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Importance Sampling

• Recall:
– Let’s say that we want to compute some expectation (integral)

and we remember from Monte Carlo integration theory that with 
samples from p() we can approximate this integral thusly

Ep [f ] =

∫
p(x)f(x)dx

Ep[f ] ≈
1

L

L∑

ℓ=1

f(xℓ)



What if p() is hard to sample from?

• One solution: use importance sampling

– Choose another easier to sample distribution 

q() that is similar to p() and do the following: 

Ep [f ] =

∫
p(x)f(x)dx

=

∫
p(x)

q(x)
f(x)q(x)dx

≈
1

L

L∑

ℓ=1

p(xℓ)

q(xℓ)
f(xℓ) xℓ ∼ q(·)



I.S. with distributions known only to 

a proportionality

• Importance sampling using distributions only 

known up to a proportionality is easy and 

common, algebra yields

Ep [f ] ≈
Zq

Zp

1

L

L∑

ℓ=1

p̃(xℓ)

q̃(xℓ)
f(xℓ)

≈

L∑

ℓ=1

wℓf(xℓ)

r̃ℓ =
p̃(xℓ)
q̃(xℓ)

wℓ =
r̃ℓ∑
L

ℓ=1
r̃ℓ



A model requiring sampling 

techniques

• Non-linear non-Gaussian first order 
Markov model

xt−1 \\xt xt+1

yt−1 yt yt+1

Hidden and of 

interest

p(x1:i,y1:i) =
∏N
i=1 p(yi|xi)p(xi|xi−1)



Filtering distribution hard to obtain

• Often the filtering distribution is of interest

• It may not be possible to compute these integrals 

analytically, be easy to sample from this directly, nor 
even to design a good proposal distribution for 

importance sampling.

p(xi|y1:i−1) ∝
∫
. . .
∫
p(x1:i,y1:i)dx1 . . . dxi−1



A solution: sequential Monte Carlo

• Sample from sequence of distributions that 
“converge” to the distribution of interest

• This is a very general technique that can 
be applied to a very large number of 
models and in a wide variety of settings. 

• Today: particle filtering for a first order 
Markov model



Concrete example: target tracking

• A ballistic projectile has been launched in 
our direction.

• We have orders to intercept the projectile 
with a missile and thus need to infer the 
projectiles current position given noisy 
measurements.



Problem Schematic

rt

θt

(0,0)

(xt, yt)



Probabilistic approach

• Treat true trajectory as a sequence of 
latent random variables 

• Specify a model and do inference to 
recover the position of the projectile at 
time t



First order Markov model

xt−1 xt xt+1

yt−1 yt yt+1

Hidden true 

trajectory

Noisy 

measurements

p(xt+1|xt) = a(·; θa, xt)

p(yt|xt) = h(·; θh, xt)



• We want filtering distribution samples

so that we can compute expectations

Posterior expectations

p(xi|y1:i) ∝ p(yi|xi)

∫
p(xi|xi−1)p(xi−1|y1:i−1)dxi−1

∝ p(yi|xi)p(xi|y1:i−1)

Ep[f ] =

∫
f(xi)p(xi|y1:i)dxi

Write this down!



Importance sampling

• By identity the posterior predictive 
distribution can be written as

p̃(xi) ∝ p(yi|xi)p(xi|y1:i−1) q(xi) = p(xi|y1:i−1)

Proposal distribution 
Distribution from which we want 

samples

q(xi) = p(xi|y1:i−1) =

∫
p(xi|xi−1)p(xi−1|y1:i−1)dxi−1



Basis of sequential recursion

• If we start with samples from 

then we can write the proposal distribution as a 

finite mixture model

and draw samples accordingly

q(xi) = p(xi|y1:i−1) ≈
L∑

ℓ=1

wi−1ℓ p(xi|x
i−1
ℓ )

{ŵim, x̂im}
M
m=1 ∼ q(·)

{wi−1ℓ , xi−1ℓ }Lℓ=1 ∼ p(xi−1|y1:i−1)



Samples from the proposal 

distribution

• We now have samples from the proposal

• And if we recall

{ŵim, x̂im} ∼ q(xi)

p̃(xi) = p(yi|xi)p(xi|y1:i−1) q(xi) = p(xi|y1:i−1)

Proposal distribution 
Distribution from which we want 

samples



Updating the weights completes 

importance sampling

• We are left with M weighted samples from the 

posterior up to observation i

r̂im =
p̃(x̂im)
q(x̂im)

= p(yi|x̂
i
m)ŵ

i
m

wim =
r̂im∑
M

m=1
r̂im

{wim, xim}
M
m=1 ∼ p(xi|y1:i)



Intuition

• Particle filter name comes from physical 
interpretation of samples



Start with samples representing the 

hidden state

(0,0)

{wi−1ℓ , xi−1ℓ }Lℓ=1 ∼ p(xi−1|y1:i−1)



Evolve them according to the state model

(0,0)

ŵim ∝ wi−1m

x̂im ∼ p(·|xi−1ℓ )



Re-weight them by the likelihood

(0,0)

wim ∝ ŵimp(yi|x̂
i
m)



Results in samples one step 

forward 

(0,0)

{wiℓ, x
i
ℓ}
L
ℓ=1 ≈ {w

i
m, xim}

M
m=1



SIS Particle Filter

• The Sequential Importance Sampler (SIS) particle filter 
multiplicatively updates weights at every iteration and 
thus often most weights get very small

• Computationally this makes little sense as eventually 
low-weighted particles do not contribute to any 
expectations.

• A measure of particle degeneracy is “effective sample 
size”

• When this quantity is small, particle degeneracy is 
severe.

N̂eff =
1∑

L

ℓ=1
(wi

ℓ
)2



Solutions

• Sequential Importance Re-sampling (SIR) 
particle filter avoids many of the problems 
associated with SIS pf’ing by re-sampling 
the posterior particle set to increase the 
effective sample size.

• Choosing the best possible importance 
density is also important because it 
minimizes the variance of the weights 
which maximizes N̂eff



Other tricks to improve pf’ing

• Integrate out everything you can

• Replicate each particle some number of 
times

• In discrete systems, enumerate instead of 
sample

• Use fancy re-sampling schemes like 
stratified sampling, etc.



Initial particles

(0,0)

{wi−1ℓ , xi−1ℓ }Lℓ=1 ∼ p(xi−1|y1:i−1)



Particle evolution step

(0,0)

{ŵim, x̂im}
M
m=1 ∼ p(xi|y1:i−1)



Weighting step

(0,0)

{wim, xim}
M
m=1 ∼ p(xi|y1:i)



Resampling step

(0,0)

{wiℓ, x
i
ℓ}
L
ℓ=1 ∼ p(xi|y1:i)



Wrap-up: Pros vs. Cons

• Pros:

– Sometimes it is easier to build a “good”

particle filter sampler than an MCMC sampler

– No need to specify a convergence measure

• Cons:

– Really filtering not smoothing

• Issues

– Computational trade-off with MCMC



Thank You







Tricks and Variants

• Reduce the dimensionality of the integrand 
through analytic integration
– Rao-Blackwellization

• Reduce the variance of the Monte Carlo 
estimator through
– Maintaining a weighted particle set

– Stratified sampling

– Over-sampling

– Optimal re-sampling



Particle filtering

• Consists of two basic elements:

– Monte Carlo integration

– Importance sampling

lim
L→∞

L∑

ℓ=1

wℓf(xℓ) =

∫
f(x)p(x)dx

p(x) ≈
L∑

ℓ=1

wℓδxℓ



PF’ing: Forming the posterior predictive

The proposal distribution for 

importance sampling of the 
posterior up to observation i

is this approximate posterior 

predictive distribution

p(xi|y1:i−1) =

∫
p(xi|xi−1)p(xi−1|y1:i−1)dxi−1

≈

L∑

ℓ=1

wi−1ℓ p(xi|x
i−1
ℓ )

{wi−1ℓ , xi−1ℓ }Lℓ=1 ∼ p(xi−1|y1:i−1)
Posterior up to observation 

i− 1



Sampling the posterior predictive

• Generating samples from the posterior 
predictive distribution is the first place where we 
can introduce variance reduction techniques

• For instance sample from each mixture 
component several twice such that M, the 
number of samples drawn, is two times L, the 
number of densities in the mixture model, and 
assign weights

{ŵim, x̂im}
M
m=1 ∼ p(xi|y1:i−1), p(xi|y1:i−1) ≈

L∑

ℓ=1

wi−1ℓ p(xi|x
i−1
ℓ )

ŵim =
wi−1ℓ

2



Not the best

• Most efficient Monte Carlo estimator of a 
function Γ(x)

– From survey sampling theory: Neyman

allocation 

– Number drawn from each mixture density is 

proportional to the weight of the mixture 
density times the std. dev. of the function Γ

over the mixture density

• Take home: smarter sampling possible

[Cochran 1963]



Over-sampling from the posterior 

predictive distribution

(0,0)

{ŵim, x̂im}
M
m=1 ∼ p(xi|y1:i−1)



• Recall that we want samples from

• and make the following importance 
sampling identifications

Importance sampling the posterior

p(xi|y1:i) ∝ p(yi|xi)

∫
p(xi|xi−1)p(xi−1|y1:i−1)dxi−1

∝ p(yi|xi)p(xi|y1:i−1)

p̃(xi) = p(yi|xi)p(xi|y1:i−1) q(xi) = p(xi|y1:i−1)

≈
L∑

ℓ=1

wi−1ℓ p(xi|x
i−1
ℓ )

Proposal distribution 

Distribution from which we 

want to sample



Sequential importance sampling

• Weighted posterior samples arise as

• Normalization of the weights takes place as before

• We are left with M weighted samples from the posterior 
up to observation i

r̂im =
p̃(x̂im)
q(x̂im)

= p(yi|x̂
i
m)ŵ

i
m

{ŵim, x̂im} ∼ q(·)

wim =
r̂iℓ∑
L

ℓ=1
r̂i
ℓ

{wim, xim}
M
m=1 ∼ p(xi|y1:i)



An alternative view

{ŵim, x̂im} ∼
L∑

ℓ=1

wi−1ℓ p(xi|x
i−1
ℓ )

p(xi|y1:i−1) ≈
∑M

m=1 ŵ
i
mδx̂im

p(xi|y1:i) ≈
∑M

m=1 p(yi|x̂
i
m)ŵ

i
mδx̂im



Importance sampling from the 

posterior distribution

(0,0)

{wim, xim}
M
m=1 ∼ p(xi|y1:i)



Sequential importance re-sampling

• Down-sample L particles and weights from the collection 
of M particles and weights

this can be done via multinomial sampling or in a way 

that provably minimizes estimator variance 

{wiℓ, x
i
ℓ}
L
ℓ=1 ≈ {w

i
m, xim}

M
m=1

[Fearnhead 04]



Down-sampling the particle set

(0,0)

{wiℓ, x
i
ℓ}
L
ℓ=1 ∼ p(xi|y1:i)



Recap

• Starting with (weighted) samples from the 
posterior up to observation i-1 

• Monte Carlo integration was used to form a 
mixture model representation of  the posterior 
predictive distribution 

• The posterior predictive distribution was used as 
a proposal distribution for importance sampling 
of the posterior up to observation i

• M > L samples were drawn and re-weighted 
according to the likelihood (the importance 
weight), then the collection of particles was 
down-sampled to L weighted samples 



LSSM Not alone

• Various other models are amenable to 
sequential inference, Dirichlet process 
mixture modelling is another example, 
dynamic Bayes’ nets are another



Rao-Blackwellization

• In models where parameters can be 
analytically marginalized out, or the 
particle state space can otherwise be 
collapsed, the efficiency of the particle 
filter can be improved by doing so



Stratified Sampling

• Sampling from a mixture density using the algorithm on 
the right produces a more efficient Monte Carlo estimator

• for n=1:K
– choose fn
– sample xn from fn
– set wn equal to πn

• for n=1:K
– choose k according to πk

– sample xn from fk
– set wn equal to 1/N

{wn, xn}
K
n=1 ∼

∑

k

πkfk(·)



Intuition: weighted particle set

• What is the difference between these two 
discrete distributions over the set {a,b,c}?

– (a), (a), (b), (b), (c)

– (.4, a), (.4, b), (.2, c)

• Weighted particle representations are 
equally or more efficient for the same 
number of particles



Optimal particle re-weighting

• Next step: when down-sampling, pass all 
particles above a threshold c through 
without modifying their weights where c is 
the unique solution to 

• Resample all particles with weights below 
c using stratified sampling and give the 
selected particles weight 1/ c

∑M
m=1min{cw

i
m, 1} = L

Fearnhead 2004



Result is provably optimal

• In the down-sampling step

• Imagine instead a “sparse” set of weights of which some 
are zero

• Then this down-sampling algorithm is optimal w.r.t.

∑M
m=1Ew[(w̃

i
m − wim)

2]

{wiℓ, x
i
ℓ}
L
ℓ=1 ≈ {w

i
m, xim}

M
m=1

{w̃iℓ, x
i
ℓ}
M
ℓ=1 ≈ {w

i
m, xim}

M
m=1

Fearnhead 2004



Problem Details

• Time and position are given in seconds and meters 
respectively

• Initial launch velocity and position are both unknown

• The maximum muzzle velocity of the projectile is 
1000m/s

• The measurement error in the Cartesian coordinate 
system is N(0,10000) and N(0,500) for x and y position 
respectively

• The measurement error in the polar coordinate system is 
N(0,.001) for θ and Gamma(1,100) for r

• The kill radius of the projectile is 100m



Data and Support Code

http://www.gatsby.ucl.ac.uk/~fwood/pf_tutorial/



Laws of Motion

• In case you’ve forgotten:

• where v is the initial speed and α is the 
initial angle

r = (v0cos(α))ti+ ((v0sin(α)t−
1
2gt

2)j



Good luck!



Monte Carlo Integration

• Compute integrals for which analytical 
solutions are unknown

∫
f(x)p(x)dx

p(x) ≈
L∑

ℓ=1

wℓδxℓ



Monte Carlo Integration

• Integral approximated as the weighted 
sum of function evaluations at L points

∫
f(x)p(x)dx ≈

∫
f(x)

L∑

ℓ=1

wℓδxℓdx

=

L∑

ℓ=1

wℓf(xℓ)

∫
f(x)p(x)dx

p(x) ≈
L∑

ℓ=1

wℓδxℓ



Sampling 

• To use MC integration one must be able to 
sample from p(x)

{wℓ, xℓ}
L
ℓ=1 ∼ p(·)

lim
L→∞

L∑

ℓ=1

wℓδxℓ → p(·)



Theory (Convergence)

• Quality of the approximation independent 
of the dimensionality of the integrand

• Convergence of integral result to the 
“truth” is O(1/n1/2) from L.L.N.’s.

• Error is independent of dimensionality of x



Bayesian Modelling

• Formal framework for the expression of 
modelling assumptions

• Two common definitions: 

– using Bayes’ rule

– marginalizing over models
Prior

EvidenceLikelihood

Posterior

p(θ|x) =
p(x|θ)p(θ)

p(x)
=

p(x|θ)p(θ)∫
p(x|θ)p(θ)dθ



Posterior Estimation

• Often the distribution over latent random 
variables (parameters) is of interest

• Sometimes this is easy (conjugacy)

• Usually it is hard because computing the 
evidence is intractable



Conjugacy Example

p(θ) =
Γ(α+ β)

Γ(α)Γ(β)
θα−1(1− θ)β−1

p(x|θ) =

(
N

x

)
θx(1− θ)N−x

θ ∼ Beta(α, β)

x|θ ∼ Binomial(N, θ)

x successes in N trials, θ probability of success



Conjugacy Continued

p(θ|x) =
p(x|θ)p(θ)∫
p(x|θ)p(θ)dθ

=
1

Z(x)
p(x|θ)p(θ)

=
1

Z(x)
θα−1+x(1− θ)β−1+N−x

θ|x ∼ Beta(α+ x, β +N − x)

Z(x) =

(
Γ(α+ β +N)

Γ(α+ x)Γ(β +N − x)

)−1



Non-Conjugate Models

• Easy to come up with examples

σ2 ∼ N(0, α)

x|σ2 ∼ N(0, σ2)



Posterior Inference

• Posterior averages are frequently 
important in problem domains

– posterior predictive distribution

– evidence (as seen) for model comparison, 

etc.

p(xi+1|x1:i) =
∫
p(xi+1|θ,x1:i)p(θ|x1:i)dθ



p(xi|y1:i) =

∫
p(xi,x1:i−1|y1:i)dx1:i−1

∝

∫
p(yi|xi,x1:i−1,y1:i−1)p(xi,x1:i−1,y1:i−1)dx1:i−1

∝ p(yi|xi)

∫
p(xi|x1:i−1,y1:i)p(x1:i−1|y1:i)dx1:i−1

∝ p(yi|xi)

∫
p(xi|xi−1)p(x1:i−1|y1:i−1)dx1:i−1

∝ p(yi|xi)

∫
p(xi|xi−1)p(xi−1|y1:i−1)dxi−1

∝ p(yi|xi)p(xi|y1:i−1)

Relating the Posterior to the 

Posterior Predictive



p(xi|y1:i) =

∫
p(xi,x1:i−1|y1:i)dx1:i−1

∝

∫
p(yi|xi,x1:i−1,y1:i−1)p(xi,x1:i−1,y1:i−1)dx1:i−1

∝ p(yi|xi)

∫
p(xi|x1:i−1,y1:i)p(x1:i−1|y1:i)dx1:i−1

∝ p(yi|xi)

∫
p(xi|xi−1)p(x1:i−1|y1:i−1)dx1:i−1

∝ p(yi|xi)

∫
p(xi|xi−1)p(xi−1|y1:i−1)dxi−1

∝ p(yi|xi)p(xi|y1:i−1)

Relating the Posterior to the 

Posterior Predictive



p(xi|y1:i) =

∫
p(xi,x1:i−1|y1:i)dx1:i−1

∝

∫
p(yi|xi,x1:i−1,y1:i−1)p(xi,x1:i−1,y1:i−1)dx1:i−1

∝ p(yi|xi)

∫
p(xi|x1:i−1,y1:i)p(x1:i−1|y1:i)dx1:i−1

∝ p(yi|xi)

∫
p(xi|xi−1)p(x1:i−1|y1:i−1)dx1:i−1

∝ p(yi|xi)

∫
p(xi|xi−1)p(xi−1|y1:i−1)dxi−1

∝ p(yi|xi)p(xi|y1:i−1)

Relating the Posterior to the 

Posterior Predictive



p(xi|y1:i) =

∫
p(xi,x1:i−1|y1:i)dx1:i−1

∝

∫
p(yi|xi,x1:i−1,y1:i−1)p(xi,x1:i−1,y1:i−1)dx1:i−1

∝ p(yi|xi)

∫
p(xi|x1:i−1,y1:i)p(x1:i−1|y1:i)dx1:i−1

∝ p(yi|xi)

∫
p(xi|xi−1)p(x1:i−1|y1:i−1)dx1:i−1

∝ p(yi|xi)

∫
p(xi|xi−1)p(xi−1|y1:i−1)dxi−1

∝ p(yi|xi)p(xi|y1:i−1)

Relating the Posterior to the 

Posterior Predictive



Importance sampling

Proposal 

distribution: 

easy to 

sample from 

Original 

distribution: 

hard to 

sample from, 

easy to 

evaluate 

Ex [f(x)] =

∫
p(x)f(x)dx

=

∫
p(x)

q(x)
f(x)q(x)dx

≈
1

L

L∑

ℓ=1

p(xℓ)

q(xℓ)
f(xℓ)

Importance

weights rℓ =
p(xℓ)
q(xℓ)

xℓ ∼ q(·)



Importance sampling 

un-normalized distributions

Un-normalized proposal distribution: 

still easy to sample from 

xℓ ∼ q̃(·)

p(x) = p̃(x)
Zp

q(x) = q̃(x)
Zq

Un-normalized distribution to sample from,  still hard 

to sample from and easy to evaluate 

Ex [f(x)] ≈
1

L

L∑

ℓ=1

p(xℓ)

q(xℓ)
f(xℓ)

≈
Zq

Zp

1

L

L∑

ℓ=1

p̃(xℓ)

q̃(xℓ)
f(xℓ)

New term: 

ratio of 

normalizing 

constants 



Normalizing the importance weights

Ex [f(x)] ≈
Zq

Zp

1

L

L∑

ℓ=1

p̃(xℓ)

q̃(xℓ)
f(xℓ)

≈

L∑

ℓ=1

wℓf(xℓ)

Zq
Zp
≈ L∑

L

ℓ=1
r̃ℓ

Takes a little algebra
Un-normalized importance weights

r̃ℓ =
p̃(xℓ)
q̃(xℓ)

Normalized importance weights

wℓ =
r̃ℓ∑
L

ℓ=1
r̃ℓ



Linear State Space Model (LSSM)

• Discrete time

• First-order Markov chain

xt−1 xt xt+1

yt−1 yt yt+1

xt+1 = axt + ǫ, ǫ ∼ N(µǫ, σ
2
ǫ )

yt = bxt + η, η ∼ N(µη, σ
2
η)



Inferring the distributions of interest

• Many methods exist to infer these distributions

– Markov Chain Monte Carlo (MCMC)

– Variational inference

– Belief propagation

– etc.

• In this setting sequential inference is possible 

because of characteristics of the model structure 

and preferable due to the problem requirements



p(xi|y1:i) =

∫
p(xi,x1:i−1|y1:i)dx1:i−1

∝

∫
p(yi|xi,x1:i−1,y1:i−1)p(xi,x1:i−1,y1:i−1)dx1:i−1

∝ p(yi|xi)

∫
p(xi|x1:i−1,y1:i)p(x1:i−1|y1:i)dx1:i−1

∝ p(yi|xi)

∫
p(xi|xi−1)p(x1:i−1|y1:i−1)dx1:i−1

∝ p(yi|xi)

∫
p(xi|xi−1)p(xi−1|y1:i−1)dxi−1

∝ p(yi|xi)p(xi|y1:i−1)

Exploiting LSSM model structure…



Particle filtering

p(xi|y1:i) ∝ p(yi|xi)
∫
p(xi|xi−1)p(xi−1|y1:i−1)dxi−1



p(xi|y1:i) =

∫
p(xi,x1:i−1|y1:i)dx1:i−1

∝

∫
p(yi|xi,x1:i−1,y1:i−1)p(xi,x1:i−1,y1:i−1)dx1:i−1

∝ p(yi|xi)

∫
p(xi|x1:i−1,y1:i)p(x1:i−1|y1:i)dx1:i−1

∝ p(yi|xi)

∫
p(xi|xi−1)p(x1:i−1|y1:i−1)dx1:i−1

∝ p(yi|xi)

∫
p(xi|xi−1)p(xi−1|y1:i−1)dxi−1

∝ p(yi|xi)p(xi|y1:i−1)

Exploiting Markov structure…

xt−1 xt xt+1

yt−1 yt yt+1

Use Bayes’ rule and the conditional 

independence structure dictated by the first 

order Markov hidden variable model



for sequential inference

p(xi|y1:i) =

∫
p(xi,x1:i−1|y1:i)dx1:i−1

∝

∫
p(yi|xi,x1:i−1,y1:i−1)p(xi,x1:i−1,y1:i−1)dx1:i−1

∝ p(yi|xi)

∫
p(xi|x1:i−1,y1:i)p(x1:i−1|y1:i)dx1:i−1

∝ p(yi|xi)

∫
p(xi|xi−1)p(x1:i−1|y1:i−1)dx1:i−1

∝ p(yi|xi)

∫
p(xi|xi−1)p(xi−1|y1:i−1)dxi−1

∝ p(yi|xi)p(xi|y1:i−1)



An alternative view

{ŵim, x̂im} ∼
L∑

ℓ=1

wi−1ℓ p(xi|x
i−1
ℓ )

p(xi|y1:i−1) ≈
∑M

m=1 ŵ
i
mδx̂im

p(xi|y1:i) ≈
∑M

m=1 p(yi|x̂
i
m)ŵ

i
mδx̂im



Sequential importance sampling 

inference

• Start with a discrete representation of the 
posterior up to observation i-1

• Use Monte Carlo integration to represent 
the posterior predictive distribution as a 
finite mixture model

• Use importance sampling with the 
posterior predictive distribution as the 
proposal distribution to sample the 
posterior distribution up to observation i



What? 

p(xi|y1:i) ∝ p(yi|xi)

∫
p(xi|xi−1)p(xi−1|y1:i−1)dxi−1

∝ p(yi|xi)p(xi|y1:i−1)

Posterior predictive distribution

State model

Likelihood

Start with a discrete 

representation of this 

distribution



Monte Carlo integration

lim
L→∞

L∑

ℓ=1

wℓf(xℓ) =

∫
f(x)p(x)dxp(x) ≈

L∑

ℓ=1

wℓδxℓ

General setup

As applied in this stage of  the particle filter

p(xi|y1:i−1) =

∫
p(xi|xi−1)p(xi−1|y1:i−1)dxi−1

≈

L∑

ℓ=1

wi−1ℓ p(xi|x
i−1
ℓ )

Finite mixture model

Samples from


