Regression Introduction and Estimation Review

Dr. Frank Wood
Quick Example – Scatter Plot

Predictor/Input

Response/Output
Linear Regression

• Want to find parameters for a function of the form

\[Y_i = \beta_0 + \beta_1 X_i + \epsilon_i \]

• Distribution of error random variable not specified
Quick Example – Scatter Plot

![Scatter Plot Diagram](attachment:scatter_plot.png)

- **Predictor/Input**
- **Response/Output**
- β_0
- β_1
Formal Statement of Model

\[Y_i = \beta_0 + \beta_1 X_i + \epsilon_i \]

- \(Y_i \) value of the response variable in the \(i^{th} \) trial
- \(\beta_0 \) and \(\beta_1 \) are parameters
- \(X_i \) is a known constant, the value of the predictor variable in the \(i^{th} \) trial
- \(\epsilon_i \) is a random error term with mean \(E(\epsilon_i) \) and variance \(V(\epsilon_i) = \sigma^2 \)
- \(i = 1, \ldots, n \)
Properties

• The response Y_i is the sum of two components
 – 1) Constant term $\beta_0 + \beta_1 X_i$
 – 2) Random term ϵ_i

• The expected response is

$$E(Y_i) = E(\beta_0 + \beta_1 X_i + \epsilon_i)$$
$$= \beta_0 + \beta_1 X_i + E(\epsilon_i)$$
$$= \beta_0 + \beta_1 X_i$$
Expectation Review

• Definition

\[E(X) = \int XP(X) dX, \ X \in \mathcal{R} \]

• Linearity property

\[E(aX) = aE(X) \]
\[E(aX + bY) = aE(X) + bE(Y) \]

• Obvious from definition
Example Expectation Derivation

\[P(X) = 2X, \ 0 \leq X \leq 1 \]

- Expectation

\[E(X) = \int_0^1 XP(X) \, dX \]
Expectation of a Product of Random Variables

• If X,Y are random variables with joint distribution $j(X,Y)$ then the expectation of the product is given by

$$E(XY) = \int_{X,Y} XY j(X,Y) \, dX \, dY.$$
Expectation of a product of random variables

• What if X and Y are independent?
 – If X and Y are independent with density functions f and g respectively then

$$E(XY) = \int_{x,y} XY f(X)g(Y) \, dx \, dy = \int_x \int_y XY f(X)g(Y) \, dx \, dy$$

$$= \int_x X f(X) \left[\int Y g(Y) \, dy \right] \, dx = \int_x X f(X)E(Y) \, dx = E(X)E(Y)$$
Regression Function

• The response Y_i comes from a probability distribution with mean

$$E(Y_i) = \beta_0 + \beta_1 X_i$$

• This means the regression function is

$$E(Y) = \beta_0 + \beta_1 X$$

Since the regression function relates the means of the probability distributions of Y for a given X to the level of X
Error Terms

• The response Y_i in the i^{th} trial exceeds or falls short of the value of the regression function by the error term amount ϵ_i

• The error terms ϵ_i are assumed to have constant variance σ^2
Response Variance

- Responses Y_i have the same constant variance

\[
V(Y_i) = V(\beta_0 + \beta_1 X_i + \epsilon_i) = V(\epsilon_i) = \sigma^2
\]
Variance (2nd central moment) Review

- Continuous distribution

\[V(X) = E((X - E(X))^2) = \int (X - E(X))^2 P(X) dX, \quad X \in \mathbb{R} \]

- Discrete distribution

\[V(X) = E((X - E(X))^2) = \sum_i (X_i - E(X))^2 P(X_i), \quad X \in \mathbb{Z} \]
Alternative Form for Variance

\[V(X) = E((X - E(X))^2) \]
\[= E((X^2 - 2XE(X) + E(X)^2)) \]
\[= E(X^2) - 2E(X)E(X) + E(X)^2 \]
\[= E(X^2) - 2E(X)^2 + E(X)^2 \]
\[= E(X^2) - E(X)^2. \]
Example Variance Derivation

\[P(X) = 2X, \; 0 \leq X \leq 1 \]

Same as before

\[V(X) = E((X - E(X))^2) = E(X^2) - E(X)^2 \]
Variance Properties

\[V(aX) = a^2 V(X) \]
\[V(aX + bY) = a^2 V(X) + b^2 V(Y) \text{ if } X \perp Y \]

- More generally

\[V(\sum X_i) = \sum \sum \Cov(X_i, X_j) \]
Covariance

- The covariance between two real-valued random variables X and Y, with expected values $E(X) = \mu$ and $E(Y) = \nu$ is defined as

$$\text{Cov}(X, Y) = E((X - \mu)(Y - \nu)),$$

- Which can be rewritten as

$$\text{Cov}(X, Y) = E(X \cdot Y - \mu Y - \nu X + \mu \nu),$$

$$\text{Cov}(X, Y) = E(X \cdot Y) - \mu E(Y) - \nu E(X) + \mu \nu,$$

$$\text{Cov}(X, Y) = E(X \cdot Y) - \mu \nu.$$
Covariance of Independent Variables

- If X and Y are independent, then their covariance is zero. This follows because under independence

\[E(X \cdot Y) = E(X) \cdot E(Y) = \mu \nu. \]

and then

\[\text{Cov}(X, Y) = \mu \nu - \mu \nu = 0. \]
Least Squares Linear Regression

• Seek to minimize

\[Q = \sum_{i=1}^{n} (Y_i - (\beta_0 + \beta_1 X_i))^2 \]

• By careful choice of \(b_0\) and \(b_1\) where \(b_0\) is a point estimator for \(\beta_0\) and \(b_1\) is the same for \(\beta_1\)

How?
Guess #1

Predictor/Input	Response/Output
True, $y = 2x + 9$, mse: 4.22
Guess, $y = 0x + 21.2$, mse: 37.1
Guess #2

- Guess: $y = 1.5x + 13$, mse: 7.84
- True: $y = 2x + 9$, mse: 4.22
Function maximization

- Important technique to remember!
 1. Take derivative
 2. Set result equal to zero and solve
 3. Test second derivative at that point

- Question: does this always give you the maximum?
 Draw some pictures

- Going further: multiple variables, convex optimization
Function Maximization

- Find the maximum value of x that satisfies the function

$$-x^2 + \ln(x) = a, \ x > 0$$
Least Squares Max(min)imization

- Function to minimize w.r.t. β_0, β_1

$$Q = \sum_{i=1}^{n} (Y_i - (\beta_0 + \beta_1 X_i))^2$$

- Minimize this by maximizing $-Q$
- Find partials and set both equal to zero

$$\frac{dQ}{d\beta_0} = 0$$
$$\frac{dQ}{d\beta_1} = 0$$

go to board
Normal Equations

- The result of this maximization step are called the normal equations. b_0 and b_1 are called point estimators of β_0 and β_1 respectively.

\[
\sum Y_i = nb_0 + b_1 \sum X_i
\]

\[
\sum X_i Y_i = b_0 \sum X_i + b_1 \sum X_i^2
\]

- This is a system of two equations and two unknowns. The solution is given by...
Solution to Normal Equations

• After a lot of algebra one arrives at

\[b_1 = \frac{\sum (X_i - \bar{X})(Y_i - \bar{Y})}{\sum (X_i - \bar{X})^2} \]

\[b_0 = \bar{Y} - b_1 \bar{X} \]

\[\bar{X} = \frac{\sum X_i}{n} \]

\[\bar{Y} = \frac{\sum Y_i}{n} \]