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Abstract

In this paper we propose a new incremental spike sorting model that automatically
eliminates refractory period violations, accounts for action potential waveform
drift, and can handle “appearance” and “disappearance” of neurons. Our approach
is to augment a known time-varying Dirichlet process that ties together a sequence
of infinite Gaussian mixture models, one per action potential waveform observation,
with an interspike-interval-dependent likelihood that prohibits refractory period
violations. We demonstrate this model by showing results from sorting two publicly
available neural data recordings for which a partial ground truth labeling is known.

1 Introduction

Spike sorting (see [1] and [2] for review and methodological background) is the name given to the
problem of grouping action potentials by source neuron. Generally speaking, spike sorting involves
a sequence of steps; 1) recording the activity of an unknown number of neurons using some kind
of extra-cellular recording device, 2) detecting the times at which action potentials are likely to
have occurred, 3) slicing action potential waveforms from the surrounding raw voltage trace where
action potentials were posited to have occurred, 4) (often) performing some kind of dimensionality
reduction/feature extraction on the set of collected action potential waveform snippets, 5) running
a clustering algorithm to produce grouping of action potentials attributed to a single neuron, and
finally 6) running some kind of post hoc algorithm that detects refractory period violations and thins
or adjusts the clustering results accordingly.

Neuroscientists are interested in arriving at the optimal solution to this problem. Towards this end they
have traditionally utilized maximum likelihood clustering methods such as expectation maximization
for finite Gaussian mixture models with cross-validation model selection. This of course allows them
to arrive at an optimal solution, but it is difficult to say whether or not it is the optimal solution, and it
affords them no way of establishing the level of confidence they should have in their result. Recently
several groups have suggested a quite different approach to this problem which eschews the quest
for a single optimal solution in favor of a Bayesian treatment of the problem [3, 4, 5, 6]. In each of
these, instead of pursuing the optimal sorting, multiple sortings of the spikes are produced (in fact
what each model produces is a posterior distribution over spike trains). Neural data analyses may
then be averaged over the resulting spike train distribution to account for uncertainties that may have
arisen at various points in the spike sorting process and would not have been explicitly accounted for
otherwise.

Our work builds on this new Bayesian approach to spike sorting; going beyond them in the way steps
five and six are accomplished. Specifically we apply the generalized Polya urn dependent Dirichlet
process mixture model (GPUDPM) [7, 8] to the problem of spike sorting and show how it allows us
to model waveform drift and account for neuron appearance and disappearance. By introducing a
time dependent likelihood into the model we are also able to eliminate refractory period violations.
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The need for a spike sorting approach with these features arises from several domains. Waveform
non-stationarities either due to changes in the recording environment (e.g. movement of the electrode)
or due to changes in the firing activity of the neuron itself (e.g. burstiness) cause almost all current
spike sorting approaches to fail. This is because most pool waveforms over time, discarding the time
at which the action potentials were observed. A notable exception to this is the spike sorting approach
of [9], in which waveforms were pooled and clustered in short fixed time intervals. Multiple Gaussian
mixture models are then fit to the waveforms in each interval and then are pruned and smoothed
until a single coherent sequence of mixture models is left that describes the entire time course of the
data. This is accomplished by using a forward-backward-like algorithm and the Jenson-Shannon
divergence between models in consecutive intervals. Although very good results can be produced
by such a model, using it requires choosing values for a large number of parameters, and, as it is a
smoothing algorithm, it requires the entire data set to have been observed already.

A recent study by [10] puts forward a compelling case for online spike sorting algorithms that can
handle waveform non-stationarity, as well as sudden jumps in waveform shape (e.g. abrupt electrode
movements due to high acceleration events), and appearance and disappearance of neurons from the
recording over time. This paper introduces a chronical recording paradigm in which a chronically
implanted recording device is mated with appropriate storage such that very long term recordings
can be made. Unfortunately as the animal being recorded from is allowed its full range of natural
movements, accelerations may cause the signal characteristics of the recording to vary dramatically
over short time intervals. As such data theoretically can be recorded forever without stopping,
forward-backward spike sorting algorithms such as that in [9] are ruled out. As far as we know our
proposed model is the only sequential spike sorting model that meets all of the requirements of this
new and challenging spike sorting problem,

In the next sections we review the GPUDPM on which our spike sorting model is based, introduce
the specifics of our spike sorting model, then demonstrate its performance on real data for which a
partial ground truth labeling is known.

2 Review

Our model is based on the generalized Polya urn Dirichlet process mixture model (GPUDPM)
described in [7, 8]. The GPUDPM is a time dependent Dirichlet process (DDP) mixture model
formulated in the Chinese restaurant process (CRP) sampling representation of a Dirichlet process
mixture model (DPM). We will first very briefly review DPMs in general and then turn to the specifics
of the GPUDPM.

DPMs are a widely used tool for nonparametric density estimation and unsupervised learning in
models where the true number of latent classes is unknown. In a DPM, the mixing distribution G is
distributed according to a DP with base distribution G0, i.e.

G|α, G0 ∼ DP(α, G0)
θi|G ∼ G
xi|θi ∼ F (θi)

(1)

Placing a DP prior over G induces a clustering tendency amongst the θi. If θi takes on K distinct
values φ1, . . . , φK , we can write out an equivalent model using indicator variables ci ∈ {1, . . . ,K}
that assigns data points to clusters. In this representation we track the distinct φk drawn from G0 for
each cluster, and use the Chinese restaurant process to sample the conditional distributions of the
indicator variables ci

P (ci = k|c1, . . . , ci−1) = mk

i−1+α for k ∈ {cj : j < i}
P (ci 6= cj for all j < i|c1, . . . , ci−1) = α

i−1+α
(2)

where mk = #{cj : cj = k ∧ j < i}.

The GPUDPM consists of T individual DPMs, one per discrete time step t = 1, . . . , T , all tied
together through a particular way of sharing the component parameters φt

k and table occupancy
counts mt

k between adjacent time steps (here t indexes the parameters and cluster sizes of the T
DPMs).

Dependence among the mt
k is introduced by perturbing the number of customers sitting at each table

when moving forward through time. Denote by mt = (mt
1, . . . ,m

t
Kt) the vector containing the

2



number of customers sitting at each table at time t before a “deletion” step, where Kt is the number
of non-empty tables at time t. Similarly denote by mt+1 the same quantity after this deletion step.
Then the perturbation of the class counts from one step to the next is governed by the process

mt+1|mt, ρ ∼
{
mt − ξt with probability γ

mt − ζt with probability 1− γ
(3)

where ξt
k ∼ Binomial(mt

k, 1 − ρ) and ζt
j = mt

j for j 6= ` and ζt
j = 0 for j = ` where ` ∼

Discrete(mt/
∑Kt

k=1 mt
k). Before seating the customers arriving at time step t + 1, the number of

customers sitting at each table is initialized to mt+1. This perturbation process can either remove
some number of customers from a table or effectively delete a table altogether. This deletion procedure
accounts for the ability of the GPUDPM to model births and deaths of clusters.

The GPUDPM is also capable of modeling drifting cluster parameters. This drift is modeled by tying
together the component parameters φt

k through a transition kernel P(φt
k|φ

t−1
k ) from which the class

parameter at time t is sampled given the class parameter at time t− 1. For various technical reasons
one must ensure that the mixture component parameters φt

k are all drawn independently from G0,
i.e. {φt

k}T
t=1 ∼ G0. This can be achieved by ensuring that G0 is the invariant distribution of the

transition kernel P(φt
k|φ

t−1
k ) [8].

3 Model

In order to apply the GPUDPM model to spike sorting problems one first has to make a number of
modeling assumptions. First is choosing a form for the likelihood function describing the distribution
of action potential waveform shapes generated by a single neuron P (xt|ct = k, θt

k) (the distibution
of which was denoted F (θt

k) above), the prior over the parameters of that model (the base distribution
G0 above), and the transition kernel P(φt

k|φ
t−1
k ) that governs how the waveshape of the action

potentials emitted by a neuron can change over time. In the following we describe modeling choices
we made for the spike sorting task, as well as how the continuous spike occurrence times can be
incorporated into the model to allow for correct treatment of neuron behaviour during the absolute
refractory period.

Let {xt}T
t=1 be the the set of action potential waveforms extracted from an extracellular recording

(referred to as “spikes” in the following), and let τ1, . . . , τT be the time stamps (in ms) associated
with these spikes in ascending order (i.e. τ t ≥ τ t′ if t > t′). The model thus incorporates two
different concepts of time: the discrete sequence of time steps t = 1, . . . , T corresponding to the
time steps in the GPUDPM model and the actual spike times τ t at which the spike xt occurs in the
recording. We assume that only one spike occurs per time step t, i.e. we set N = 1 in the model
above and identify ct = (ct

1) = ct.

It is well known that the distribution of action potential waveforms originating from a single neuron
in a PCA feature space is well approximated by a Normal distribution [1]. We choose to model each
dimension xd (d ∈ {1, . . . , D}) of the data independently with a univariate Normal distribution and
use a product of independent Normal-Gamma priors as the base distribution G0 of the DP.

P (x|φ) def= N (x|φ) =
D∏

d=1

N
(
xd|µd, λ

−1
d

)
(4)

G0(µ0, n0, a, b) def=
D∏

d=1

[
N

(
µd|µ0,d, (n0λd)−1

)
Ga (λd|a, b)

]
(5)

where φ = (λ1, . . . , λD, µ1, . . . , µD), and µ0 = (µ0,1, . . . , µ0,D), n0, a, and b are parameters of
the model. The independence assumption is made here mainly to increase computational efficiency.
A model where P (x|φ) is a multivariate Gaussian with full covariance matrix is also possible, but
makes sampling from (7) computationally expensive. While correlations between the components
can be observed in neural recordings, they can at least partially be attributed to temporal waveform
variation.

To account for the fact that neurons have an absolute refractory period following each action potential
during which no further action potential can occur, we extend the GPUDPM by conditioning the model
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on the spike occurrence times τ1, . . . , τT and modifying the conditional probability of assigning
a spike to a cluster given the other cluster labels and the spike occurrence times τ1, . . . , τt in the
following way:

P(ct = k|mt, c1:t−1, τ
1:t, α) ∝


0 if τ t − τ̂ t

k ≤ rabs

mt
k if τ t − τ̂ t

k > rabs and k ∈ {1, . . . ,Kt−1}
α ifτ t − τ̂ t

k > rabs and k = Kt−1 + 1
(6)

where τ̂ t
k is the spike time of the last spike assigned to cluster k before time step t, i.e. τ̂ t

k = τ t′ ,
t′ = max{t′′|t′′ < t ∧ ct′′ = k}. Essentially, the conditional probability of assigning the spike at
time t to cluster k is zero if the difference of the occurrence time of this spike and the occurrence
time of the last spike associated with cluster k is smaller than the refractory period rabs. If the time
difference is larger than rabs then the usual CRP conditional probabilities are used. In terms of the
Chinese restaurant metaphor, this setup corresponds to a restaurant in which seating a customer at
a table removes that table as an option for new customers for some period of time. Note that this
extension introduces additional dependencies among the indicator variables c1, . . . , cT .

The transition kernel P(φt
k|φ

t−1
k ) specifies how the action potential waveshape can vary over time. To

meet the technical requirements of the GPUDPM and because its waveform drift modeling semantics
are reasonable we use the update rule of the Metropolis algorithm [11] as the transition kernel
P(φt

k|φ
t−1
k ), i.e. we set

P(φt
k|φt−1

k ) = S(φt−1
k , φt

k)A(φt−1
k , φt

k) +
(

1−
∫

S(φ′, φt
k)A(φ′, φt

k)dφ′
)

δφt−1
k

(φt
k) (7)

where S(φ′, φt
k) is a (symmetric) proposal distribution and A(φ′, φt

k) = min
(
1, G0(φt

k)/G0(φt−1
k )

)
.

We choose an isotropic Gaussian centered at the old value as proposal distribution S(φ′, φt
k) =

N (φt−1
k , σI). This choice of P (φt

k|φ
t−1
k ) ensures that G0 is the invariant distribution of the transition

kernel, while at the same time allowing us to control the amount of correlation between time steps
through σ. A transition kernel of this form allows the distribution of the action potential waveforms
to vary slowly (if σ is chosen small) from one time step to the next both in mean waveform shape as
well as in variance. While small changes are preferred, larger changes are also possible if supported
by the data.

Inference in this model is performed using the sequential Monte Carlo algorithm (particle filter)
defined in [7, 8].

4 Experiments

4.1 Methodology

Experiments were performed on a subset of the publicly available1 data set described in [12, 13],
which consists of simultaneous intracellular and extracellular recordings of cells in the hippocampus
of anesthetized rats. Recordings from an extracellular tetrode and an intracellular electrode were
made simultaneously, such that the cell recorded on the intracellular electrode was also recorded
extracellularly by a tetrode.

Action potentials detected on the intracellular (IC) channel are an almost certain indicator that the
cell being recorded spiked. Action potentials detected on the extracellular (EC) channels may include
the action potentials generated by the intracellularly recorded cell, but almost certainly include
spiking activity from other cells as well. The intracellular recording therefore can be used to obtain
a ground truth labeling for the spikes originating from one neuron that can be used to evaluate the
performance of human sorters and automatic spike sorting algorithms that sort extracellular recordings
[13]. However, by this method ground truth can only be determined for one of the neurons whose
spikes are present in the extracellular recording, and this should be kept in mind when evaluating the
performance of spike sorting algorithms on such a data set. Neither the correct number of distinct
neurons recorded from by the extracellular electrode nor the correct labeling for any spikes not
originating from the neuron recorded intracellularly can be determined by this methodology.

1http://crcns.org/data-sets/hc/hc-1/
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Data set DPM GPUDPM
FP FN RPV FP FN RPV

1 MAP 4.90% 4.21% 4 4.71% 1.32% 0
AVG 5.11% 5.17% 4 4.77% 1.68% 0

2 MAP 0.94% 9.40% 1 0.85% 18.63% 0
AVG 0.83% 12.48% 1 0.86% 18.81% 0

Table 1: Performance of both algorithms on the two data sets: % false positives (FP), % false negatives
(FN), # of refratory period violations (RPV). Results are shown for the MAP solution (MAP) and
averaged over the posterior distribution (AVG).

The subset of that data set that was used for the experiments consisted of two recordings from different
animals (4 minutes each), recorded at 10 kHz. The data was bandpass filtered (300Hz – 3kHz), and
spikes on the intracellular channel were detected as the local maxima of the first derivative of the
signal larger than a manually chosen threshold. Spikes on the extracellular channels were determined
as the local minima exceeding 4 standard deviations in magnitude. Spike waveforms of length 1
ms were extracted from around each spike (4 samples before and 5 samples after the peak). The
positions of the minima within the spike waveforms were aligned by upsampling, shifting and then
downsampling the waveforms. The extracellular spikes corresponding to action potentials from the
identified neuron were determined as the spikes occurring within 0.1 ms of the IC spike.

For each spike the signals from the four tetrode channels were combined into a vector of length 40.
Each dimensions was scaled by the maximal variance among all dimensions and PCA dimensionality
reduction was performed on the scaled data sets (for each of the two recordings separately). The first
three principal components were used as input to our spike sorting algorithm. The first recording
(data set 1) consists of 3187 spikes, 831 originate from the identified neuron, while the second (data
set 2) contains 3502 spikes, 553 of which were also detected on the IC channel. As shown in Figure
1, there is a clearly visible change in waveform shape of the identified neuron over time in data set
1, while in data set 2 the waveform shapes remain roughly constant. Presumably this change in
waveform shape is due to the slow death of the cell as a result of the damage done to the cell by the
intracellular recording procedure.

The parameters for the prior (µ0, n0, a, b) were chosen empirically and were fixed at µ0 = 0,
n0 = 0.1, a = 4, b = 1 for all experiments. The parameters governing the deletion procedure were
set to ρ = 0.985 and γ = 1 − 10−5, reflecting the fact that we consider relative firing rates of the
neurons to stay roughly constant over time and neuron death a relatively rare process respectively.
The variance of the proposal distribution σ was fixed at 0.01, favoring small changes in the cluster
parameters from one time step to the next. Experiments on both data sets were performed for
α ∈ {0.01, 0.005, 0.001} and the model was found to be relatively sensitive to this parameter in our
experiments. The sequential Monte Carlo simulations were run using 1000 particles, and multinomial
resampling was performed at each step.

For comparison, the same data set was also sorted using the DPM-based spike sorting algorithm
described in [6]2, which pools waveforms over time and thus does not make use of any information
about the occurrence times of the spikes. The algorithm performs Gibbs sampling in a DPM with
Gaussian likelihood and a conjugate Normal-Inverse-Wishart prior. A Gamma prior is placed on the
DP concentration parameter α. The parameters of the priors the prior were set to µ0 = 0, κ0 = 0.1,
λ0 = 0.1 × I, a0 = 1 and b0 = 1. The Gibbs sampler was run for 6000 iterations, where the first
1000 were discarded as burn-in.

4.2 Results

The performance of both algorithms is shown in Table 1. The data labelings corresponding to these
results are illustrated in Figure 1. As expected, our algorithm outperforms the DPM-based algorithm
on data set 1, which includes waveform drift which the DPM cannot account for. As data set 2 does
not show waveform drift it can be adequately modeled without introducing time dependence. The
DPM model which has the advantage of being significantly less complex than the GPUDPM is able

2Code publicly available from http://www.gatsby.ucl.ac.uk/˜fwood/code.html
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(a) Ground Truth (b) Ground Truth

(c) DPM (d) DPM

(e) GPUDPM (f) GPUDPM

Figure 1: A comparison of DPM to GPUDPM spike sorting for two channels of tetrode data for
which the ground truth labeling of one neuron is known. Each column shows subsampled results for
one data set. In all plots the vertical axis is time and the horizontal axes are the first two principal
components of the detected waveforms. The top row of graphs shows the ground truth labeling
of both data sets where the action potentials known to have been generated by a single neuron are
labeled with x’s. Other points in the top row of graphs may also correspond to action potentials but
as we do not know the ground truth labeling for them we label them all with dots. The middle row
shows the maximum a posteriori labeling of both data sets produced by a DP mixture model spike
sorting algorithm which does not utilize the time at which waveforms were captured, nor does it
model waveform shape change. The bottom row shows the maximum a posteriori labeling of both
data sets produced by our GPUDPM spike sorting algorithm which does model both the time at
which the spikes occurred and the changing action potential waveshape. The left column shows that
the GPUDPM performs better than the DPM when the waveshape of the underlying neurons changes
over time. The right column shows that the GPUDPM performs no worse than the DPM when the
waveshape of the underlying neurons stays constant.
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to outperform our model on this data set. The inferior performance of the GPUDPM model on this
data set can also partly be be explained by the inference procedure used: For the GPUDPM model
inference is performed by a particle filter using a relatively small number of particles (1000), whereas
a large number of Gibbs sampler iterations (5000) are used to estimate the posterior for the DPM.
With a larger number of particles (or samples in the Gibbs sampler), one would expect both models
to perform equally well, with possibly a slight advantage for the GPUDPM which can exploit the
information contained in the refractory period violations. As dictated by the model, the GPUDPM
algorithm does not assign two spikes that are within the refractory period of each other to the same
cluster, whereas the DPM does not incorporate this restriction, and therefore can produce labelings
containing refractory period violations. Though only a relatively small number of such mistakes
are made by the DPM algorithm, these effects are likely to become larger in longer and/or noisier
recordings, or when more neurons are present.

For some values of α the GPUDPM algorithm produced different results, showing either a large
number of false positives or a large number of false negatives. In the former case the algorithm
incorrectly places the waveforms from the IC channel and the waveform of another neuron in one
cluster, in the latter case the algorithm starts assigning the IC waveforms to a different cluster after
some point in time. This behavior is illustrated for data set 1 and α = 0.01 in Figure 2, and can be
explained by shortcomings of the inference scheme: While in theory the algorithm should be able to
maintain multiple labeling hypotheses throughout the entire time span, the particle filter approach –
especially when the number of particles is small and no specialized resampling scheme (e.g. [14]) is
used – in practice often only represents the posterior accurately for the last few time steps.

Figure 2: An alternative “interpretation” of the data from the left column of Fig. 1 given by the
GPUDPM spike sorter. Here the labels assigned to both the the neuron with changing waveshape and
one of the neurons with stationary waveshape change approximately half-way through the recording.
Although it is difficult to see because the data set must be significantly downsampled for display
purposes, there is a “noise event” at the point in time where the labels switch. A feature of the DDP
is that it assigns posterior mass to both of these alternative interpretations of the data. While for this
data set we know this labeling to be wrong because we know the ground truth, in other recordings
such an “injection of noise” could, for instance, signal a shift in electrode position requiring similar
rapid births and deaths of clusters.

5 Discussion

We have demonstrated that spike sorting using time-varying Dirichlet process mixtures in general,
and more specifically our spike sorting specialization of the GPUDPM, produce promising results.
With such a spike sorting approach we, within a single model, are able to account for action potential
waveform drift, refractory period violations, and neuron appearance and disappearance from a
recording. Previously no single model addressed all of these simultaneously, requiring solutions in
the form of ad hoc combinations of strategies and algorithms that produces spike sorting results that
were potentially difficult to characterize. Our model-based approach makes it easy to explicitly state
modeling assumptions and produces results that are easy to characterize. Also, more complex or
application specific models of the interspike interval distribution and/or the data likelihood can easily
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be incorporated into the model. The performance of the model on real data suggests that a more
complete characterization of its performance is warranted. Directions for further research include the
development of a more efficient sequential inference scheme or a hybrid sequential/Gibbs sampler
scheme that allows propagation of interspike interval information backwards in time. Parametric
models for the interspike interval density for each neuron whose parameters are inferred from the
data, which can improve spike sorting results [15], can also be incorporated into the model. Finally,
priors may be placed on some of the parameters in order to make make the algorithm more robust
and easily applicable to new data.

Acknowledgments

This work was supported by the Gatsby Charitable Foundation and the PASCAL Network of Excel-
lence.

References
[1] M. S. Lewicki. A review of methods for spike sorting: the detection and classification of neural action

potentials. Network: Computation in Neural Systems, 9(4):53–78, 1998.

[2] M. Sahani. Latent variable models for neural data analysis. PhD thesis, California Institute of Technology,
Pasadena, California, 1999.

[3] D. P. Nguyen, L. M. Frank, and E. N. Brown. An application of reversible-jump Markov chain Monte
Carlo to spike classification of multi-unit extracellular recordings. Network, 14(1):61–82, 2003.

[4] D. Görür, C. R. Rasmussen, A. S. Tolias, F. Sinz, and N.K. Logothetis. Modeling spikes with mixtures of
factor analyzers. In Proceeding of the DAGM Symposium, pages 391–398. Springer, 2004.

[5] F. Wood, S. Goldwater, and M. J. Black. A non-parametric Bayesian approach to spike sorting. In
Proceedings of the 28th Annual International Conference of the IEEE Engineering in Medicine and Biology
Society, pages 1165–1168, 2006.

[6] F. Wood and M. J. Black. A nonparametric Bayesian alternative to spike sorting. Journal of Neuroscience
Methods, 173:1–12, 2008.
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