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ABSTRACT

Label bias occurs when the outcome of interest is not directly observable and instead, modeling is
performed with proxy labels. When the difference between the true outcome and the proxy label is
correlated with predictors, this can yield systematic disparities in predictions for different groups of
interest. We propose Bayesian hierarchical measurement models to address these issues. When strong
prior information about the measurement process is available, our approach improves accuracy and
helps with algorithmic fairness. If prior knowledge is limited, our approach allows assessment of the
sensitivity of predictions to the unknown specifications of the measurement process. This can help
practitioners gauge if enough substantive information is available to guarantee the desired accuracy and
avoid disparate predictions when using proxy outcomes. We demonstrate our approach through practical
examples.
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1 INTRODUCTION
In the social sciences, measurement is often indirect, and researchers use proxy outcomes (Adcock and
Collier, 2001; Knox et al., 2022). Even seemingly objective outcomes such as suicide rates can be
systematically distorted (Douglas, 1967). Sociological accounts of the processes with which data are
collected highlight the unavoidable imperfections of data more broadly (Starr, 1987). The use of imperfect
proxies for the outcome can reduce the accuracy of predictions that are relevant to downstream decisions,
possibly underserving specific subgroups of the population (Obermeyer et al., 2019; Fogliato et al., 2020;
Mullainathan and Obermeyer, 2021). We propose to mitigate these problems by modeling the relationship
between proxy and true outcomes with Bayesian measurement models.

Consider the example of building a statistical model to predict diabetes risk using demographic and
health information from survey data. The goal of building such a model is to be able to cheaply identify
patients who are at risk of diabetes and who should undergo more costly and time-consuming testing. The
model should be accurate and calibrated. If the model underpredicts the risk for certain groups of people,
then decisions based on it can lead to these groups being underserved.

One challenge in this example is that we are only given the diagnosis, not true underlying disease
status. There are several potential sources of error (usually referred to as label bias) that this proxy
outcome may introduce into a model. If the measurement error—the difference between the proxy
outcome (survey response) and the true outcome (being diabetic)—is correlated with a predictor, then
prediction errors can be correlated with that predictor. We demonstrate with a simple example in a linear
regression setting in Section 2.1 and return to the example of diabetes risk in Section 4.

There are various ways of dealing with label bias in specific contexts (Jiang and Nachum, 2020;
Wang et al., 2021; Knox et al., 2022). Label bias often degrades prediction accuracy and, when the
measurement errors are correlated with the covariates, leads to systematic errors in prediction. In the
context of predicting risk, these systematic disparities in prediction are referred to as miscalibration
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(Rothblum and Yona, 2023) and have been shown to negatively impact the utility of downstream decisions
(Van Calster and Vickers, 2015; Parastouei et al., 2021). Label bias is especially problematic when
measurement errors are correlated with membership to a protected group, which is often the case in
social science applications (Biderman and Reiss, 1967; Fang et al., 2022; Zanger-Tishler et al., 2024)
or the healthcare sector (Eneanya et al., 2019; Cerdeña et al., 2020; Diao et al., 2021; Basu, 2023). In
this situation, decisions based on these predictions can lead to some communities being under-served on
average, thus violating certain conceptions of algorithmic fairness (Dwork et al., 2011; Hardt et al., 2016;
Corbett-Davies et al., 2023).

Zanger-Tishler et al. (2024) show that in the presence of label bias, the addition of features may
deteriorate prediction accuracy on the true labels of interest. In particular, if a feature’s correlation with the
true outcome and proxy outcome, conditional on the other covariates, have different signs, then including
that feature in a regression will deteriorate predictive accuracy. This can occur when a feature is only
weakly related with the true outcome but both this feature and the outcome are causally constitutive of the
remaining features. Zanger-Tishler et al. (2024) demonstrate this situation with the relationship between
criminal behavior (the outcome of interest), arrests (the proxy outcome), and the level of policing in a
neighborhood; we continue studying this example in Section 2.2.

In the present paper, we demonstrate that, in the setting where dropping a predictor would increase
prediction accuracy, we can increase prediction accuracy even further using a measurement model and
that, with sufficient knowledge about the data-generating process, measurement models can mitigate
systematic disparities in prediction. Our work highlights the benefits of making explicit assumptions about
measurement errors, even in purely predictive settings. Measurement models are a way to make these
assumptions transparent and allow users to critically question if enough domain knowledge is at hand to
make the proxies valid and to ensure that downstream decisions based on them do not underserve specific
groups of interest. While measurement models, in principle, allow researchers to adjust predictions to
mitigate disparities and achieve decisions that improve outcomes for particular groups, the inclusion of
membership information to protected groups may be problematic in itself (Goel et al., 2017) and violate
the legal doctrine of “no disparate treatment.” We do not address this tension here; in any application with
label bias of this sort, both societal and legal considerations will be crucial.

Building measurement models tailored to specific applications has been made easier by recent advances
in probabilistic programming languages such as Stan (Stan Development Team, 2023), where reasonably
general Bayesian models can be set up in simple, user-friendly language, allowing researchers to represent
prior knowledge, including uncertainty, about the measurement process and any discrepancy between the
proxy and the true outcome in a statistical model.1

In Section 2, we introduce hierarchical Bayesian measurement models and discuss general method-
ological considerations. We go on to discuss pitfalls of correlated measurement error in the simple case
of linear regression, where label bias can be studied analytically (see Section 2.1). After presenting our
proposed methodology, we demonstrate the use of Bayesian measurement models in two applications. In
Section 3, we study the simulated criminal justice model considered in Zanger-Tishler et al. (2024). Next,
in Section 4 we consider the problem of predicting diabetes risk based on diagnosis information. We use
public health research on diabetes prevalence to adjust for the fact that among diabetics, diagnoses are
more likely to be made in those with healthcare access. By adjusting predictions for healthcare status,
we achieve more accurate and equitable predictions than possible with regression on the proxy labels.
While the examples are chosen to resemble real-world applications, they are not supposed to be case
studies. Rather, they are chosen to showcase how our proposed methodology— Bayesian measurement
models—might improve on classical techniques dealing with label bias.

2 MEASUREMENT MODELS FOR LABEL BIAS
In situations in which only a noisy proxy y of the desired outcome of interest u is available, some model,
explicit or implicit, of the measurement process is necessary for accurate and reliable prediction. The
classical approach of using regression E(y|X) on the proxy labels to predict the true outcome u implicitly
equates the outcome of interest and the observed proxy outcome. In the case of linear regression, this
yields accurate inference if the measurement error is mean independent of the covariates X , see Section 2.1.

1All models and code to reproduce our results are available under
https://github.com/JonasMikhaeil/HierarchicalBayesianMeasurementModels
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Figure 1. Some measurement models for label bias

Often there is good reason to believe this is not the case. Measurement models in general, and Bayesian
hierarchical models in particular, are a useful tool to model more complicated measuring processes and
account for noise that is not independent of the covariates.

The general idea behind measurement models (see Figure 1) is to introduce the true outcome u as a
latent (unobserved) quantity. Prior knowledge about the application is then used to model the relationship
between the covariates X , the latent outcomes of interest u, and the observed proxies y. Because parts
of the variables remain unobserved, some of the model parameters are not (or only partially) identified
(Gustafson, 2015). Measurement models thus rely on domain knowledge in two ways: The measurement
process has to be sufficiently understood to supply a model structure (which includes distributional
assumptions about the latent outcomes) as well as reasonable values of the non-identified parameters of
the model. We give guidance on how to determine which parameters require strong priors in Appendix C.

For the identified part of the model, classical advice about Bayesian workflow (Gelman et al., 2020a)
applies. In particular, posterior predictive checks (Rubin, 1984; Gelman et al., 1996) can be used to
asses model fit. If parametric assumptions are too rigid, non-parametric components (such as Gaussian
processes or splines) can be used. Another way of adding flexibility and moving beyond the limitations of
parametric models is to add unit-specific error terms (such as in the threshold model of Section 2.3).

When only limited prior knowledge is available, non-identified parameters should be treated as
sensitivity parameters in a sensitivity analysis (Richardson et al., 2011). Such an analysis is performed in
Section 3.3, which details the impact of misspecification of the parameters in a stylized example where
the data-generating process is known. Gelman and Hennig (2017) discuss the use of informative priors in
Bayesian practice more generally and the value of transparency in scientific endeavors.

Measurement models are flexible and can be tailored to the application of interest. Here we present
two models, a leakage model for linear regression, which we will use to model a stylized example of
arrests and crime (see Section 3), and a threshold model for logistic regression, which we will apply to
estimate diabetes risk based on diagnosis data (see Section 4). Before we do so, we will illustrate the
pitfalls of dependent label bias explicitly in the case of linear regression.

2.1 Simple illustration: Label bias in linear regression
In this section, we use the simple case of linear regression to analytically demonstrate issues that can arise
when using regression on proxy outcomes to predict true outcomes. The validity of this classical approach
rests on the assumption that the measurement error is uncorrelated with the covariates. We demonstrate
that if this assumption is inaccurate, predictions can be systematically inaccurate. Throughout this section,
we treat the covariates X as random (Buja et al., 2016, 2019; Rosset and Tibshirani, 2020) allowing them
to be correlated with the measurement errors.

We provide three main formulas. First, in Proposition 1, we provide a formula for the error of the
linear regression solution when fitting on a proxy as opposed to the true outcome. While our proposition
is focused on regression on proxies, it is similar to the well-known omitted variable bias (Wooldridge,
2010). Proposition 2 demonstrates that when the proxy is correlated with predictors, then the prediction
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Figure 2. Illustration of label bias in linear regression. (Left) If the measurement errors are uncorrelated
with the covariate, regression yields unbiased and consistent estimates. (Right) In the case of dependent
measurement errors, regression estimates are biased and inconsistent. Prediction accuracy is degraded.

error is also correlated with the predictors. Finally, Proposition 3 provides a lower bound on the prediction
error when using a proxy outcome in terms of the prediction error when using the true outcome. The
primary purpose of these propositions is to demonstrate the systematic errors that can arise when using
proxy labels in a simple setting that can be studied analytically. Proofs can be found in Appendix A.

We start by assuming that some true outcome, u, and a proxy outcome, y, are n-dimensional random
vectors. We also assume that X is an n×m random matrix of centered covariates with a leading column
of ones such that E(X⊤X) is full rank, i.e., the covariates are not multicollinear. We assume (X ,u,y)∼ P
where P is some probability distribution over the covariates, true outcome, and proxy outcome.2 We
define β to be the expected solution to linear regression with covariates X and data u. That is,

β = argmin
w

E(∥Xw−u∥2). (1)

The expected solution to the linear regression changes when using the proxy outcome y and the same
covariates X . The expected solution with a proxy outcome is given by the following proposition.

Proposition 1 (Proxy outcome regression solution) Let (X ,u,y)∼ P. Then,

argmin
w

E(∥Xw− y∥2) = (1+ γ)β +α (2)

where the vector [α γ] ∈ Rm+1 is the expected solution to the linear regression with outcome u− y (the
measurement error) and n× (m+1) matrix of covariates [X u]. That is,

[α γ] = argmin
w

E(∥Mw− e∥2) (3)

where e is the measurement error defined by e = u− y and where M is defined to be the n× (m+ 1)
random matrix [X u].

2We assume that the expectations taken with respect to P in the proofs of Section A all exist.
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That is, if the measurement error e is uncorrelated with the covariates and the outcome, then, in expectation,
β is recovered from the proxies. On the other hand, correlation between the measurement error and the
covariates or the outcome will introduce error in the approximation of β . That error, γβ +α , is obtained
from combining (1) and (2). This can pose problems in causal investigations (Knox et al., 2022) and even
in predictive settings. The right panels of Figure 2 provide an illustrative example of error introduced by
the use of a proxy outcome in the linear regression setting. We demonstrate the case where m = 2, i.e., X
consists of an intercept and one predictor.

When label bias introduces error into the solution to a linear regression, the predictions made using that
linear regression will be systematically distorted. We define the predictions as Ê(y|X) = X(X⊤X)−1X⊤y.
The following proposition provides a formula for the covariance between the covariates, X , and prediction
error, u− Ê(y|X).

Proposition 2 (Covariance of covariates and prediction error) Let (X ,u,y)∼ P. Then,

E[(u− Ê(y|X))⊤X ] = −(γβ +α)⊤E(X⊤X) (4)

where β is defined in (1), and α,γ are defined in (3).

That is, if there is correlation between the covariates and the measurement error u− y, then the prediction
error will also be correlated with the covariates. This shows that the use of proxy labels may introduce
systematic disparities in predictions. These disparities are liable to negatively affect downstream decisions
based on them (Van Calster and Vickers, 2015; Parastouei et al., 2021) and may lead to protected groups
being underserved, thus violating certain conceptions of algorithmic fairness(Dwork et al., 2011; Hardt
et al., 2016; Corbett-Davies et al., 2023).

In our last proposition, we compare prediction error when fitting with the true outcome to prediction
error when using a proxy. In particular, we provide a lower bound for the mean squared error (MSE) in
the true outcome using linear regression predictions trained on a proxy in terms of the MSE in the true
outcome using linear regression trained on the true outcome. We show that label bias degrades prediction
accuracy when using linear regression because of the systematic disparities in prediction caused by the
correlation between the measurement error and the outcome u and covariates X .

Proposition 3 (Prediction error with true outcome versus proxy) Let (X ,u,y)∼ P. Then we have

MSE(u, Ê(y|X))≥ MSE(u, Ê(u|X))+(γβ +α)⊤E(X⊤X)(γβ +α)

where β is defined in (1), and α,γ are defined in (3).

In Section 3 and 4, we will see that given sufficient domain knowledge these systematic disparities
in prediction can be mitigated, improving both overall prediction accuracy and reducing the risk of
exacerbating disparate outcomes of downstream decisions.

2.2 Leakage model for linear regression
Measurement models are tailored to specific applications and depend on both knowledge about the
structure and the parameters of the measurement process. In this section, we describe a leakage model
for linear regression based on the stylized criminal justice example we will study in Section 3. Suppose
we observe a proxy label yt at two different time points t ∈ {1,2}. These proxies depend both on the
observed covariates X and the true outcomes ut . In the criminal justice example, arrests are proxies yt
for the true outcome ut of crime. Not all crime leads to arrests, so there is a degree of leakage between
proxies and latent outcomes of interest. We assume that the proxies do not influence each other; that
is, the entire temporal relationships in the model are driven by the dependence of u2 on u1.3 We are
interested in learning this relationship and inferring ut based on yt and X . This assumption is based on
our knowledge of the data-generating process for the example we are studying here (see Figure 3). In
other situations, we might assume that the proxies at time t = 1 influence the outcome at time t = 2, for
example, arrests might deter future crime. Measurement models are flexible enough to allow for this and
our model is easily extended to this case.

3The center panel of Figure 1 has an arrow from u1 to u2, implying a causal relationship if the figure is understood as a directed
acyclic graph. Our model, however, does not rest on this assumption and is still applicable if u1 and u2 are just assumed to be
correlated.
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This situation studied here is illustrated in the center panel of Figure 1 and can be modeled by the
following Bayesian hierarchical model:

y1|u1,α,γ,σy ∼ normal(Xα + γu1,σy)

y2|u2,α,γ,σy ∼ normal(Xα + γu2,σy) (5)

u1|βσu ∼ normal(Xβ ,σu)

u2|u1,β ,η ,σu ∼ normal(Xβ +η(u1 −Xβ ),σu
√

1−η2),

with appropriate priors on all parameters. Because the true outcomes (u1,u2) remain unobserved, this
model is only partially identified (Gustafson, 2015). We give guidance on identifying parameters that
require strong priors in Appendix C. In this example, weak priors suffice for (α , η ,σy) when we use
strong priors on (β ,γ , σu). We will use this model for a stylized example of criminal behavior and arrests
in Section 3.

2.3 Threshold model for logistic regression
Here we develop a threshold model for logistic regression. We deploy this model for diabetes prediction
in Section 4.

Suppose we observe binary proxy labels y ∈ {0,1} instead of a binary outcome of interest u3. The
proxies are indicative of the true outcome but they are not fully reliable, that is there are cases of u3 that
y does not indicate. In our diabetes example, u3 indicates diabetes disease status. Not everyone with
diabetes is diagnosed, however, so diagnosis y is not a fully reliable proxy.

This situation can be modeled by introducing two (continuous) latent characteristics u1 and u2 that
cause u3 and y, respectively, by crossing a threshold:

y =

{
1 if u2 ≥ 0
0 else

u1|β ∼ logistic(Xβ ,1)

u2 = u1 − t(X)− e (6)

u3 =

{
1 if u1 ≥ 0

0 else

e ∼ normal+(0,0.1).

The thresholds t(X) can depend on covariates X allowing for disparities in how accurate the proxies are
for different subpopulations. The structure of the model is illustrated in the right panel of Figure 1.

In the diabetes example of Section 4, the latent variable u1 can be understood as quantifying the
severity of diabetes. We assume that for uninsured people symptoms have to be more severe to be
diagnosed. This is modeled by introducing insurance-dependent thresholds t(health insurance) that offset
the latent characteristic u2 that determines diagnosis. By introducing e > 0, we allow for idiosyncratic
behavior that impacts the proxy, e.g. patient’s personal propensity to visit a doctor.

We assume that there are no false positives, that is, u3 ≥ y. In essence, this assumes that people are
not mistakenly diagnosed with diabetes and that their response about their diagnosis is truthful. If we
have reasons to believe this to be false, we could allow t(health insurance) to be random, leading to false
positive diagnoses for a fraction of the population.

The latent characteristic u1 depends linearly on the covariates, so the threshold model closely resembles
ordinary logistic regression (Gelman et al., 2014) but allows for discrepancies between the outcomes of
interest u3 and the observed labels y.

In Section 4, we use this model to predict diabetes risk based on diabetes diagnosis with varying
thresholds based on health insurance status.

3 STYLIZED EXAMPLE: CRIMINAL BEHAVIOR AND ARRESTS
Figure 3 portrays the data-generating process for a stylized example of label bias in (Zanger-Tishler et al.,
2024). This model simulates individual-level behavior (u0 and u1) and arrest outcomes (y0 and y1) at two
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Figure 3. Data-generating process for Zanger-Tishler et al. (2024) stylized example of criminal behavior
(true outcome) and arrest (proxy outcome). Observed variables are in orange.

time points. Arrests depend both on an individual’s behavior and the individual’s neighborhood (X). This
is a linear structural equation model,

X ∼ normal(0,σX )[
u0
u1

]∣∣∣∣X ∼ MVN
([

βX
βX

]
,

[
σ2

u δ

δ σ2
u

])
(7)

y0|X ,u0 ∼ normal(αX + γu0,σy)

y1|X ,u1 ∼ normal(αX + γu1,σy).

Zanger-Tishler et al. (2024) show how to set the variances of the exogenous variables such that the
remaining variables (X , u0, u1, y0, and y1) are standardized and can be interpreted as the extent to which
an individual differs from the population average. For example, u0 is interpreted as how criminal an
individual is compared to the population, and X as the level of police enforcement in a neighborhood.

The label bias in this problem arises because only arrests (y0 and y1) and neighborhood (X) are
observable. Criminal behavior, (u0,u1), which is the true outcome of interest, is not observable and
therefore arrests are used as a proxy for criminal behavior. We have two regression models, a simple one
E(y1|y0) and a complex one E(y1|y0,X). Zanger-Tishler et al. (2024) show (see Corollary 1) that it is
preferable (in terms of expected squared difference between true and predicted outcome) to not include
an additional feature if the correlation of that feature with the true and proxy outcome conditional on
other covariates have differing signs. For the stylized example here, they show that this is the case for the
inclusion of neighborhood, X , in a model for predicting criminal behavior based on arrests y0 when the
correlation between neighborhood and criminal behavior, β , is small.

This simple example illustrates the theoretical insight of Zanger-Tishler et al. (2024), that the inclusion
of additional features can degrade the predictive accuracy of regression models in the presence of label
bias.

3.1 Bayesian measurement model
Here we propose to use the leakage model for regression introduced in Section 2.2, which improves on
both the simple and complex estimators of Section 3. In this stylized example, the data-generating process
is known (see Figure 3) and corresponds to the model structure of our measurement model; compare
Equations (5) and (7). Making an informed decision about the model structure is the first step when using
a measurement model. The second step is the choice of priors. While for some parameters weak priors
are sufficient, the model is only partially identified (Gustafson, 2015) necessitating strong priors on the
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Figure 4. Root mean squared error for simple and complex regression models trained on proxy outcomes
in comparison with a Bayesian error model. The prediction accuracy of the error model is superior to
both regression models for all β and comparable to an oracle model (trained on the true outcomes).

non-identified part of the model (see Appendix C).4

σy ∼ normal+(0,1)
α ∼ normal(0,1)
η ∼ normal(0,0.2)
β ∼ normal(βtrue,0.1)
γ ∼ normal(γtrue,0.1).

The strong priors are informed by our knowledge of the data-generating process. In general, when
prior knowledge is limited, the non-identified parameters of the model should be treated as sensitivity
parameters in a sensitivity analysis. Section 3.3 performs such a sensitivity analysis and investigates the
impact of misspecification of the nonidentifiable parameters.

Here we have implicitly switched from a prediction setting, in which we are only interested in
E(u1|y0,X), to an inference setting where we are modeling the joint distribution P(u0,u1,y0,y1). If we
require predictions on a set of new variables for which only the features are observed, we can do so by
incorporating the unobserved outcomes as missing variables.

Figure 4 shows that the error model performs better than both of the regression models with its
performance being comparable with a regression on the true labels.

In practice, the measurement process might be more complicated than in this stylized example. For
example, we might have a multitude of correlated covariates each impacting the measurement error
to varying degrees. Our approach is flexible enough to cover such cases, however, with increasing
complexity, it may become less likely that sufficient domain knowledge is available to tightly constrain
all non-identifiable parameters. Gelman and Hennig (2017) discuss the value of transparency and the
use of informative priors in practice more generally. While this may limit the efficacy of our method, it
also limits the applicability of classical methods. If the measurement process cannot be accounted for,
prediction accuracy can be arbitrarily degraded (see Proposition 3). Domain knowledge is crucial for
predictions with label bias. If the structure of the measurement process is known but the values of its
non-identifiable parameters are not, our method offers two advantages over classical methods: For one,
using wide priors, we can propagate our uncertainty about the measurement process to the predictions.
Secondly, we can vary these parameters systematically to check the sensitivity of the predictions to them;
see Section 3.3. Neither of these can easily be done for classical methods, risking practitioners to be
overly confident in their predictions under label bias.

4We assume σu is known.
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Figure 5. Correlation between prediction error u1 − û1 and neighborhood police enforcement X for
simple and complex regression models trained on proxy outcomes in comparison with a Bayesian
measurement model. While both regression models produce predictions that are systematically biased
based on neighborhood, the measurement model has prediction errors uncorrelated with neighborhood.
The dashed line shows that without using neighborhood information, the measurement model also
produces biased predictions.

3.2 Disparate predictions
In many applications systematic disparities in prediction between different subgroups can negatively
affect downstream decisions (Van Calster and Vickers, 2015; Parastouei et al., 2021), and, depending on
our decision process, lead to decreased fairness (Dwork et al., 2011; Hardt et al., 2016; Corbett-Davies
et al., 2023). For both the simple and complex regression models studied in (Zanger-Tishler et al., 2024),
prediction errors are correlated with the degree of policing in a neighborhood X , i.e. they systematically
under- or overpredict crime rates based on neighborhood. This correlation strongly depends on the
relationship between neighborhood and behavior as well as arrests. On the other hand, prediction errors
of the Bayesian measurement model are uncorrelated with neighborhood X as long as the neighborhood is
accounted for in the model and priors are specified correctly (see Section 3.3). Removing neighborhood
information from the model slightly decreases predictive performance but introduces dependence between
prediction errors and neighborhood X . We plot correlations between prediction errors and neighborhood
in Figure 5.

This shows that modeling the measurement process is key for both overall accurate predictions as
well as minimizing systematic disparities in prediction.

3.3 The impact of misspecification
The reliability and accuracy of predictions based on proxies crucially depend on the validity of assumptions
we make about the measurement process. In the previous section, we have explored the benefits of
measurement models when we can correctly account for the measurement process. While there are
real-world examples in which this can be done (see Section 4), this may be unrealistic in the case of
predicting crime rates. Despite various proxies being available (for example data on self-reported criminal
offending (Bureau of Labor Statistics, 2019)), the true crime rate is empirically inaccessible. Predictions
of the true crime rates thus hinge on untestable assumptions that are often obscured by being stated only
implicitly, as is often the the case when using regression trained on proxy labels.

Measurement models, however, force us to make our assumptions transparent and allow to test
the prediction’s sensitivity to them. Figure 6 shows the impact of misspecifying the (non-identifiable)
parameters β and γ in our measurement model (5). While misspecification of either leads to degraded
prediction accuracy, correctly specifying β—the relationship between neighborhood policing and criminal
behavior—is paramount to mitigate systematic disparities in prediction. In the case of regression models
that use proxies to predict crime, these assumptions are often only implicit (and cannot be easily varied),
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Figure 6. Impact of multiplicative misspecification (m× true parameter) of γ (upper row, γtrue = 0.4)
and β (lower row, βtrue = 0.2) on predictive performance and disparity in prediction accuracy with
respect to neighborhood police enforcement.

with Zanger-Tishler et al. (2024) criterion being a step in the direction of transparency. Assumptions
being made only implicitly, however, neither implies the results to be agnostic or robust with regards to
the underlying measurement process. Figure 4 and 5 show that the accuracy and systematic disparities
in prediction of both the simple and complex model (as well as the decision which one to choose for
prediction) depend on the underlying relationship of crime and neighborhood policing as well.

Given that criminal behavior, let alone its relationship with policing, is virtually impossible to quantify,
predicting crime based on arrests is always skewed by our prior assumptions about crime (Biderman and
Reiss, 1967; Hinton, 2016).

4 EMPIRICAL EXAMPLE: HEALTH INSURANCE AND DIABETES
It is estimated that more than 10% of the U.S. population has some form of diabetes (Centers for Disease
Control and Prevention, 2021). While early identification of diabetes is crucial as behavioral counseling,
dietary interventions, increased physical activity, or pharmacologic therapy may improve future health
outcome (Davidson et al., 2021), testing for diabetes also comes with monetary and personal costs. In
practice, this necessitates risk-based screening decisions (Duan et al., 2021). In the case that diagnosis
information is used to infer the model, predictions will suffer because of label bias. Due to a variety of
factors, many people with diabetes have never been diagnosed, making diagnosis an imperfect proxy.
For example, it has been estimated that 29% of American diabetics without health insurance remain
undiagnosed compared to only 16% with some kind of health insurance (Fang et al., 2022), a difference
that can easily be explained by impeded access to healthcare services. Our analysis is based on publicly
available data from the National Health and Nutrition Examination Survey (Centers for Disease Control
and Prevention, 2022), which provides information about both diagnosed (self-reported information of
having been diagnosed with diabetes in the past) and undiagnosed diabetes based on measured blood
sugar levels. A ready-to-analyze version of this dataset is provided by Coots et al. (2023). This offers
an empirically realistic situation of label bias with the necessary ground-truth data to evaluate the
advantages and disadvantages of a measurement model, as compared to simple regression or the approach
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Figure 7. Predicted diabetes risk against diabetes rate against observed diabetes rate estimated with
logistic regression on the true outcomes for a simple (red), complex (blue), and measurement model
(orange) by health insurance status (darker hue: insured, lighter hue: uninsured). For both insured and
uninsured people, our measurement model performs better than both regression models closely matching
predictions of logistic regression on the true outcomes (dashed gray line).

recommended by Zanger-Tishler et al. (2024) to drop a predictor.
The left and center panels of Figure 7 show that this situation suffers from the phenomenon described

in Zanger-Tishler et al. (2024): inclusion of information on the insurance status degrades predictive
power when using regression on the proxy labels. For both models, label bias leads to underestimation of
diabetes risk. If this bias is not taken into account, decisions based on an optimal treatment threshold are
liable to be harmful (Rothblum and Yona, 2023) because people who would benefit from treatment will
not receive it. When insurance status is included as a covariate, disparate predictions are prone to lead to
decisions that further under-serve the uninsured population, violating conceptions of algorithmic fairness
(Dwork et al., 2011; Hardt et al., 2016; Corbett-Davies et al., 2023).

We model this situation with the measurement model presented in Section 2.3. Here, y are binary
indicator for diabetes diagnosis (proxy labels) and u3 indicates diabetes (true outcomes, assumed to not be
observed). u1 is a latent variable that can be understood as the underlying severity of diabetes. We assume
that for uninsured people, the severity of symptoms has to be higher to be diagnosed. To account for that,
we introduce health insurance dependent thresholds t(health insurance) that offset the latent characteristic
u2 that determines if a patient is diagnosed.

This measurement model critically depends on the thresholds t(health insurance), which cannot be
inferred from diagnosis data alone. We can, however, use prior knowledge, as in (Fang et al., 2022), to
inform our choice. In Appendix B.1, we discuss in detail how we determine the thresholds. The right
panel of Figure 7 shows that this measurement model based on diabetes diagnosis correcting for impeded
access to health care services is well calibrated and predicts diabetes risk better than either a simple or
complex regression model. Table 1 in Appendix B shows improved prediction quality across a range of
metrics for classification.

5 CONCLUSION AND DISCUSSION
The use of imperfect proxies as dependent variable is ubiquitous in quantitative research in the social
sciences. These analyses suffer from label bias, which is often assumed to be a minor problem. If the
measurement error is correlated with covariates, label bias can have detrimental effects even in purely
predictive settings. In these situations, predictions will suffer from systematic disparities—that ,is, we
will over- or underpredict the outcome systematically based on the covariates. If the measurement errors
are correlated with membership in a protected group, these systematic disparities in prediction will
not only lead to degraded prediction accuracy but may also be a concern from an algorithmic fairness
perspective. In our diabetes example, see Section 4, label bias leads classical predictions of the diabetes
risk to systematically underpredict true risk, and more so for uninsured people. Decisions based on these
estimates will consequently under-serve uninsured people.

In this paper we advocate the use of Bayesian measurement models to mitigate these problems. We
show that measurement models are preferable to classical regression models in two examples: a stylized
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criminal justice example, in which the data-generating process is known (see Section 3), and a real-world
example where we estimate diabetes risk based on diagnosis information (see Section 4).

We find that when sufficient knowledge about the measurement process is available, these models can
mitigate systematic disparities in prediction allowing for more accurate and fairer downstream decisions.
Our method explicitly requires the user to model the measurement process. This highlights the importance
of assumptions about the relationship between measurement error with covariates for reliable, equitable,
and accurate predictions. While these assumptions often remain implicit in classical regression methods,
our measurement model helps users to make them more transparent. With this transparency also comes
the benefit of being able to test the sensitivity of the predictions to the assumed measurement process.
This kind of sensitivity analysis is not easily available for classical methods. Overall, this can allow users
to better question if enough domain knowledge is at hand to judge if the proxies are useful and to ensure
the fairness of downstream decisions based on them.

While we advocate for modeling the measurement process to mitigate systematic disparities in
prediction to achieve fairer downstream decisions, we need to firmly state that this cannot be taken as
general advice. Using information necessary in the modeling of proxies, such as protected class status,
may be in itself problematic and violate the legal doctrine of “no disparate treatment” (for example the
Equal Protection Clause of the U.S. Constitution’s Fourteenth Amendment). This is a fundamental tension
and cannot be resolved in general. Any application based on data that is skewed by societal injustices will
require careful political, social, and legal consideration. Our paper should, however, be a general warning
against the uncritical uses of classical regression methods when faced with this kind of data: in these
situations, predictions can suffer from systematic disparities, and decisions based on them can further
exacerbate the social injustice that skewed the data.
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A PROOFS OF SECTION 2.1
This appendix includes proofs of the propositions of Section 2.1. For readability, we restate the proposi-
tions before giving their proofs.

For the remainder of this section we assume that X is a random n×m matrix, and u,y ∈ Rn are
random vectors such that (X ,u,y)∼ P where P is some probability distribution such that the moments
taken throughout this section exist. In this random-X setting (Wooldridge, 2010; Buja et al., 2016; Rosset
and Tibshirani, 2020), the classical (fixed-X) orthogonality relations between covariates and residuals
X⊤ε ̸= 0 do not hold generally. Instead, we have orthogonality in expectation E[X⊤ε] = 0, which is
usually referred to as weak-sense orthogonality.

Proposition 1 Let (X ,u,y)∼ P. Then

argmin
w

E(∥Xw− y∥2) = (1+ γ)β +α (8)

where the vector [α γ] ∈ Rm+1 is the expected solution to the linear regression with outcome u− y (the
measurement error) and n× (m+1) matrix of covariates [X u]. That is,

[α γ] = argmin
w

E(∥Mw− e∥2) (9)

where e is the measurement error defined by e = u− y and where M is defined to be the n× (m+ 1)
random matrix [X u].

Proof. We define the n− dimensional random vector ε by the formula

ε = u−Xβ (10)

and observe that

E(X⊤
ε) = 0 (11)

follows from the combination of (1) and the (10). That is, the residual vector ε is uncorrelated with the
covariates (columns of X). Defining e to be the measurement error, e = u− e, we represent e as a linear
combination of the columns of X , the outcome u, and a residual. Specifically, we have

e = Xα + γu+ r, (12)

where

[α γ] = argmin
w

E(∥Mw− e∥2) (13)

where M is the n× (m+1) matrix [X u] and r = e− (Xα + γu) is uncorrelated with X and u. Using (10)
and the fact that e = u− y, we have

y = Xβ + e+ ε. (14)

Substituting (12) into (14) yields,

y = γu+X(β +α)+ r+ ε (15)

= X
(
(1+ γ)β +α

)
+ ε̃, (16)

where we define ε̃ ≡ (1+ γ)ε + r. Equation (8) follows immediately from the fact that ε̃ is uncorrelated
with X . ■

Proposition 2 Let (X ,u,y)∼ P. Then

E[(u− Ê(y|X))⊤X ] = −(γβ +α)⊤E(X⊤X) (17)

where β is defined in (1), and α,γ are defined in (9).
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Proof.

E[(u− Ê(y|X))⊤X ] = E(u⊤X)−E(Ê(y|X)⊤X)

= β
⊤E(X⊤X)−E((X(1+ γβ +α)+ ε̃)⊤X)

= −(γβ +α)⊤E(X⊤X). (18)

■

Proposition 3 Let (X ,u,y)∼ P. Then we have

MSE(u, Ê(y|X))≥ MSE(u, Ê(u|X))+(γβ +α)⊤E(X⊤X)(γβ +α)

where β is defined in (1), and α,γ are defined in (9).

Proof. We have

MSE(u, Ê(y|X)) = E[∥u− Ê(y|X)∥2] = E[E[∥u− Ê(y|X)∥2|X ]].

We focus on E[∥u−Ê(y|X)∥2|X ] first. The predictions with linear regression are Ê(y|X)=X(X⊤X)−1X⊤y=:
Hy where H is defined to be the matrix X(X⊤X)−1X⊤. We have

E[∥u− Ê(y|X)∥2|X ] = E[∥u− Ê(u|X)+ Ê(u|X)− Ê(y|X)∥2|X ]

= E[∥u− Ê(u|X)∥2|X ]+E[∥Ê(u|X)− Ê(y|X)∥2|X ]

+ 2E[(u− Ê(u|X))⊤(Ê(u|X)− Ê(y|X))|X ],

where Ê(u|X) = Hu. The last term vanishes E[((1−H)u)⊤H(u− y)|X ] = 0 because H⊤ = H and
(1−H)H = 0. Defining E[∥u− Ê(u|X)∥2|X ] := MSEu|X , we have

E[∥u− Ê(y|X)∥2|X ] = MSEu|X +E[∥H(u− y)∥2|X ].

For a,b ∈ Rn, we have a⊤b = Tr(b⊤a). Reminding ourselves that y− u = e = Xα + γu+ r = X(γβ +
α)+ γε + r, we can rewrite

E[∥H(u− y)∥2|X ] = E(e⊤He|X) = TrHE(ee⊤|X)

= TrHE[(X(γβ +α)+ γε + r)(X(γβ +α)+ γε + r)⊤|X ]

= TrHE[(X(γβ +α)(X(γβ +α))⊤|X ]

+ 2γTrHE[(X(γβ +α)ε⊤|X ] + 2TrHE[(X(γβ +α)r⊤|X ]

+ TrHE[(γε + r)(γε + r)⊤|X ].

For the first term, we have

TrHE[(X(γβ +α)(X(γβ +α))⊤|X ] = TrX(γβ +α)(γβ +α)⊤X⊤

= (γβ +α)⊤X⊤X(γβ +α).

Taking expectations on both sides yields

E[TrHE[(X(γβ +α)(X(γβ +α))⊤|X ]] = (γβ +α)⊤E[X⊤X ](γβ +α)

= |cov(u− Ê(y|X) , X)(γβ +α)|.

By the definition of linear regression, we have E(X⊤ε) = 0 and E(X⊤r) = 0, so that X is uncorrelated
with both r and ε . Hence, we have

2γTrHE[(X(γβ +α)ε⊤|X ] + 2TrHE[(X(γβ +α)r⊤|X ]

= 2γTrX(γβ +α)E[ε⊤|X ]+2TrX(γβ +α)E[r⊤|X ]

= 2(γβ +α)⊤(γX⊤E[ε|X ]+X⊤E[r|X ])
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Figure 8. Predicted diabetes risk against diabetes rate against observed diabetes rate estimated for a
simple (red), complex (blue), and measurement model (orange) by health insurance status (darker hue:
insured, lighter hue: uninsured). For both insured and uninsured people, our measurement model
performs better than both regression models closely matching empirical rates of diabetes (dashed gray
line).

for the second line. Taking expectations, we get

E[2γTrHE[(X(γβ +α)ε⊤|X ] + 2TrHE[(X(γβ +α)r⊤|X ]]

= 2(γβ +α)⊤(γE[X⊤
ε]+E[X⊤r]) = 0.

For the last term, we have

TrHE[(γε + r)(γε + r)⊤|X ]≥ 0,

which implies

E[TrHE[(γε + r)(γε + r)⊤|X ]]≥ 0

because H (a projection matrix) and E[(γε + r)(γε + r)⊤|X ] are positive semidefinite. The bound follows
from the fact that for A,B ∈ Rn×n symmetric and positive semi-definite, there exists Q ∈ Rn×n such that
B = QQ⊤. Hence TrAB = TrAQQ⊤ = TrQ⊤AQ = ∑

n
i=1 q⊤i Aqi ≥ 0, where qi is the i-th column of Q and

q⊤i Aqi ≥ 0 holds because A is positive semidefinite.
The proposition now follows immediately. ■

B ADDITIONS TO THE DIABETES EXAMPLE

B.1 Calculations of the thresholds
The thresholds for the measurement model are based purely on information provided in Fang et al. (2022),
especially Tables 1 and 2. We are concerned with the period from 2011 to 2018, the period covered by
our NHANES dataset. From Fang et al. (2022), we know that the rate of total diabetes in 2017–2020
was roughly 14% and that the rate of (persistent) undiagnosed diabetes in people with or without health
insurance was roughly 16% and 29%, respectively, in 2011–2020. The thresholds t(health insurance) are
determined as the shift on the logit scale to match these proportions of undiagnosed patients at the given
rate of total diabetes. More concretely, the thresholds can be determined as follows: First, we need to
determine a base rate corresponding to 14% total diabetes. Let

U ∼ logistic(α,1)

with α ∈ R, such that,

P(U ≥ 0) = 14%.
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Simple Model Complex Model Measurement Model Oracle Model
Log Score -0.333 -0.333 -0.324 -0.324
Brier Score -0.206 -0.206 -0.202 -0.202
MSE 0.014 0.014 0.010 0.011
Accuracy 0.858 0.858 0.862 0.861
PPV 0.574 0.573 0.585 0.589
NPV 0.866 0.866 0.875 0.872

Table 1. Comparison of the simple, complex, and measurement model across a range of performance
metrics for classification. The measurement model outperforms the classical logistics regression models
throughout and is similar in performance to an Oracle model trained on the true labels.

This holds approximately for α =−1.8. Based on this base rate, we can determine the thresholds. Let

Y ∼ logistic(α + t(insurance)1insurance,1),

such that

1− P(Y ≥ 0)
P(U ≥ 0)

=

{
16% if insured
29% if uninsured.

(19)

In our model, we have coded insured as the base level,i.e. 1insurance = 1 if and only if the patient is
uninsured. With this choice, the above holds approximately for t(uninsured) =−0.38 and t(insured) =
−0.21.

B.1.1 Further comparisons of prediction quality
Table 1 shows comparisons between the simple, complex, and measurement models in terms of a variety
of metrics for classification quality. The measurement model improves on both the simple and complex
logistic regression model with a performance that is on par with an oracle logistic regression model trained
on the true labels.

Both the log and Brier scores are strictly proper scoring rules. Scoring rules are summary measures
for the quality of probabilistic predictions for classification, which take both accuracy and calibration into
account. More explicitly, a scoring rule S(x,Q) measures the quality of the distribution Q for predicting a
discrete random quantity X , when X = x is observed. A scoring rule is called proper, if the expected score
EX∼PS(X ,Q) is (strictly) minimized by Q = P (Gneiting and Raftery, 2007). The log score is defined by
setting S(x,Q) = logQ(x). The Brier score is obtained with S(x,Q) = 2Q(x)−∑

m
j=1 Q( j)2 −1, where the

sum runs over all classes (m = 2 in our diabetes example).
Accuracy is defined as the proportion of patients correctly classified. Positive predictive value (PPV) is

the probability that a patient classified with diabetes actually has the disease. Similarly, negative predictive
value (NPV) is the probability that a patient predicted not to have diabetes is actually free of diabetes.

C DETERMINING PARAMETERS THAT REQUIRE STRONG PRIORS
When the relationship between proxy and true outcomes is unknown, Bayesian measurement models
are only partially identified (Gustafson, 2015). This necessitates strong priors or treating non-identified
parameters as sensitivity parameters in a sensitivity analysis (see Section 3.3). This section briefly outlines
potential ways of determining parameters that are not informed by data and hence require strong priors.

One way to single out parameters that require strong priors is transparent parameterization (Gustafson,
2009; Richardson et al., 2011), in which the model is reparameterized to separate point-identified
parameters and completely non-identified parameters. The latter require strong priors and should be
treated as sensitivity parameters in a sensitivity analysis.

We demonstrate this approach for the leakage model used for the stylized example of criminal
behavior and arrests (see Section 2.2). We seek to re-parameterize our model (equation (5)) from
λ = {α,β ,γ,η ,σ2

y } to (φ ,ψ), such that the distribution of (y0,y1) depends only on φ and not on any
lower-dimensional function of it. For this model, it is straightforward to marginalize out the true outcomes
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u0 and u1 to arrive at[
y0
y1

]
∼ MVN

([
(α +βγ)X
(α +βγ)X

]
,

[
σ2

y σ2
u η

σ2
u η σ2

y

])
. (20)

Clearly, the set of parameters φ = {(α+βγ),σ2
y ,σ

2
u η} is minimal sufficient for (y0,y1). These parameters

are point-identified. We collect the remaining parameters ψ = {β ,γ} and have, by construction, that
ψ|φ ,y0,y1 = ψ|φ does not depend on the data and is thus sensitive to the prior conditional on ψ|φ .

While this approach is compelling, it requires analytical derivations, and not every model is guaranteed
to afford such a transparent parameterization. A more general approach is based on prior sensitivity
analysis which checks the sensitivity of the posterior to changes in the prior. This is an intuitive notion of
identification of parameters in the Bayesian paradigm (Li et al., 2022). While prior sensitivity analysis can
be performed naively, there is ongoing research on using it in a computationally efficient manner (Depaoli
et al., 2020; Gelman et al., 2020b). Kallioinen et al. (2024) present an approach based on power-scaling
via importance sampling that is able to identify the set of parameters of our leakage model that require a
strong prior.
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