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Abstract. In this paper we develop an incremental estimation algo-
rithm for infinite mixtures of Gaussian process experts. Incremental, lo-
cal, non-linear regression algorithms are required for a wide variety of
applications, ranging from robotic control to neural decoding. Arguably
the most popular and widely used of such algorithms is currently Lo-
cally Weighted Projection Regression (LWPR) which has been shown
empirically to be both computationally efficient and sufficiently accurate
for a number of applications. While incremental variants of non-linear
Bayesian regression models have superior theoretical properties and have
been shown to produce better function approximations than LWPR, they
suffer from high computational and storage costs. Through exploitation
of locality, infinite mixtures of Gaussian process experts (IMGPE) offer
the same function approximation performance with reduced computation
and storage cost. Our contribution is an incremental regression approach
that has the theoretical benefits of a fully Bayesian model and compu-
tational benefits that derive from exploiting locality.

1 Introduction

Demand for incremental, online learning algorithms arises from fields as diverse
as robotic control and planning, neural modeling, active learning, and reinforce-
ment learning. Incremental algorithms allow each datapoint to be processed once,
in sequence. Online learning algorithms are characterized by the property that
model estimation, which incorporates new data, is fast enough to be interleaved
between closely spaced predictions from the model.

For example consider learning from demonstration [1, 2], the problem of in-
crementally training an online controller for a robot through human interaction.
One approach is to incrementally learn a model which maps from a desired
robot configuration (the input) to the forces required to achieve that configu-
ration (the output) from human-provided demonstration training data. In [3]
locally weighted projection regression (LWPR) [1] was used to incrementally



learn such a model. LWPR is a local, incremental regression algorithm. Being
“local” means that LWPR divides up the input space into regions (called re-
ceptive fields) and builds a regressor for each. This not only allows LWPR to
approximate extremely complicated functions with nonlinearities and disconti-
nuities in the input/output map, but also makes it very fast because prediction
only requires querying a simple local expert.1

LWPR is not the only algorithm suitable for applications that possess the
incremental requirement which arises from learning from human demonstration
(see [4, 5, 6] among many others); however, we focus on it as a basis for com-
parison in this paper because it has desirable computational benefits that derive
from exploiting local learning, is widely used, and produces good results in a
variety of domains, particularly the kind of robotics applications in which we
are ourselves are interested.

Unfortunately LWPR defines locality in terms of an ad hoc algorithmic pro-
cedure for partitioning the input space. This means that LWPR is not fully
probabilistic and therfore cannot be compared or combined with other prob-
abilistic models used in control algorithms. Also, it is known that LWPR can
be bettered in terms of modeling accuracy with even a single Gaussian pro-
cess (GP) regressor [7]. Unfortunately GP regression has O(n3) computation
and O(n2) storage cost, where n is the number of input/output pairs, whereas
LWPR has O(n) computation and O(k) storage cost, where k is a constant.

Infinite mixtures of GP experts (IMGPE) models [8, 9] are fully probabilistic
(Bayesian) local regression models that have accuracy no worse than GP regres-
sors and reduced computation and storage costs (O(sn2log(n) computation and
O(sn2/log(n)) storage, where s is the number of samples used to represent the
posterior) [8, 9]. They partition the input space into local regions using a non-
parametric Bayesian mixture model of the input space rather than an ad hoc
algorithmic procedure. However, only batch estimation algorithms for IMGPEs
currently appear in the literature, ruling them out for the kinds of incremental,
online applications suggested above. In this paper we address this problem by
introducing incremental estimation for IMGPE models.

We see LWPR and our incremental IMGPE model as representing two end-
points on a continuum of incremental local regression algorithms; at one end
algorithms are very fast but lack a probabilistic framework and are potentially
inaccurate, while at the other they are very slow, but fully Bayesian and are
therefore optimally accurate (given the modeling assumptions). Our contribu-
tion, while not yet computationally efficient enough for our intended robotics
applications, is the establishment a theoretical endpoint from which practical
Bayesian incremental, local regression approaches can be developed through
approximate estimation schemes or simplifications of the IMGPE model (for
instance, using simpler local regressors). Promising results from empirical com-
parisons of accuracy between LWPR and incremental IMGPE models, presented
in Section 5, support the idea of pursuing such ends.

1 Some variants of LWPR average the output of all local regressors.



2 Background

LWPR and IMGPE models are both designed to estimate potentially non-linear,
discontinuous mappings from some input space, here R

D, to some output space,
here R. Both are supervised methods meaning that they are both given noisy
input/output pairs (observations) {xi, yi}N

i=1 from the true mapping and use
them to produce an estimate of that mapping which can be used for prediction.
However, they differ fundamentally as learning methods; LWPR exists as a set
of algorithms, while the IMGPE provides a generative model and the ability to
perform posterior estimation.

2.1 Locally Weighted Projection Regression

LWPR is an incremental algorithm that performs global nonlinear function ap-
proximation by combining the output of weighted local regressors. The input
space is incrementally divided into a set of K (possibly overlapping) regions
called “receptive fields”, defined by center point ck chosen at runtime and a
Gaussian area of influence parameterized by a matrix Dk, initially set to a de-
fault value D∗ and updated incrementally. For each receptive field there is a
local partial least squares (PLS) regressor [4], parameterized by ψk, which is
incrementally fitted to the data assigned to the receptive field. New receptive
fields are created as necessary, based on an empirical threshold, wgen.

During each training iteration, all receptive fields calculate their “activation”,
or weight, measuring how close the new input, x′, is to their center ck.

wk(x′) = exp(−1

2
(x′ − ck)⊤Dk(x′ − ck)) (1)

Each receptive field then applies (weighted) incremental updates to the local PLS
regressor, modifying its local parameter ψk accordingly. An iterative stochastic
gradient ascent algorithm is employed to adjust the receptive field’s influence Dk,
and all update equations are local in the sense that they only require sufficient
statistics (i.e. no training data is retained).

For prediction, each receptive field produces its own estimate of the output,
then either one or the weighted sum of all estimates are combined and returned as
the prediction. LWPR can also provide output confidence bounds, for complete
algorithmic details we refer the reader to [1, 3]. Code for LWPR is online at [10].

2.2 Infinite Mixture of GP Experts

IMGPE models are similar to LWPR in the sense that both models specify meth-
ods for dividing up the input space such that a single “expert” is responsible
for approximating the underlying true mapping in that region of input space.
Otherwise they differ fairly widely; training an LWPR model produces a sin-
gle estimate of the underlying mapping. Because IMGPE models are Bayesian,
training involves estimating a distribution over mappings. Predicting an output



using an IMGPE model also requires averaging over a distribution over map-
pings. Batch sampling, the only kind of estimation procedure currently available
for IMGPE models, requires that all training data be present. However we will
show it is possible to perform model estimation incrementally.

An IMGPE model is characterized by having an infinite Gaussian mixture
model as an input gating mechanism [11] which stochastically “gates” each input
to one of an infinite number of Gaussian process experts. The simplest way
of conceptualizing an infinite Gaussian mixture model (IGMM) is as a finite
Gaussian mixture model in the limit as the number of latent classes goes to
infinity [12]. IGMM’s may also be refered to as Dirichlet process mixture of
Gaussian models. The key characteristic embodied by this gating network is
assignment of data to experts (and the number of experts) is inferred from the
data (and then marginalized out) rather than set a prori or arrived at through
an ad hoc procedure. Better still, since these hidden variables can be averaged
out, the overall model is robust to uncertainty that arises from partitioning the
input space.

Instead of the “lightweight” PLS receptive field experts employed by LWPR,
IMGPE models use Gaussian process experts. A Gaussian process (GP) is a prior
over functions [13] which is parameterized by a kernel (covariance function) and
its parameters. The kernel function computes the similarity or distance between
pairs of input points. In a regression setting the GP prior serves to regularize
the function mapping inputs to outputs. Intuitively a GP expert is a Gaussian
process regressor trained on the input/output pairs local to the expert.

3 Batch IMGPE

The IMGPE model we use is similar to that detailed in [8, 9] but differs in at
least one important way. We review batch sampling for theses models here and
elaborate on the aspects specific to our own. In reviewing batch sampling for
these models we also establish many of the conditional distributions necessary
for incremental estimation of this model.

The IMGPE model is a generative latent variable model in which indicator
variables are used to identify which local expert gave rise to a particular in-
put/output pair. We call these variables latent class indicator variables. The N
latent class indicator variables (one for each input/ouput pair) are z = {zi}N

i=1.
These class indicator variables are generated by a Chinese restaurant process
(CRP) [14] with concentration parameter α. The concentration parameter spec-
ifies how uniform the assignment of input/output pairs to experts is thought to
be a priori (large α implies many experts). The CRP prior

P (zi = k|z−i) =

{ mk

N+α−1 , k ≤ K+
α

N+α−1 , k = K+ + 1
(2)

can be described as a sequential process that generates sequences of integers
where the probability that the next integer in the sequence is k is proportional
to the number of times k has already appeared in the sequence. The probability



that the next integer takes on a new value of k is proportional to α. Here mk =
∑N

i=1 I(zi = k) is the number of times k appears in the sequence (I() is the
indicator function), K+ is the number of unique integers that appear, and N is
the total sequence length.

Generating the class indicator variables gives rise to some total number of
classes K+. The IMGPE model specifies an expert for each class consisting of a
multivariate-normal input model and GP regressor. In other words, there are K+

multivariate-normal classes that generate input points, and a GP expert for each
class which is responsible for generating outputs given the inputs. Each input
space model has mean parameter µk and covariance parameter Σk. These input
class parameters are themselves drawn from a standard normal-inverse-Wishart
conjugate prior. This choice of prior allows the user to influence how input space
is partitioned by the model. By choosing a conjugate prior we have simplified the
model of [8] in a way that makes possible our incremental estimation approach
but does not significantly sacrifice the expressivitiy of the model. All N input
points X = {xi}N

i=1 are drawn from the input space models indicated by their
class indicator variables. Once the input points are generated, each GP expert
generates corresponding outputs yk for the input points assigned to its class.

To summarize:

zi ∼ CRP(α)
Σ′

k ∼ Inverse-Wishartν0
(Λ0)

µ′
k ∼ Multivariate-normal(µ0, Σk/κ0)

xi|zi ∼ Multivariate-normal(µ′
zi
, Σ′

zi
)

yk|Xk, θ ∼ Multivariate-normal(0,Qk)

The last line of the generative model summary is the conditional distribution
of the outputs yk = {yi : zi = k}N

i=1 given the inputs Xk = {xi : zi = k}N
i=1

in class k and global GP parameters θ = {v0, v1, {wd}D
d=1}. Each GP regressor

defines a joint Multivariate-normal distribution over the outputs in its partition,
yk, with covariance Qk characterized by the kernel function

Qk(xe,xf ) = v0e−
1
2

PD
d=1

(xd
e−x

d
f )2/wd2

+ I(i = h)v1

where xd
e is the dth dimension of input xe. Note that Qk(xe,xf ) will only be

evaluated for xe,xf ∈ Xk. These GP kernel parameters can be intuitively in-
trepreted in the following way: v0 is the expected range of the output, v1 is
the residual noise variance (expected distance between the predicted output and

actual output), and wd is the kernel width in the dth dimension.
From this is straightforward to write down the joint distribution of the inputs

X, outputs y, and class labels z defined by our IMGPE model:

P (X,y, z;Ω) = P (X|z;Ω)P (z|Ω)

K+
∏

k=1

P (yk|Xk, Ω). (3)

Here Ω = {α, µ0, κ0, Λ0, ν0, θ}, is the collection of all parameters. We note that
this joint distribution is proportional to the posterior probability of the model



(parameterized by z) given the data (the normalizing constant is intractable to
compute for this model). To simplify our notation, we will no longer make depen-
dence on parameters explicit, i.e. we will write P (X|z) in place of P (X|z;Ω). In
Eqn. 3 and those that follow we exploit the conjugacy of the the input parameter

prior, and show the resulting joint with {µ′
k, Σ

′
k}

K+

k=1 integrated out.
That we utilize a conjugate prior over the input space model parameters and

analytically marginalize them out is the critical difference between our model
specification and that in [8]. It is for this reason that incremental estimation
is practical in our model. For purposes of expositional clarity and brevity we
have also, in this paper, also opted to not to demonstrate GP hyperparameter
estimation. This also is a simplification of the model in [8] which also makes
incremental estimation more practical.

3.1 Batch Estimation

Estimating the model presented above involves drawing L samples {zℓ}L
ℓ=1, by

simulating a Markov chain with equilibrium distribution given by Eqn. 3. As
in [8], where such Markov chain Monte Carlo (MCMC) sampling methods were
used to perform model estimation, we provide the distributions required to im-
plement a Gibbs sampler for our model. In our case, we must be able to sample
a single class label (zi) conditioned on the remaining class labels (z−i) and the
observations (X and y). This conditional distribution can be written as

P (zi = k|z−i,X,y) = P (zi = k|z−i)P (xi, yi|zi = k,X\xi,y\yi). (4)

where X\xi means the set of points X with xi removed and y\yi means the
vector y with the element yi removed.

The first term on the right hand side of this expression can be computed
using the CRP prior from Eqn. 2. The second term factorizes under our model
to:

P (xi, yi|zi = k,X\xi,y\yi) = P (xi|zi = k,Xk\xi)P (yi|zi = k,Xk,yk\yi)

where Xk\xi = Xk if xi /∈ Xk. Because we use conjugate priors on the input
space model parameters, these distributions can be calculated directly. If k ≤ K+

P (xi|zi = k,Xk\xi) = Student-tνk−D+1(µk,Λk(κk + 1)/(κk(νk −D + 1)))

P (yi|zi = k,Xk,yk\yi) = Normal(kT Q−1
\xi

(yk\yi), Qk(xi,xi) − kT Q−1
\xi

k)

If k = K+ + 1

P (xi|zi = K+ + 1) = Student-tν0−D+1(µ0,Λ0(κ0 + 1)/(κ0(ν0 −D + 1)))

P (yi|zi = K+ + 1) = Normal(0, v0 + v1)

Here Student-td(a,B) is a multivariate Student-t distribution with d degrees
of freedom, mean parameter a, and scale matrix B. These equations follow Gel-



man et al. ([15] page 87) in making the following variable substitutions

µk = κ0

κ0+N µ0 + mk

κ0+mk
ȳk

κk = κ0 +mk

νk = ν0 +mk

Λk = Λ0 + Sk + κ0mk

κ0+mk
(ȳk − µ0)(ȳk − µ0)

T

Sk =
∑

j:zj=k(yj − ȳk)(yj − ȳk)T

ȳk = 1
mk

∑

j:zj=k yj

The symbol Q−1
\xi

denotes the covariance matrix for the kth GP expert with, if

necessary, observation (xi) removed. The vector k = [Q(x1,xi), Q(x2,xi), . . . ,
Q(xmk

,xi)]
T is the covariance function evaluated at all points assigned to expert

k except xi (i.e. leaving out Q(xi,xi)). The output model parameters arise from
incremental, partitioned updates of the GP covariance matrices [16].

MCMC sampling methods, including the Gibbs sampling method presented
above, are batch methods in the sense that they require all observations to be
collected before model estimation can proceed. Due to this fact, batch methods
are inappropriate for applications like those discussed in the introduction. In
the next section we introduce an incremental learning algorithm in order to
address this deficiency, and in Section 5 we compare Gibbs sampling to our new
incremental estimation approach.

4 Incremental IMGPE

In order to develop an incremental estimation algorithm for the IMGPE model
we factor the posterior distribution (proportional to Eqn. 3) in the following
way:

P (z(1:i)|X(1:i),y(1:i))

∝ P (xi, yi|z(1:i),X(1:i−1),y(1:i−1))P (z(1:i)|X(1:i−1),y(1:i−1)). (5)

Here z(1:i) are the class identifiers up to and including input/output pair i (inputs
X(1:i) and outputs y(1:i) are defined analagously).

We can draw samples from the posterior distribution using importance sam-
pling provided that we can sample from the posterior predictive distribution,
P (z(1:i)|X(1:i−1),y(1:i−1)). We establish a recurrence for incremental posterior
estimation, by noting that the posterior predictive distribution is related to the
posterior including the previous input/output pair, P (z(1:i−1)|X(1:i−1),y(1:i−1)),
in the following way

P (z(1:i)|X(1:i−1),y(1:i−1))

∝
∫

P (z(1:i)|z(1:i−1))P (z(1:i−1)|X(1:i−1),y(1:i−1))dz(1:i−1)

Suppose that we have L weights and samples {wi−1
ℓ , zi−1

ℓ }L
ℓ=1, where wi−1

ℓ ∈
R is a weight with

∑L
ℓ=1 w

i−1
ℓ = 1, from P (z(1:i−1)|X(1:i−1),y(1:i−1)) then we



can use Monte Carlo integration to write the posterior predictive distribution in
the following way

P (z(1:i)|X(1:i−1),y(1:i−1)) ≈
L

∑

ℓ=1

wi−1
ℓ P (zi|z(1:i−1)

ℓ ).

This is a mixture model and thus it can easily be sampled from. To sample z
(1:i)
ℓ

from this mixture model, first a component of the mixture model must be chosen
according to its weight, and then the CRP prior (Eqn. 2) can be used to draw

zi given z
(1:i−1)
ℓ .

We now have the proposal distribution needed for our importance sampler.
We can generate samples from the updated posterior P (z(1:i)|X(1:i−1),y(1:i−1))
by weighting samples drawn from the proposal distribution just outlined. From

Eqn. 5, the updated weight wi
ℓ of sample z

(1:i)
ℓ is wi−1

ℓ times the probability of the
observation given its assignment to some expert, P (xi, yi|z(1:i),X(1:i−1),y(1:i−1)).
Conveniently, we derived how to compute this term in the batch sampling sec-
tion, Equation 5. The weights must be normalized after all have been computed.

In implementations of IMGPE incremental estimation, a set of GP’s must be
maintained for each particle. In each of these GPs the partitioned matrix inverse
equations [16] must be used to incrementally integrate each new observation into
the GP covariance matrix corresponding to the local expert to which they are
assigned. Here the incremental updates for the for the kth partition’s covari-
ance matrix Qk are illustrated. In the following note the subtle overloading of
subscript semantics: Q−1

mk+1 is still the inverse covariance matrix for partition k
however the number of inputs, mk + 1, is now indicated rather than merely the
class k. Given Q−1

mk
and a new input point xi assigned to class k one can arrive

at

Q−1
mk+1 =

















 M













m







[

mT
]

[ η ]













by computing M, m, and η according to

η = (Qk(xi,xi) − kT Q−1
mk

k)−1

m = −ηQ−1
mk

k

M = Q−1
mk

+
1

η
mmT .

All of this together constitutes a recurrence whereby new observations can
be incrementally integrated into the model. Notwithstanding the partitioned
matrix updates, this style of recursive sampling is called sequential importance
sampling and/or particle filtering [17]. While particle filtering has been used
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Fig. 1. Log probability of the synthetic data versus computational cost for both incre-
mental (SMC) and batch (MCMC) estimates of an IMGPE model.

to do incremental estimation in nonparametric Bayesian mixture models ([18]),
particle filtering in this mixture of experts setting is novel. Further improve-
ments to the basic particle filter can be utilized to improve the basic sequential
importance sampling particle filter described here, for instance those proposed
in [18]. In all of our experiments we adopted the resampling policy in [18].

5 Experiments

In this section we establish two results; 1) that incremental estimation of IMGPE
models is as good or better than batch estimation, and 2) that IMGPE models
perform as well or better than LWPR for a number of problems. We demonstrate
the first result by using both batch and incremental procedures to estimate a
IMGPE model and show that the resulting models are equivalent. The second re-
sult is established by estimating IMGPE and LWPR models on several datasets
and comparing prediction results. These experiments empirically demonstrate
the validity of the incremental estimation approach for IMGPE models and es-
tablish some justification for continuing research into incremental, local Bayesian
regression models.

5.1 Empirical validation of incremental estimation

To compare the performance of batch vs. incremental estimation we use each to
estimate a model of the synthetic dataset from [8]. This synthetic dataset is a
non-functional, discontinuous mapping with observation noise that varies across
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Fig. 2. Top row: maximum aposteriori (MAP) models of synthetic data. The left figure
shows the MAP model from 500 incremental estimation particles, the right figure from
500 batch samples. The black symbols are the training input/output observations.
Bottom row: horizontally jittered samples drawn from the entire estimated posterior
at regularly spaced input points for both incremental (left) and and batch (right)
estimators.

the input domain. The data were generated from the following model

f1(x) = 0.25x2 − 40 + N (0,
√

7), x ∈ [0, 15]

f2(x) = −0.0625(x− 18)2 + .5x+ 20 + N (0,
√

7), x ∈ [25, 60]

f3(x) = 0.008(x− 60)3 − 70 + N (0,
√

4), x ∈ [45, 80]

f4(x) = − sin(0.25x) − 6 + N (0,
√

2), x ∈ [80, 100]

Note the gap of data when x ∈ [15, 25] and the overlap when x ∈ [45, 60]
(Fig. 2 and Fig. 4). We are particularly interested in the overlap, and stipulate
that proper performace on data in that range is to predict output from either

of the two functions, but not to return the average of the two possible values.
We produced several estimates of the IMGPE model for this data. The es-

timates differed in the number of particles and samples used to produce the
estimates, starting with one and going up to one thousand. For each of these
settings we produced five different estimates of the model by initializing the ran-
dom number generators with different seeds. The GP expert covariance function
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Fig. 3. One-pass LWPR model compared to the MAP incremental IMGPE model.

parameters used were v0 = 80, v1 = 15, and w = 10. The CRP concentration
parameter used was α = .5. Figure 1 displays the results from this experiment.
The average maximum a posteriori (MAP) model score (highest log joint prob-
ability of the training data out of all particles and/or samples) is shown per
number of particles/samples for both estimation procedures. The error bars (2
standard deviations) indicate how sensitive the MAP score is to initialization.
The overall conclusion we draw from this figure is that incremental estimation
produces similar results to batch estimation.

It is worth noting here that the number of particles used to estimate the
model is a direct proxy for computational cost. While no “Bayesian” would be
happy with a posterior estimate consisting of a single sample/particle as it does
not provide a reasonable way of averaging over models, it is still possible to run
the particle filter with a single particle. For practical applications where compu-
tational capacity is at a premium, doing so may not necessarily be the proper
“Bayesian” thing to do, but it still may produce a reasonable first approximation
to the MAP model. In Fig. 1 we see evidence that even with a very small number
of particles, the incremental estimation approach may produce models that are
reasonable for use in, for instance, resource constrained robotic systems.

The score of the MAP sample is a somewhat impoverished demonstration
of the efficacy of incremental estimation of this model. For this reason in Fig-
ure 2 we plot more detailed results on this data set, for both incremental and
batch estimation. In the top row the black symbols are the training input/output
observations. The symbols indicate which expert that training observation was
assigned to in the MAP model. The MAP model from incremental estimation
has three experts whereas the MAP model from batch estimation has four. The
vertical gray dashed lines indicate the regions of the input space that are gated
to a particular expert. The solid black prediction line and accompanying dotted
confidence intervals are created by predicting the output for 100 inputs equally
spaced across the input domain. Examining the MAP sample alone is insufficient
to demonstrate that the two distributions are substantially similar. The bottom
row shows samples drawn from the entire posterior at the same test points. It is
apparent from these output samples that the posterior distribution estimated by
both models is similar. Regardless of the estimator, the model captures the gen-



LWPR IMGPE

Boston 73.1 ± 22.3 68.5 ± 17.9
Cross 0.017 0.004

Synthetic 92.9 22.2

Table 1. Comparison of LWPR and IMGPE on three datasets. Shown are average
mean squared error of predictions on held-out data.

eral characteristics of the mapping, including both the upper and lower branches
of the overlapping region.

5.2 Comparing incremental IMGPE to LWPR

Directly comparing an IMGPE model to an LWPR model on the same data
is somewhat difficult, due in large part to the fact that the IMGPE model is
a probabilistic model, whereas the LWPR model is not. To facilitate the com-
parison we ignore many of the probabilistic modeling benefits of the IMGPE
approach and compare only the MAP model to the model produced by LWPR.
Because we are no longer in a probabilistic paradigm, we can not use Bayes
factors to compare the models, so we instead use mean square error between
actual and predicted outputs for known, held-out input/output pairs. Another
difficulty is that each algorithm has a number of free parameters. When possible
we chose LWPR parameters that have appeared in the literature; however, when
these were not available finite differencing gradient search methods were used to
search for optimal LWPR parameters. IMGPE parameters were, in general, cho-
sen such that they matched the scale of the problem but were otherwise chosen
to be as uninformative as possible.

We perform three experiments comparing LWPR to IMGPE modeling; the
results from which are shown in Table 1. In Figure 4 we compare an LWPR
model of the synthetic data described in the previous section to the incremental
IMGPE model estimate shown in Fig. 2. The large black dots correspond to the
center of the LWPR receptive fields while the black line is the LWPR predicted
output for an evenly spaced set of input points. The dashed line is the incremental
IMGPE MAP sample prediction (same as in Fig. 2). When generating Fig. 4 the
parameters (D∗ and wgen) of the LWPR model were selected by finite difference-
based gradient ascent. The objective maximized was a modified mean squared
error metric, defined as usual except in the area of overlap. There, error was
measured with respect to the closest correct ouput value. We chose this metric
because, as previously stated, we take correct behavior in the overlapping region
to be a prediction belonging to either function. We report the results in Table 1
(Synthetic).

In Figure 3 we compare an LWPR model of a “cross” mapping (Fig. 3(a)) to
which Gaussian noise N (0, .1) is added to an incremental IMGPE model of the
same. LWPR was intialized as in [3] with parameters D∗ = 30 and wgen = 0.2
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Fig. 4. Best LWPR model and MAP IMGPE model. Dots represent LWPR receptive
field centers.

and produced a model with 27 receptive fields. The IMGPE model was initial-
ized with µ0 = 0, Λ0 = 0.01I, k0 = 0.01, v0 = 3, v0 = 1, v1 = .1, w = 0.15, and
α = 0.5, and the particle filter was run with 500 particles, producing a model
with two experts. The mean squared errors of output predictions for a test grid
of 1681 novel input points were computed for both models; results are shown in
Table 1. Although from Figure 3 one could assume that the incrementally esti-
mated IMGPE model is overfitting, it should be noted that the prediction error
achieved by the IMGPE model is nearly as good at the best LWPR prediction
error published for this data. Moreover, in order to achieve this accuracy LWPR
needed to see nearly ten thousand training examples and use over forty experts
[3].

Finally, we compare LWPR prediction results [3] on the Boston housing data
set (a standard regression dataset from the UCI machine learning dataset repos-
itory [19]) to that of an incremental IMGPE model on the same. All of the
experiments thus far have had either one or two dimensional input spaces, but
both LWPR and IMGPE models are capable of handling data with much higher
input dimensionality. The results for the Boston dataset, which has an 13 di-
mensional input space, are shown in Table 1.

All the results presented in this section demonstrate that our new IMGPE-
based incremental regression algorithm can perform comparably to, or better
than LWPR on a variety of modeling tasks.

6 Discussion

The primary contribution of this paper is the development of an incremental
approach to IMGPE model estimation. We have demonstrated that our proposed
incremental estimation algorithm is valid by showing that the models estimated
by this incremental procedure are equivalent to those arrived at through batch
estimation. We also showed that for various kinds of data IMGPE models can



outperform LWPR models with respect to prediction error, giving credence to
the argument that our model might be viewed as a starting point for developing
new computationally efficient incremental, local Bayesian regression algorithms.

Unfortunately, there is still a wide gulf in computational cost between the
incremental IMGPE model we propose and LWPR. This is mostly because the
local experts in the IMGPE model are Gaussian processes, and each expert must
retain all of the training datapoints assigned to it. Furthermore, although the GP
is constructed incrementally via the partioned inverse equations, the space and
time requirements of each GP expert are fundamentally those of a GP (O(mk

2)
space and O(mk

3) time). This stands in stark contrast to the incremental PLS
experts of LWPR which retain no training data and instead keep only projection
directions and offsets. These GP computational costs were not a problem in the
modeling tasks we considered, but could be a problem when modeling much
larger datasets. There is, however, nothing in our approach that limits us to
using GP experts. Any probabilistic incremental regressor will work as an expert
in our model. It remains an open question whether to employ simple or complex
local experts; the general success of LWPR indicates that simpler local experts
may be sufficient. It may also not be necessary to discard GP experts in order
to achieve computational efficiency. Simply limiting the amount of training data
each expert can hold by employing sparse online Gaussian processes [6] may be
sufficient to yield a practical competitor to LWPR.



Bibliography

[1] Atkeson, C.G., Schaal, S.: Robot learning from demonstration. In Fisher, D.H.,
ed.: International Conference on Machine Learning, Nashville, TN (1997) 12–20

[2] Nicolescu, M., Mataric, M.J.: Natural methods for robot task learning: Instructive
demonstration, generalization and practice. In: International Joint Conference on
Autonomous Agents and MultiAgent Systems, Melbourne, AUSTRALIA (2003)
241–248

[3] Vijayakumar, S., D’Souza, A., Schaal, S.: Incremental online learning in high
dimensions. Neural Computation 17 (2005) 1–33

[4] Wold, H.: Estimation of principle components and related models by iterative
least squares. In Krishnaiaah, P., ed.: Multivariate Analysis. Academic Press,
New York, NY (1966) 391–420

[5] Engel, Y., Mannor, S., Meir, R.: Sparse online greedy support vector regression
(2002)
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