population-level

e!ects by about 60% on average. Such a reduction is equivalent to

more than doubling the sample size.

1 Introduction
It is a common practice to interpret the observed treatment e!ect of a clinical
trial as an estimate of the underlying “true” treatment e!ect. This is of course
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quite reasonable. We claim that it is also common to tacitly, perhaps even
unconsciously, assume that this true e!ect is an immutable property of the
treatment. Thus, one might speak of “the” e!ect of a particular treatment
or intervention, and expect the same e!ect in another study about the same
treatment. However, there are many good reasons to expect variation among
the underlying e!ects from di!erences between study populations, applica-
tion of the treatment and measurement protocols among other factors. There
is also much empirical evidence of e!ect heterogeneity from random e!ects
meta-analyses [6, 9, 5]. Failure to take this into account when interpreting
the results of trial will lead to underestimation of the uncertainty about the
treatment e!ect.

Recall that meta-analysis is a quantitative approach for combining infer-
ences from multiple studies. Besides providing an estimate of the average
e!ect of the treatment, together with some measure of uncertainty such as
a standard error or confidence interval, a meta-analysis also provides an es-
timate of the variation of underlying e!ects of the individual studies. In
fact, understanding and quantifying heterogeneity is an important aspect of
meta-analysis, as it can influence the interpretation of the overall results.

The Cochrane Database of Systematic Reviews (CDSR) is a globally re-
spected collection of evidence-based healthcare information, comprising rig-
orous and comprehensive systematic reviews on diverse medical topics, with
many of those reviews including meta-analyses [2]. The database is con-
tinuously updated, o!ering the latest evidence to inform clinical practice,
policy decisions, and research priorities. It adheres to strict quality stan-
dards, undergoes peer review, and includes open-access summaries for wider
accessibility.

We will assume the standard random e!ects meta-analysis model. That
is, we assume the following two-part hierarchical (or multilevel) model for
the j-th study in a collection of studies of the same treatment

ωj = µ+ uj (1)
bj = ωj + εj, (2)

The error terms uj → normal(0, ϑ) and εj → normal(0, sj) are assumed to be
independent. The first part (1) models the variation among studies of the
same treatment. Here, µ is the average treatment e!ect in the (hypothetical)
superpopulation of similar studies and ωj is the e!ect in the j-th individual
study. The variance ϑ 2 is referred to as the heterogeneity. The second part
(1) models the uncertainty of the estimates from each individual study. We
assume that the estimate bj from the j-th study is unbiased and normally
distributed with standard error sj.
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When we have only one study, we cannot separate the two error terms.
Without additional assumptions, there is nothing more to do than estimate ω1

by b1 with confidence interval b1 ± 1.96 s1. If we make the extra assumption
that there is no heterogeneity, i.e. ϑ = 0, then we can also estimate the
population average e!ect µ, as well as the e!ect in any other study, by b1
with confidence interval b1 ± 1.96 s1. As we discussed, we believe that this
extra assumption is commonly—if implicitly—made when interpreting the
result of a single trial. However, ϑ is typically not zero, so this is not correct.

Instead of assuming that ϑ is zero, we propose a Bayesian approach with
the prior information based on a hierarchical model fit to the CDSR. First,
we estimate the distributions of both µ and ϑ across the CDSR and use
those as empirical priors. Estimating one or both of these distributions from
collections of meta-analysis is not new, see for instance [4, 6, 9]. We then
proceed to use the R package baggr [11] to use these distributions as prior
information for the Bayesian analysis of a single trial. We call this a meta-
analysis with a single trial. The baggr package is based on Stan, a state-
of-the-art platform for statistical modeling and high-performance statistical
computation [8].

We compare the performance across the trials of the CDSR of our Bayesian
approach to the naive approach of assuming that ϑ is zero. To do this, we
construct a “synthetic copy” of the CDSR and also use a kind of leave-one-out
cross validation. We find superior performance of the Bayesian approach on
average across the CDSR.

2 Meta-analysis with a single trial

2.1 Estimating the distributions of µ and ϑ

The primary results of the trials in the CDSR have been processed and made
available by [7]. We use these to estimate the typical variation between the
e!ects of the same treatment across multiple studies.

We start by selecting trials with either a binary or numerical primary e"-
cacy outcome; these comprise 97% of the trials in the CDSR. We quantify the
treatment e!ect as a log odds ratio (all binary outcomes) or a standardized
di!erence of means (all continuous outcomes). Next, we select all meta-
analyses with at least 5 individual studies. Meta-analyses with fewer studies
have little information about heterogeneity and discarding them reduces com-
putation time. This leaves 18,342 unique trials from 1636 meta-analyses. We
consider the following hierarchical model. For the j-th individual study in
the i-th meta-analysis, we assume
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t distribution of µ normal of log ϑ
center scale df mean std dev

unrestricted ↑0.17 0.43 3.1 ↑1.44 0.78
zero mean 0.00 0.48 3.8 ↑1.44 0.79

Table 1: Estimated parameters of the t distribution of µ and the normal

distribution of log ϑ . In the bottom row, we restrict the mean of µ to be zero.

ωij = µi + uij (3)
bij = ωij + εij (4)

where uij → normal(0, ϑi) and εij → normal(0, sij). All the uij and εij are
assumed to be independent. CDSR reports pairs (bij, sij). We define the
z-values for each pair as zij = bij/sij.

We want to estimate the distribution of the µi and ϑi across the CDSR.
We assume that the µi follow a generalized t distribution and that the ϑi
are lognormally distributed. Moreover, we assume that the µi and ϑi are
independent.

To estimate the 5 parameters of our model (the mean, scale and degrees
of freedom of the generalized t-distribution and the mean and standard de-
viation of the normal distribution) we use a Bayesian approach with uniform
priors on the two means, the degrees of freedom, and the logarithm of the
two scale parameters. The posterior distributions of the parameters are ap-
proximately normal, so that the posterior means are approximately equal to
the maximum likelihood estimates. We show these estimates in the top row
of Table 1.

We also fit the model restricting the center of the distribution of e!ect
sizes µi to be zero, and show the resulting estimates in the bottom row of
Table 1. We will use this distribution as our prior, because it ensures that we
treat positive and negative e!ect estimates equally. This seems fair because,
to some extent, the sign of the e!ect estimate is arbitrary. For example, one
could either consider the proportion of patients alive or dead after one year,
but this choice should not have any material e!ect on our inferences about
the e!ectiveness of the treatment.

2.2 An example
We demonstrate our approach with a small example. Suppose that we have a
single trial with a binary outcome, with estimated log odds ratio of b = 0.7.
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This corresponds to an odds ratio of about 2. Suppose that the standard
error of the log odds ratio is also 0.7, so that the z-value is 1 and the p-value
is 0.32. The 95% confidence interval is (↑0.7, 2.1). We perform a meta-
analysis with a single trial with the following R command from the package
baggr, using the distributions from the bottom row of Table 1:

bg <- baggr(data.frame(tau = 0.7, se = 0.7),
prior_hypermean = student_t(3.8, 0, 0.48),
prior_hypersd = lognormal(-1.44, 0.79))

We find that the posterior mean of ω (the true e!ect in the trial) is
ω̂ = 0.31 with 95% posterior interval from 0.05 to 1.1. The posterior mean of
µ (the average e!ect in similar trials) is µ̂ = 0.24 with 95% posterior interval
(↑0.6, 1.4). Moreover, using the code from the Appendix, we find that the
posterior probability that ω is positive is 0.74, while the posterior probability
that µ is positive is 0.68.

2.3 The probability of the correct sign
Next, we use baggr to perform all 18,342 meta-analyses with one trial and
compute the posterior probabilities that the observed bij has the same sign
as ωij and µi. We plot the observed absolute z-values |zij| = |bij/sij| versus
these probabilities in Figure 1. We fitted smooth regression curves which
can be interpreted as conditional probabilities given the observed absolute
z-value. We see that a single trial never provides certainty about the sign of
µ.

3 Performance of the method

3.1 Building a synthetic CDSR
We construct a “synthetic” CDSR to evaluate the performance of our Bayesian
approach and compare it to the naive approach of assuming that ϑ is zero.
To generate the synthetic database we perform the following steps:

1. Sample µ→
i and ϑ →i (i = 1, 2, . . . , 1636) from the estimated distribution

in the top row of Table 1. We are not restricting the µ→ to be zero on
average.
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Figure 1: Conditional probabilities of b having the same sign as ω or µ given

the observed absolute z-value.

2. To induce dependence between the pairs µ→
i and ϑ →i , sort them in the

same order as the maximum likelihood estimates of µi and ϑi, which
we obtain by performing the meta-analyses of the CDSR data. Break
any ties at random.

3. Sample independent ω→
ij (i = 1, 2, . . . , 1636 and j = 1, 2, . . . , ni) from

the normal distribution with mean µ→
i and standard deviation ϑ →i .

4. Sample b→ij from the normal distribution with mean ω→
ij and the observed

standard deviation sij. Set z→ij = b→ij/sij.

For i = 1, 2, . . . , 1636 and j = 1, 2, . . . , ni, we now have simulated sets (µ→
i , ϑ

→
i )

and (ω→
ij, b

→
ij, sij) that should be similar to the original CDSR. We can confirm

this to some extent by comparing the distribution of the observed bij and zij
to the simulated b→ij and z→ij in Figure 2.

3.2 Estimating the e!ect in the trial
Once again we use baggr to perform all meta-analyses with one trial in
the simulated dataset to estimate ω→

ij and µ→
ij by their respective posterior
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Figure 2: The observed and simulated distributions of 18,342 estimates and

z-values.

means ω̂→
ij and µ̂→

ij. We also construct uncertainty (“credible”) limits. We
then compare to the naive approach where we estimate both quantities by
b→ij with interval (b→ij ± 1.96↓ sij).

In Table 2 we show the root mean squared error (RMSE), bias of the
magnitude and coverage of these two estimators. To be precise, for the naive
approach we compute

mean squared error =
1

18342

∑

i,j

(b→ij ↑ ω→
ij)

2 (5)

bias of the magnitude =
1

18342

∑

i,j

|b→ij|↑ |ω→
ij| (6)

coverage =
1

18342

∑

i,j

1{|b→ij ↑ ω→
ij| < 1.96sij} (7)

We compute the analogous quantities for the Bayesian approach. The
left side Table 2 displays the three performance measures for all trials and
the right side by averaging only over the statistically significant trials with
|z→ij| > 1.96.

Over all trials, the bias of the magnitude for the naive estimator is 0.23,
which is due to Jensen’s inequality; recall that the absolute value is a convex
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unconditional statistically significant
method RMSE bias coverage RMSE bias coverage
unbiased 0.74 0.23 0.95 0.83 0.39 0.88
Bayes 0.47 ↑0.11 0.95 0.46 ↑0.01 0.94

Table 2: Performance of the unbiased and Bayesian estimators of the e!ect in

the trial ω. The right side of the table shows the average over the statistically

significant trials, i.e. |z→ij| > 1.96.

function. As expected, the coverage of the usual confidence interval equals its
nominal level. The right side of the table shows that selection on significance
increases the upward bias of the magnitude to 0.39. This is sometimes called
the “winner’s curse.” This bias also causes the mean squared error to increase.
Moreover, the usual confidence interval no longer reaches nominal coverage.

When we turn to our Bayesian approach, we find that the RMSE is sub-
stantially reduced compared to the unbiased estimator. In the unconditional
case, the RMSE is reduced by more than a factor of

↔
2, which is roughly

equivalent to doubling the sample size! Conditionally on statistical signifi-
cance, the RMSE is reduced by nearly a factor of 2 corresponding to nearly
a fourfold increase in sample size.

The reductions in the RMSE are due to the “shrinkage” that is induced by
the zero-mean prior for µ which implies a zero-mean prior for ω. This pulls
the unbiased naive estimate towards zero, i.e. |ω̂→

ij| < |b→ij|. We also see the
e!ect of shrinkage in the reduction of the bias of the magnitude. On average
across all the trials, the bias of the magnitude of the Bayesian estimator is
↑0.11. When we condition on statistical significance, however, this bias is
almost exactly o!set by the winner’s curse. The coverage of the Bayesian
uncertainty interval is nominal, both unconditionally and conditionally. The
superior performance of a similar Bayesian estimator was seen in [10].

3.3 Estimating the population average e!ect
We also have two estimators for the population average e!ect µ→

i , namely the
naive estimator b→ij and the Bayesian estimator µ̂→

ij. Again, we compute the
root mean squared error (RMSE), bias of the magnitude and coverage both
conditionally and unconditionally on statistical significance. We show the
results in Table 3.

Essentially, the same observations apply to the results Table 3 as to those
in Table 2. The reduction in the RMSE of the Bayesian estimator compared
to the unbiased estimator is even more extreme, at 40% (0.51/0.85 = 0.6).
Also, the bias of |b→ij| as an estimator of |µ→

ij| is large, especially for statistically
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significant trials. This bias is completely absent for the Bayesian estimator.
The coverage of the usual confidence interval is far below 95% both with

and without conditioning on statistical significance. This is direct result of
not taking the heterogeneity into account. The coverage of the Bayesian
uncertainty interval is nominal in both cases.

unconditional statistically significant
method RMSE bias coverage RMSE bias coverage
unbiased 0.85 0.30 0.83 1.08 0.65 0.60
Bayes 0.51 ↑0.15 0.94 0.57 ↑0.00 0.94

Table 3: Performance of the unbiased and Bayesian estimators of the popu-

lation average e!ect µ. The right side of the table shows the average over the

statistically significant trials, i.e. |z→ij| > 1.96.

3.4 Graphical comparison
Tables 2 and 3 provide a broad overview of the performance of the naive and
Bayesian estimators. We will now study the performance in some more detail
both from the frequentist and Bayesian points of view. The frequentist point
of view means that we condition on the true e!ects ω→

ij and µ→
i . The Bayesian

point of view, on the other hand, means that we condition on the observed
e!ect b→ij.

We first consider the bias. Of course, the naive estimator b→ij is unbiased
both for ω→

ij and µ→
i so we do not need to study this further. We focus on

the bias of the Bayesian estimators ω̂→
ij and µ̂→

ij which are both shrinkage
estimators, in the sense that |µ̂→

ij| < |ω̂→
ij| < |b→ij|.

In the top left panel of Figure 3 we plot the estimation errors ω̂→
ij ↑ ω→

ij

versus the true e!ects in the trials ω→
ij. In the bottom left panel we plot the

errors µ̂→
ij ↑ µ→

i versus the true pooled e!ects µ→
ij versus. In the two right

panels, we plot the same estimation errors, but in both cases we put the
observed e!ects b→ij on the x-axis. We added the loess regression curves to
each of the 4 plots, which estimate the following conditional expectations

E(ω̂→
ij ↑ ω→

ij | ω→
ij) (top left panel of Figure 3)

E(µ̂→
ij ↑ µ→

i | µ→
i ) (bottom left panel of Figure 3)

E(ω̂→
ij ↑ ω→

ij | b→ij) (top right panel of Figure 3)
E(µ̂→

ij ↑ µ→
i | b→ij) (bottom right panel of Figure 3)
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Figure 3: The bias of the proposed Bayesian estimators. The two top panels

show ω̂→
ij ↑ ω→

ij. The two bottom panels show µ̂→
ij ↑ µ→

i . The two panels on the

left side show the frequentist bias, while the two panels on the right side show

the Bayesian bias.

The Bayesian estimators ω̂→
ij and µ̂→

ij are both biased in the frequentist sense,
that is, conditional on the true parameter value. This bias is apparent in the
two left panels Figure 3.

The two right panels paint a di!erent picture. They show the bias in
the Bayesian sense, that is, conditional on the observed e!ect. In this sense,
the bias is negligible! The small bias that remains is due to our choice of a
zero-mean prior while the average of the b→ij is slightly negative.

Figure 4 shows the di!erence of the squared errors between the naive and
Bayesian estimators. To be specific, in the top row we show these di!erences
for estimating the ω→

ij

(b→ij ↑ ω→
ij)

2 ↑ (ω̂→
ij ↑ ω→

ij)
2 (8)

and in the bottom row we show them for estimating the µ→
i

(b→ij ↑ µ→
i )

2 ↑ (µ̂→
ij ↑ µ→

i )
2. (9)

In both cases, positive values favor the Bayesian estimators. Again, we added
the loess regression curves, which now estimate the following conditional
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Figure 4: Di!erence in squared error of the naive and Bayesian estimators.

Top row: di!erence in squared errors for ω→
ij from (8). Bottom row: di!erence

in squared errors for µ→
i , from (9). The two panels on the left side show

the frequentist perspective, while the two panels on the right side show the

Bayesian perspective.
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expectations

E((b→ij ↑ ω→
ij)

2 ↑ (ω̂→
ij ↑ ω→

ij)
2 | ω→

ij) (top left panel of Figure 4)
E((b→ij ↑ µ→

i )
2 ↑ (µ̂→

ij ↑ µ→
i )

2 | µ→
i ) (bottom left panel of Figure 4)

E((b→ij ↑ ω→
ij)

2 ↑ (ω̂→
ij ↑ ω→

ij)
2 | b→ij) (top right panel of Figure 4)

E((b→ij ↑ µ→
i )

2 ↑ (µ̂→
ij ↑ µ→

i )
2 | b→ij) (bottom right panel of Figure 4)

The two panels on the left side of Figure 4 show the frequentist per-
spective, where we condition on the true parameter values. We see that the
Bayesian estimator performs better for small values of the parameter, while
the naive estimator performs better for large values. The two panels on the
right side of Figure 4 show the Bayesian perspective, where we condition on
the observed b→ij. We see that from the Bayesian perspective, the Bayesian
estimators always perform better.

3.5 Cross validation
We have done our best to make sure that the synthetic CDSR closely resem-
bles the true CDSR, so that the results of the previous sections also apply
to the true CDSR. However, we cannot exclude the possibility that there are
some systematic di!erences between the synthetic and true datasets which
a!ect the relative performance of the Bayesian and naive estimators. How-
ever, we can conduct some additional checks that do not require synthetic
CDSR.

First, since the estimates bij are unbiased for the ωij the RMSE is ap-
proximately

√
1

18342

∑
ij s

2
ij = 0.73, which agrees with the value of 0.74 from

Table 2. The bij are also unbiased for the µi, so the RMSE can be estimated
by

√
1

18342

∑
ij s

2
ij + ϑ 2i,mle = 0.84, which agrees well with the value of 0.85 in

Table 3.
Second the first column in Table 3 provides an approximation of the

di!erence in mean squared errors across the CDSR,

1

N

∑

ij

(bij ↑ µi)
2 ↑ (ω̂ij ↑ µi)

2, (10)

by the di!erence across the synthetic CDSR,

1

N

∑

ij

(b→ij ↑ µ̂i)
2 ↑ (ω̂→

ij ↑ µ̂i)
2 = 0.73↑ 0.26 = 0.48. (11)
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Despite µi not being observed, there is an alternative, direct way to esti-
mate (10). We start by constructing a third estimator of µi which is unbiased
and independent of both bij and µ̂ij. We leave out study j from meta-analysis
i and run a simple fixed e!ects meta-analysis on the remaining ni↑1 studies
to obtain an estimate µ̂↑j

i of the population average e!ect µi. This estimator
is unbiased for µi because the individual study estimates are. Moreover, it
is independent of both bij and µ̂ij because it is based on di!erent studies. In
[10], we proved the following proposition

Proposition 1. Consider three estimators T0, T1 and T2 of a parameter ϖ.
Suppose that, conditionally on ϖ, T0 is unbiased and independent of T1 and

T2. Then

E(T1 ↑ T0)
2 ↑ E(T2 ↑ T0)

2 = E(T1 ↑ ϖ)2 ↑ E(T2 ↑ ϖ)2, (12)

where the expectations are with respect to arbitrary distributions of T0, T1,

T2, and ϖ (as long as the expectations are well-defined and finite).

Now, if we take T0 = µ̂↑j
i , T1 = bij, T2 = ω̂ij and ϖ = µi, then it follows that

(as N approaches infinity)

1

N

∑

ij

(bij ↑ µi)
2 ↑ (ω̂ij ↑ µi)

2 ↗ 1

N

∑

ij

(bij ↑ µ̂↑j
i )2 ↑ (ω̂ij ↑ µ̂↑j

i )2. (13)

We can compute the right side directly from the original CDSR. We find that
it equals 0.51. This is reasonably close to the di!erence of 0.48 from Table 3.
This strengthens our confidence in the results from the synthetic CDSR.

4 Discussion

4.1 Using these results in applied research
Between-study variation of the treatment e!ect is often present in system-
atic reviews. Such heterogeneity may be due to di!erences in study popula-
tions, methodologies, or measurement techniques. In a random e!ects meta-
analysis the uncertainty due to between-study variation can be accounted
for, but it remains hidden when we have only a single trial. We propose a
Bayesian approach, which we refer to as a “meta-analysis of a single trial,”
where we estimate the distribution of treatment e!ects and heterogeneity
across 1636 meta-analyses from the Cochrane Database of Systematic Re-
views (CDSR). Taking these estimated distributions as prior information
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provides a substantial improvement in performance both for estimating the
e!ect in the trial (Table 2) and for estimating the population average e!ect
among similar trials (Table 3). The Bayesian meta-analysis of a single trial
can easily be done in R by using package baggr [11].

The Bayesian approach results in a large reduction of the root mean
squared error across the trials of the CDSR compared to the usual unbiased
estimator. This is to be expected for shrinkage estimation, and we have
previously obtained similar results [10]. Here, we want to draw special at-
tention to the substantial lack of coverage of the usual confidence interval for
the population average e!ect; see Table 3. This is due to failure to account
for the heterogeneity. In contrast, the coverage of the Bayesian uncertainty
interval is equal to its nominal level.

Figure 1 shows that a single trial essentially never provides certainty
about the sign of population average e!ect. This is a strong argument for
the need for replication studies.

Since our prior distributions refer to the population of trials in the CDSR,
our posterior statements can be interpreted in terms of random sampling
from the CDSR. So, for example, we can say that if we randomly select a
trial from the CDSR (or from the population of all the trials that could be
in the CDSR) and we observe that the estimated treatment e!ect is b = 0.7
with standard error 0.7, then the probability that the true e!ect in that trial
is also positive is 74% (cf section 2.2)

About 75% of the meta-analyses in the CDSR have 5 or fewer studies
[2]. When a meta-analysis consists of so few studies, it is clear that the
heterogeneity cannot be estimated reliably without additional information
[5]. Similarly as in the case of a single study that we outlined here, we
should expect that doing a Bayesian meta-analysis with informative priors
will improve inference. We intend to further evaluate the performance of this
approach in a separate study.

4.2 Bayesian meta-analysis
Statistical practice—Bayesian and otherwise—has incoherence with respect
to the number of studies K in a meta-analysis or, more generally, the number
of groups in a multilevel model. We can see this by starting with a large K
and then seeing what happens as it decreases.

When K is large, say larger than 10, the study-level variance and thus
the optimal shrinkage factor can be well estimated from the data, or if the
meta-analysis includes individual and study-level predictors, the unexplained
group-level variance can be well estimated.
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As K becomes smaller, there is more uncertainty in the study-level vari-
ance parameter, and prior information on that parameter becomes more rel-
evant to determining the amount of shrinkage. When K is between 5 and 10,
the prior on ϑ can make more of a di!erence: first by providing area-specific
prior information and second through the regularization properties of weakly
informative priors that (probabilistically) constrain the low and high ends of
the distribution. A regularizing prior on the high end can be necessary to
reduce the upper tail of the posterior for ϑ ; in full Bayesian inference with a
flat prior, the resulting long tail manifests itself by giving some probability of
essentially no shrinkage, leading to wide uncertainties for the e!ects in indi-
vidual studies. If ϑ is estimated using a marginal posterior mode, it can also
be helpful to use zero-avoiding priors [1] as otherwise the point estimate for
ϑ can be very noisy (zero in some cases and high in others), leading to meta-
analyses that uncontrollably swing between complete pooling and very little
shrinkage in otherwise similar cases. Another advantage of an informative
prior is that it reduces the influence of one or two outlying studies.

When K is very small, between 3 and 5, it is still possible to perform
Bayesian inference on ϑ with a flat prior, but the resulting posterior mode
is very noisy and the full Bayesian posterior for ϑ will have a long right
tail [3], and so in practice an informative prior for the group-level variance is
necessary to avoid the meta-analysis procedure yielding unreasonable results.
Setting ϑ equal to zero to perform a so-called fixed or common e!ects meta-
analysis amounts to using a extremely strong and unrealistic prior.

With K = 2, the mathematical situation changes: a flat prior on ϑ yields
an improper posterior distribution with an infinite right tail. This is re-
lated to the result from James-Stein theory that the no-shrinkage estimate
is admissible when K < 3. In practice, though, there is no sharp boundary
between 2 and 3 studies, as in either case we want to be using a strong prior
for ϑ . At K = 2 we should expect the prior for ϑ to dominate to the extent
that the amount of shrinkage is determined much more by the prior—that
is, by the population of studies being considered as the reference class—than
by the observed spread in the data.

When K = 1, the problem doesn’t look like meta-analysis at all: it is
just inference from a single study. This leads to the paradox that removing
information can be expected to decrease reported uncertainty. The paradox is
resolved if we note that the estimand has changed. The solution is to consider
questions of meta-analysis and between-study variation even in a single study.
In other words, this means placing the problem in a hierarchical context: even
when multiple data sources are not available, we can still include a prior on
between-study variation. This was already going to be necessary with K = 2
or 3, so why not do this with K = 1 also?
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Finally, K = 0 corresponds to the setting where no studies are available
on a problem of interest, so that the posterior is determined entirely by the
prior. This can be viewed as a sort of thought experiment, representing the
information being assumed from nothing but the general class of problems
under study.

5 Reproducibility
The results in this paper are fully reproducible with the R code provided
in GitHub repository at github.com/wwiecek/singletrial. The data are
publicly available at https://osf.io/xjv9g/. Below we provide the code
snippet for calculating probability of positive e!ects in a trial or population;
see the example in section 2.2.

set.seed(123)
library(baggr)
bg <- baggr(data.frame(tau=0.7,se=0.7),

prior_hypermean=student_t(3.8,0,0.48),
prior_hypersd=lognormal(-1.44,0.79))

print(bg)
draws <- as.data.frame(bg$fit) # get posterior draws
mean(study_effects(bg)[,1,1] > 0) # positive effect in the trial?
mean(hypermean(bg) > 0) # positive pooled effect?
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