Discovering Natural Kinds of Robot Sensory
Experiences in Unstructured Environments

Daniel H Grollman
Odest Chadwicke Jenkins
Frank Wood

Department of Computer Science
Brown University
Providence, RI 02912-1910

{dang, cjenkins,fwood}@cs.brown.edu

Abstract

We address the symbol grounding problem for robot perception through a
data-driven approach to deriving categories from robot sensor data. Unlike
model-based approaches, where human intuitive correspondences are sought
between sensor readings and features of an environment (corners, doors, etc.),
our method learns intrinsic categories (or natural kinds) from the raw data
itself. We approximate a manifold underlying sensor data using Isomap non-
linear dimension reduction and apply Bayesian clustering (Gaussian mixture
models) with model identification techniques to discover categories (or kinds).
We demonstrate our method through the learning of sensory kinds from trials
in various indoor and outdoor environments with different sensor modalities.
Learned kinds are then used to classify new sensor data (out-of-sample read-
ings). We present results indicating greater consistency in classifying sensor
data employing mixture models in non-linear low-dimensional embeddings.

1 Introduction

The symbol grounding problem in robotics deals with connecting arbitrary symbols with
entities in the robot’s world. Names such as ’door’; "hallway’, and tree’ must be associated
with sensor readings so that an autonomous robot can reason about them at a higher level.
Traditionally, a human programmer is relied upon to provide these connections by identi-
fying areas in the world that correspond to preconceived labels and building models of how
they would appear to the robot. However, actual sensory information is dictated by the
robot’s embodiment and may not accord with models of sensor function. Consequently, our
understanding of a robot’s perception of the world is often biased and heuristic.

Intrinsic Parameterization

& gt Y WSS

:;“.'i:":ii-_' AA;‘?P&: 2
Clusters in input space ";_;..,{ ;g;*}?? Clusters in reduced space
‘k “E :.. ...c ‘;..‘ :-1 i::l:l:’..:_ :“‘;‘3;:‘{} uh A A‘A
:AA Nl [} :. FX 1\":-&':-. fs‘ﬁ&‘ A ﬂ ‘j’

£ § . $
; 4
. e : p—

% .. e ¥ & Dimensionality 3 .
S gk o0 RO 558 Reduction WY - asd
£ 45, .x".ff. K A ;:s.‘ A&“A‘ Aa :?“
,‘n:.:“ . v rot . “A at
Palne osein WM 5 :{‘A e aqht it
T ek NV VY L

Figure 1: An example of clustering 3D “Swiss roll” data generated by a contorted 2D
manifold. Clusters (colors) learned directly in the input space do not necessarily reflect
intrinsic structure of the data (here represented by shape). That is, proximal datapoints
along the underlying manifold may be classified differently. This problem can be alleviated
by applying manifold dimensionality reduction prior to clustering.

A data-driven approach to sensor analysis could discover a more appropriate interpretation
of sensor readings. Sensor data collected during robot operation are observations of the
underlying sensory process and, if teleoperation is involved, the control policy of the operator.
We posit that the intrinsic structure underlying these observations can be uncovered using
recent techniques from manifold learning. Once uncovered, this structure can provide a solid
foundation for autonomous sensory understanding as a robot’s perceptual system is allowed
to develop classes of sensor data based on its own, unique, experiences.

We present such a data-driven method for classifying robot sensor input via unsupervised
dimensionality reduction and Bayesian clustering. We view the input of the system as a high
dimensional space where each dimension corresponds to a reading from one of the robot’s
sensors. This sensory space is likely to be sparse and described by a lower dimensional sub-
space. Our approach is to embed sensor data nonlinearly into a lower-dimensional manifold
that condenses this space and captures latent structure. By clustering in this embedded
space we generate simpler probability densities while grouping together areas that appear
similar to the robot. We take each cluster of sensor readings in the reduced-dimensional
space as a kind! of entity as viewed by the robot. As seen in Figure 1, datapoints that are
intrinsically similar may be placed into different clusters if clustering is performed without
manifold learning. A naive approach might be to do simple linear dimensionality reduction
by finding the dimensions of highest variance and ignoring others. This approach, however,
would not capture nonlinear structure latent in the data.

Once classes are learned, we show that new sensor readings can be quickly classified with
an out-of-sample (OOS) classification procedure. This procedure projects new samples into

'Philosophically, a natural kind is a collection of objects that all share salient features. For instance, the 'Green
Kind’ includes all green objects. We use the terms ’kind’, ’class’ and ’category’ interchangeably.

the embedding space where they can be classified into a kind. When a location is revisited,
this procedure should embed the new readings near the old ones, allowing the space to be
classified consistently.

We use consistency as an evaluation metric because ground truth is unknown and often
subjective. The clusters developed by this technique reflect areas that are perceived similarly
by the robot, and as previously stated, our models of robot perception are biased and
heuristic. Therefore, the discovered classes may not reflect any categories we would develop
ourselves. It is important, however, that the found kinds be consistent, by which we mean
that similar inputs should belong to the same kind and be classified similarly.

2 Related Work

Topological mapping depends on the ability to discover regions in an explored area (Thrun,
1998). This process is usually done by extracting features from sensor data that indicate the
robot’s current location. When a human decides on a symbol set, or which region types exist
in the robot’s world and which features are important (Tomatis et al., 2003), biases from
models of sensor operation are introduced. We attempt to remove these biases by deriving
classes directly from sensor data.

Localization techniques also depend on region identification. Landmarking, or the identifi-
cation of unique places, is commonly used to let a robot know when it has returned to a
previously visited location on a map (i.e., revisiting, loop closure). The revisiting problem
is key when it comes to map-making because it allows a robot to discover loops in the world
(Howard, 2004) or, in the case of multiple exploration robots, it allows one robot to discover
when it has entered space explored by another (Stewart et al., 2003). Often, landmarking is
accomplished by modifying the environment to disambiguate similar places. We hypothesize
that with a data-driven classification technique, it will become clearer which areas of the
world look similar to the robot and require disambiguation. Without landmarking, localiza-
tion depends on estimating the location of the robot using, for example, a Hidden Markov
Model (Shatkay, 1998) or the connections between regions already seen (Howard et al., 2001).
All of these approaches require a robust way of identifying the kind of space that the robot
currently occupies.

There has been much work in the area of symbol grounding, particularly as it applies to
region identification. Usually in this scenario, an example of a region is provided by a
human and the algorithms learn to classify new stimuli. Because the regions (and therefore
the symbols) are selected by humans, their biases can have adverse effects on the efficacy of
the system.

A semi-supervised approach to discovering these regions in vision data is introduced in
(Grudic and Mulligan, 2005). By allowing each cluster to self-optimize its parameters,
they are able to discover clusters that more accurately correspond to the predefined ones,
as well as detect outlying points that do not belong to any cluster. However, exemplar
photographs of each cluster are required by the algorithm. In contrast, our approach is
completely unsupervised and allows for the discovery of space classes and outliers that are

potentially non-obvious to humans.

One of the obstacles that has to be surmounted when learning region types is that a region’s
type has to be identifiable from many different viewpoints if the classification system is to
be robust. In addition, every place within a region should be classified the same. When
the sensor modality is vision, this means that any image of a space has to be recognized as
coming from that space, even if the image was previously unseen. In (Koseckd and Li, 2004),
features were extracted from multiple hand-segmented and labeled camera images of a space
to come up with a representation of images of the space itself. This allows for new images
to be correctly classified as being of that space. Additionally, (Weng and Chen, 2000) use
linear subspace methods with a partition tree on robot vision data. Because robot sensor
data is potentially non-linear, we consider a non-linear alternative to subspace embedding.

In a more general case, (Tapus et al., 2004) learns a ring of features (a fingerprint) around
the robot to identify a place. The features correspond to aspects of the environment, and
function as grounded symbols. The fingerprints themselves involve data from both vision
and laser sensors and by modeling the occlusion of features in their identification algorithm,
they enable the robot to identify a location from multiple positions inside the location.

In order to tie sensing and action together, (Klingspor et al., 1996) learn sensory and action
concepts directly from the sonar data of a robot, after the data is segmented and categorized
by hand. By utilizing sensor information related to actions (such as teleoperation data), we
can determine the usual action performed in each space class in an unsupervised way and
use these actions as a first-attempt control policy.

In the field of dimension reduction (DR), Principal Components Analysis (PCA) (Bishop,
1995) is the most widely utilized and accessible method for uncovering subspace embed-
dings. PCA, however, is only suitable for uncovering linear subspaces. Recently, Isomap
(Tenenbaum et al., 2000) has emerged as a very good non-linear DR algorithm. It has been
successfully applied to 4096-dimensional pixel data to recover the three actual image dimen-
sions embedded within. For spatio-temporal data, (Jenkins and Matari¢, 2004) has extended
[somap to leverage temporal structure along with spatial nonlinearities. In order to apply
a previously learned embedding to new points, (Bengio et al., 2004) presents a framework
for extending discovered embeddings to Out-of-Sample data points. Recently, DR and man-
ifold learning have been shown to have beneficial effects on reinforcement learning (Roy and
Gordon, 2003; Mahadevan, 2005). We believe our approach can help apply these benefits
towards autonomous robot understanding.

3 Methodology

Our method, outlined in Figure 2, views d-dimensional robot sensor data as lying on a
manifold in R?. We model each sensor datum # as having been generated by a mixture
model on this manifold, where each mixture density corresponds to a natural kind. Here, we
closely follow the methods and notation of (Bengio et al., 2004).

In-Sample Training

Isomap Non-Linear Bayesian Clustering
Robot Sensor Data Dimension Reduction > (Gaussian Mixture Model)
Out-of-Sample
Classification

Multi-Dimensional e
/m—) Embedding ———»| Classification

Classified
Data

Figure 2: Our method in flowchart form. Data from robot sensors are analyzed with Isomap
to obtain a low-dimensional embedding. The embedded data is then clustered with a GMM
to develop sensor classes. Out-of-sample data can be quickly projected and classified using
models learned during the in-sample training.

3.1 Training

For training, let D = {¥},...,Zx} be the collection of readings from S sensors at N time
instances. We discover a non-linear manifold supporting this data using Isomap (Tenenbaum
et al., 2000). We briefly review the procedure: First, we compute an affinity matrix M by
approximating the geodesic distance between points on the sensor data manifold. Geodesic
distance between points a and b is approximated by:

D(a,b) = mi d(pi, p;
(CL,) HEHZ: (p p+1)

where p is a sequence of points of length [> 2 with p; = a, p, = b, and p; € D Vi €
{2,...,1—1} and (p;, pi41) are neighbors as determined by a k-nearest neighbors algorithm.
We compute D by applying Dijkstra’s algorithm (Cormen et al., 1990) to the graph V =
D,E = {pi,pis1} where edge length is the Euclidean distance between neighbors. It is
possible to use a different distance metric, perhaps chosen based on prior knowledge about
the sensor types that have generated the data. For generality and applicability, we use
Euclidean distance here.

M is formed with elements M;; = D?(x, x;) and then centered and converted to equivalent
dot products using the “double-centering” formula to obtain M.

~ 1 1 1 1
k

where S; = > i M. Double-centering ensures that the embedding will be centered around

the origin. In practice, M grows as N? and is thus currently infeasible to calculate for more
than a few thousand points. For larger datasets, only a subset of the data (landmarks) can
be fully processed.

The k dimensional embedding €é; of each sensor output #; on the sensor data manifold is
obtained via Multi-Dimensional Scaling (MDS). The embedding is approximated by the
vector €; = [/ 1015, VAaV2i, - - ., V ARUki| where A is the k' largest eigenvalue of M and vy,

Algorithm 1 Training

Input: Data (D), NeighborhoodSize (ns), Dimensionality (k) , ClusterNumber (.J)
Output: Embedding and Mixture Parameters

1: Create N, a neighborhood matrix where N;; = dist(¢,), the Euclidean distance between
points ¢ and j in D, if j is one of i’s ns nearest neighbors, co otherwise

D = dijkstra(N) (Geodesic Distance)

M = double center(D?))

[\, v] = eigendecomposition(M)

Keep only the first k£ elements of A and v

Create E, the embedded coordinates where E; = [v/A1v1i, VA2V, - -+, vV ARUR]

Get u, X, the means and covariances of a Gaussian Mixture model with J components
fit to B

8 return \, v, p, 2

is the 7" element of the corresponding eigenvector. We reduce the dimensionality of the
sensor data by setting k < d, thus removing many of the low eigenvalue coordinates of the
embedding. k is selected by comparing the error between distances in the input and reduced
spaces for different dimensionalities. In particular, we look for an ’elbow’, a point after
which increasing dimensionality does not lead to a significant decrease in residual variance.
Practically, we take k to be a few dimensions higher than the elbow to avoid loss of signal.
We then define £ = €}, ...,y to be the reduced dimensionality embedding of the training
sensor data D in k dimensions, henceforth referred to as the “sensor embedding.”

This concludes our review of Isomap. It is relevant to note that M does not need to be
formed from the Geodesic distances. In particular, if all pairs Euclidean distance is used
instead, the MDS step would return a result equivalent to standard PCA (Williams, 2002).

Initially, we assume that the sensor embeddings were generated by exactly J statistically
distinct intrinsic classes of sensor readings. We assume that the distribution of each of these
classes is Gaussian and fit E with a mixture model with J components.

The probability that €; was output by the robot’s sensors while it was in a physical space
corresponding to sensor class j, 1 < j < J given these assumptions is:
S 1 1
P(eilj) =

a3) e -))

where f1; and YJ; are the mean and covariance of the sensor output while in class j.

Assuming that each sensor datum is independent, then the probability of E according to the
mixture model is:

N J
P(E)=]]>_ a;P(@l))

i=1 j=1

where the «; > 0 are mixing coefficients and Z}]:1 a; = 1.

The EM algorithm (McLachlan and Basford, 1988) is used to maximize P(E) by solving

Algorithm 2 Out-of-sample Classification

Input: Data (D), NeighborhoodSize (ns), Geodesic Distance (D), Embedding (), v) and
Mixture (pu, 33) parameters, new datapoint (p)
Output: Soft cluster assignments

1: Create N, where N; = the Euclidean distance between p and the ¢th point in D if it is
one of p’s ns nearest neighbors, else oo
for all ¥ € D, indexed by i do
end for B
Get € by embedding the new point into the manifold according to Eqn. 2 where D(-, p)
and D(p,-) are given by D
for each of the J classes do
Get S;, the probability of p coming from class j using Eqn. 1
end for
return S

for optimal distribution parameters and membership weights. This maximization is accom-
plished by the iterative optimization of a log likelihood function:

log(L(O|E,Y)) ZlogZay (€155, 15))

where © = {1, ..., 1y, 21,...,5,} is a set of unknown parameters corresponding to the
mean sensor data embeddings and covariance matrices for the J classes and

y:{yi}i]\ilal <y <Jy €Z

is an array of unknown variables such that y; = j if €; came from mixture component j. The
training step is show algorithmically in Algorithm 1.

Model selection is a central issue in clustering and corresponds to determining the number of
clusters (intrinsic classes) in the data. We employ two existing empirical criteria for model
selection, Bayesian Information Criteria (BIC) and cross-validation. The BIC penalizes
likelihood as a function of the complexity of the model. If s is the number of free parameters
in the model, then we calculate the BIC as:

—2log(L(O|E,Y)) — k(log(N) + 1)

Since in practice the BIC often doesn’t sufficiently penalize complex models, we additionally
use cross-validation on held-out data to check for overfitting: We train our model on half
the training data and then compute the unpenalized likelihood of the remainder. When
too many classes are posited, i.e. the model may be over-fit, the likelihood of the held-out
data may decrease relative to simpler models. These two techniques guide us in manually
selecting J.

3.2 Online Classification

(a) Crunch (b) Chew

Figure 3: The robots used in our experiments. Crunch is a small inverted pendulum robot
equipped with sonar and infrared sensors and Chew is a large all-terrain vehicle with a
time-of-flight distance camera.

Online classification of a new point p'is simple and rapid. We refer the reader to (Bengio
et al., 2004) for full details. The embedding of 7 is given by:

ex(p) = 2%/A_k Z i (B[D*(Z, 20)] + B [D*(5,7)] — Ezw[D*(7, 7)) - D*(7,0)) (2)

where F is an average over the training data set. Assuming that the data is from one of
the classes previously discovered, we use the GMM from the training stage and determine
the probability of this newly embedded point belonging to each cluster. This classification
process is shown algorithmically in Algorithm 2.

4 Experiments

To test our algorithms, we collected robotic sensory data as a robot was teleoperated through
an environment several times. Data from one trip was analyzed using Algorithm 1 to learn
embedding and clustering parameters. Then, data from other trips were run through Algo-
rithm 2. Categorizations from multiple trips in the same environment were then examined

for consistency. We compared the results of our Isomap based algorithm to one based on
PCA.

4.1 Data Collection

Data was collected from two robots in two different environments, demonstrating our ap-
proach’s applicability to multiple platforms, environments, and sensor modalities. Indoors,
in an office environment, we used Crunch, the small, cylindrical, inverted pendulum robot
pictured in Figure 3(a). It has eight sonar and eight IR sensors arranged in dual rings around
its body as well as wheel encoders that record wheel rotation. During operation, these sen-

sors are sampled and transmitted back to a base laptop where they are logged at around
10Hz.

For outdoor experiments, we used Chew, the large, six-wheeled all-terrain robot built by
Nextek Mobility, pictured in 3(b). Chew has been equipped with a SwissRanger time-of-

Input [somap PCA
Dimensions | Dimensions | Clusters | Dimensions | Clusters
Crunch 16 8 5 10 10

Chew 19840 15 8 15 11

Table 1: Results of clustering in each of the spaces. Shown are the number of dimensions and
the number of discovered clusters for the first data set from Crunch and Chew. Clustering
in the raw input space of Chew was computationally infeasible, and is thus not shown here.
Clustering in Crunch’s raw input space produced a degenerate GMM, and thus results are
also not shown.

flight distance camera that uses structured light to determine a 160 x 124 distance array.
Running at ~5hz, this 19840 dimensional data is timestamped and logged onboard. Chew
was driven around various locations on the campus of Brown University, which included open
grassy areas, streets with car and pedestrian traffic, and collections of buildings for retail
shopping.

4.2 Learning Sensory Kinds

For the training phase, one set of data from each robot was used to discover embedding
and clustering parameters. For Crunch, after computing the geodesic distance and MDS
embedding of the 16D training data, we examined the residual variances and retained 8 of
the resulting dimensions for future processing. Based on the BIC and holdout calculations,
we judged that there were 5 classes in the data. The resulting mixture model was used to
assign each datapoint to a class. For display purposes, we manually registered the odometry
with the underlying floor plan and overlaid these classes on the path that the robot followed.
This assignment is illustrated in Figure 4(a). Figures 4(c)-4(g) show expected readings from
each of the 5 classes discovered by our method. These images were generated using a “ray
model” of Crunch’s IR and sonar sensors and the values were computed from a weighted
average of the mean-centered datapoints. Under this model, many of these shapes are hard
to interpret as corresponding to a hallway, doorway, corner, etc, but these are the sensor
readings that are most distinguishable to the robot.

Similarly, we processed the first trip that Chew took. After reducing from 19840 to 15
dimensions, we estimated 8 clusters in the data. The odometry was registered, coded, and
overlaid on a map of the environment in Figure 5(a). Figures 5(c)-5(j) show the mean-
centered canonical distance measurements for each of the classes.

We compare the results from the Isomap-based technique described above with those of
the PCA-based one, where Geodesic distance has been replaced with all pairs Euclidean
distances. We also attempted to perform clustering in the native dimensionality of the robots.
Unfortunately, the Chew data is so high dimensional that clustering is computationally
intractable on our equipment. Further, while the Crunch data is processable, the results are
degenerate in that almost all of the points are assigned to one cluster. Table 1 shows the
dimensionalities and number of discovered clusters for the different techniques used herein.

:I [— o :I [— o

e =

—
[—1
-
-—

U - U
- L 14 O |-I S— 1.
- [

W ! 11 I|
b)

(a) Tripl, 4th Floor Trip2, 4th Floor

-|.|:"F' - T
(

% e =
Ry <IN
/N 7N

/ 3 L]

y N

.

(c) Classl (d) Class2 (e) Class3 (f) Class4 (g) Classb

Figure 4: Results from Crunch on the fourth floor of the Brown University CIT Building.
4(a): Sensor data from trip 1 has been clustered into 5 classes. A unique width and color
value for each class is overlaid on registered odometry to show the classification of regions of
space. 4(b): Data from a second trip was classified into the learned classes. 4(c)-4(g): The
mean-centered expected sensor readings for each class under the standard ray model.

4.3 Consistent Sensory Classification

Our first experiment was designed to test the consistency of our classification when a location
is revisited. We used the parameters learned from the training stage to classify data from a
second trip in the same environment. As the robot followed the same general path as it did
in the first trip, we expected the sensory readings along the path to be classified similarly
across trips. The results from the out-of-sample classification of Crunch’s second trip are
shown in Figure 4(b), and Chew’s in Figure 5(b).

We used the registered odometry to compare classifications of the same physical space across
trips. Given a position (z,y) in the first trip that has been classified as generating sensor
readings of kind %k, we compare it to all points from the second trip within a certain radius,
r. If more than a given percentage z of these points have also been classified as kind k, we
declare a match. We compare the consistency of classification performed by our manifold
based approach and the PCA variant in Figure 6. As you can see, manifold learning greatly
improves the consistency of classification for both Crunch and Chew. For example, if Crunch
requires 50% of points within a 1 foot radius to be classified the same, our approach achieves
40% consistency, while PCA performs at less than 10%. Faulty, cheap, and idiosyncratic
sensors and noisy environments combine to bring these numbers down. For reference, the

(g) Classb (h) Class6 (i) Class7 (j) Class8

Figure 5: Sensory data from the first of two trips with Chew was analyzed to discover sensor
classes. 5(a)-5(b): Both trips were then categorized, colorcoded and overlaid on a map
(courtesy of Google Maps). 5(c)-5(j): Mean-centered canonical depth views of each class
discovered by Chew.

consistency between random assignments over these paths is ~0.5%.

In general, Chew has a lower consistency rating. This difference is to be expected as its
environment is noisier and far more complicated. In addition to more kinds of objects,
Chew has to deal with many more animate entities than Crunch does, such as cars and
pedestrians. We hope to address these issues in future work by improving our manifold
discovery techniques and incorporating temporal information.

4.4 Consistency in New Spaces

To evaluate the applicability of our approach to new, but similar, spaces, we ran Crunch on
a different floor of our CIT building. Data from two trials in this new space were collected
and separately classified using our out-of-sample technique. Results are shown in Figure 7.

100,
804N
604

a0

consistency (%)

consistency (%)

20.- °

100

50

00 0 0
cdometry window (ft] correctriess threshold (3] odometry wirdow (ft) correctness threshold (%)

(a) Crunch Isomap Based (b) Crunch PCA based

100,

gy

consistency (%)
consistency (%)

0 g 00
cdometry window (ft] correctriess threshold (3] odometry wirdow (ft) correctness threshold (%)

(c) Chew Isomap based (d) Chew PCA based

Figure 6: The consistency metric is highly sensitive to constant selection and registration
errors. Here we show the measured consistency of our Isomap based technique as the con-

stants (r,z) are varied (6(a) and 6(c)), and compare it to a PCA-based version (6(b) and

6(d)).

If the learned classes were non-applicable to the space, that is, if areas that looked similar
to the robot were not assigned to the same cluster, we would expect to see successive data
points assigned to different classes. Instead, there are several large contiguous sections of
points that are all assigned to the same class. Furthermore, by repeating the consistency
test from above, and classifying data from a second trip on the fifth floor using the same

classes, we see that these classifications are usable in this area, even though they were not
learned here.

(a) Trip1, 5th Floor (b) Trip2, 5th Floor

100,

g

%)

consistency ('

I I N B
odometry window (it 0o correctness threshold (%]

(c) Consistency (d) Topological Map

Figure 7: Using the sensor classes discovered on the fourth floor, Crunch took two trips
around the fifth floor of our building and classified each datapoint. As before, the consistency
metric, 7(c) shows that the two trips are classified similarly. Thus the learned classes are
applicable in other (although similar) locations. 7(d): a topological map derived from our
method, see text.

5 Discussion and Conclusion

We attempt to remove human bias from the analysis of robotic sensor data by identifying
latent structure in the sensor readings themselves. Currently, we empirically determine the
neighborhood function and size, the number of embedding coordinates to retain, and the
number of intrinsic sensor classes. In theory, each of these can be determined automatically,
and perhaps even adaptively, from the data. In particular, model selection is very difficult.
There are techniques to alleviate this issue, such as infinite mixture models (Blei et al., 2003)
which allow for new classes to be developed during operation that can be incorporated in
future work. The main contribution of the work presented here is in demonstrating that
intrinsic sensor classes may form a better foundation for applications that require classifying
sensor data. In addition, we currently treat each sensor reading as independent. Better
performance may result from modeling spatial and temporal correlations as in ST-Isomap
(Jenkins and Matarié¢, 2004). Parametric Embedding (Iwata et al., 2005) is an approach
that preserves associations between data objects and mixture components during embedding,

which could be useful in this context.

Because our technique operates in a space defined by robot sensors, the results are sometimes
difficult to reconcile with human intuition. In particular, when the “canonical” sensor reading
for a Crunch class is examined, it does not correspond to any class that we, as humans,
would have developed for the robot. In fact, even the number of classes in the space differs.
However, as Crunch is a small wheeled robot equipped with sonar and IR and we are tall
humans with eyes, it makes sense that our world views, and our divisions of that world
into categories, would be different. Our intuition is further bolstered by noting that armed
with the kinds discovered by our system, a human crawling on his hands and knees through
the area explored by Crunch can see how they match up. In addition, while it is tempting
to interpret the canonical views from Chew as images, it must be remembered that they
are actually distance measurements. Even this interpretation is incorrect, as reflections,
refractions, and other sources of photons can influence the sensor and cause it to return
something other than distance.

Alas, there is no “ground truth” we may use to evaluate our model. By design we cannot
determine the “correct” classification of each point in robot sensor space. At most, we can
use an ad-hoc metric to test classifications for consistency. The metric described herein is
highly sensitive to registration errors and constant selection. It served only to help us intuit
that our classification scheme is consistent and reapplicable.

5.1 Mapping and Control

One use of our system would be the creation of topological maps of the robot’s environment.
Such “robot-centric” maps (Grudic and Mulligan, 2005) require that the robot accurately
recognize when it is in certain types of space. By combining our classification with odometric
data, rough topological maps can be derived. Figure 7(d) shows a topological map derived
from 7(a) by dividing the space into regions based on classification. Further processing with
loop-closure algorithms and landmark identification techniques (Howard, 2004) can refine
these maps into useful tools for autonomous robot navigation.

In addition, control algorithms can be derived from the motor data associated with each
class. Firstly, we can use the average movement of the robot in each space class as a first-
pass control policy for what the robot should do if it finds itself in that class. Furthermore,
we can include the teleoperation data in the training process, so areas that are clustered
together not only look similar, but are areas where the robot should behave similarly as
well (at least according to the teleoperator). We plan to use this ability to perform robotic
learning by demonstration (Nicolescu and Matari¢, 2003). After being led through a task by
a human teleoperator, a robot can segment the task and associate actions with each segment
in an unsupervised manner. By comparing human and robot segmentations of a space,
disagreements and ambiguities in the environment and control policy can be discovered and
dealt with. As an example, consider a control policy that requires a robot to turn left when
faced with a dog, and right when encountering a wolf. Manifold-based analysis may show
that the robot cannot distinguish between dogs and wolves, and thus the control policy or the
environment should be changed. Once tasks are learned in this manner, they can be updated

as the robot continues operation. As the task is repeated, more data become available and
the clusters and actions may be fine tuned. Standard reinforcement learning techniques can
also be applied to allow a human trainer better control.

6 Conclusion

This paper presents an extensible method for data-driven discovery of intrinsic classes in
robot sensor data. We demonstrate that classes discovered with manifold-learning techniques
are more consistently recognizable than those found using PCA. We also show that these
classes are reapplicable to new data using out-of-sample techniques. We believe that this
technique can provide a basis for future work in autonomous robot operation.

Acknowledgements

This work was supported in part by the NSF (IIS-0534858). The authors would also like to
thank E. Chris Kern and Brock Roberts for their support and assistance.

References

Bengio, Y., Paiement, J., Vincent, P., Delalleau, O., Roux, N. L., and Ouimet, M. (2004).
Out-of-sample extensions for lle, isomap, mds, eigenmaps, and spectral clustering. In
Thrun, S., Saul, L., and Scholkopf, B., editors, Advances in Neural Information Process-
ing Systems 16, pages 177-184, Vancouver, BC. MIT Press.

Bishop, C. M. (1995). Neural Networks for Pattern Recognition. Oxford University Press,
Oxford.

Blei, D., Ng, A., and Jordan, M. (2003). Latent dirichlet allocation. Journal of Machine
Learning Research, 3:993-1022.

Cormen, T. H., Leiserson, C. E., and Rivest, R. L. (1990). Introduction to Algorithms. MIT
Press/McGraw-Hill, Cambridge, MA.

Grudic, G. and Mulligan, J. (2005). Topological mapping with multiple visual manifolds.
In Thrun, S., Sukhatme, G., Schaal, S., and Brock, O., editors, Robotics: Science and
Systems I, pages 185-192, Cambridge, MA. MIT Press.

Howard, A. (2004). Multi-robot mapping using manifold representations. In [IEEE In-
ternational Conference on Robotics and Automation, pages 4198-4203, New Orleans,
Louisiana.

Howard, A., Matari¢, M. J., and Sukhatme, G. S. (2001). Relaxation on a mesh: a formalism
for generalized localization. In IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 1055-1060, Wailea, Hawaii.

Iwata, T., Saito, K., Ueda, N., Stromsten, S., Griffiths, T. L., and Tenenbaum, J. B. (2005).
Parametric embedding for class visualization. In Advances in Neural Information Pro-
cessing Systems 17, pages 617-624, Vancouver, BC.

Jenkins, O. C. and Matari¢, M. J. (2004). A spatio-temporal extension to isomap nonlinear
dimension reduction. In The International Conference on Machine Learning 21, pages
441-448, Banff, Alberta, Canada.

Klingspor, V., Morik, K. J., and Rieger, A. D. (1996). Learning concepts from sensor data
of a mobile robot. Machine Learning, 23(2-3):305-332.

Koseckd, J. and Li, F. (2004). Vision based topological markov localization. In The In-
ternational Conference on Robotics and Automation, pages 1481-1486, New Orleans,
Louisiana.

Mahadevan, S. (2005). Proto-value functions: Developmental reinforcement learning. In
International Conference on Machine Learning, pages 553-560, Bonn, Germany.

McLachlan, G. J. and Basford, K. E. (1988). Mizture Models: Inference and Applications to
Clustering. Marcel Dekker, New York.

Nicolescu, M. N. and Matari¢, M. J. (2003). Natural methods for robot task learning: Instruc-
tive demonstrations, generalization and practice. In Joint Conference on Autonomous
Agents and Multi-Agent Systems, pages 241-248, Melbourne, Australia. ACM Press.

Roy, N. and Gordon, G. (2003). Exponential family pca for belief compression in pomdps.
In Advances in Neural Information Processing Systems 15, pages 707-716, Vancouver,
BC.

Shatkay, H. (1998). Learning Models for Robot Navigation. PhD thesis, Brown University,
Providence, RI.

Stewart, B., Ko, J., Fox, D., and Konolige, K. (2003). The revisiting problem in mobile robot
map building: A hierarchical bayesian approach. In The 19th Conference on Uncertainty
in Artificial Intelligence, pages 551-55, San Francisco, CA. Morgan Kaufmann.

Tapus, A., Tomatis, N., and Siegwart, R. (2004). Topological global localization and mapping
with fingerprints and uncertainty. In The International Symposium on FExperimental
Robotics, Singapore.

Tenenbaum, J. B., de Silva, V., and Langford, J. C. (2000). A global geometric framework
for nonlinear dimensionality reduction. Science, 290(22):2319-2323.

Thrun, S. (1998). Learning maps for indoor mobile robot navigation. Artificial Intelligence,
99(1):21-71.
Tomatis, N., Nourbakhsh, I., and Siegwart, R. (2003). Hybrid simultaneous localization and

map building: a natural integration of topological and metric. Robotics and Autonomous
Systems, 44:3-14.

Weng, J. and Chen, S. (2000). Visual learning with navigation as an example. [EEFE
Intelligent Systems, 15(5):63-71.

Williams, C. K. I. (2002). On a connection between kernel pca and metric multidimensional
scaling. Machine Learning, 46(1-3):11-19.

