LINEAR TIME GAUSSIAN PROCESSES

a.k.a. something we kind of always thought was true, but didn’t actually know... and other cool findings

John P. Cunningham
Columbia University
16 October 2020

Reading: General linear-time inference for Gaussian Processes on one dimension (Loper et al., 2020)
gaussian processes and state-space models

latent exponentially generated gaussian processes (leggp)

toolkit: cyclic reduction for parallelizing message passing in tridiagonal (gauss markov) models
gaussian processes and state-space models

latent exponentially generated gaussian processes (leggp)

toolkit: cyclic reduction for parallelizing message passing in tridiagonal (gauss markov) models
The usual refrain: GP have $O(n^2)$ storage and $O(n^3)$ runtime complexity...and yet:

- ARMA(4,4) models work just great (remark: we should do a more honest job wrt statsmodels, etc.).
- lots of us have had good success with gauss-markov processes as approximations. Reminder:
 1. write GMP in Langevin/SDE form:
 \[
 z(t) = z(0) + \int_0^t (-Gz(s) \, ds + \sigma dw(s))
 \]
 or...
 \[
 \begin{bmatrix}
 df(t) \\
 \vdots \\
 df_{m-1}(t)
 \end{bmatrix}
 = -G
 \begin{bmatrix}
 f(t) \\
 \vdots \\
 f_{m-1}(t)
 \end{bmatrix}
 + \sigma dw(t)
 \]
 2. Matern kernels have this representation (exact); SE, RQ, etc have good approximate representations.
 3. Kalman filtering (aka RTS) will do inference in linear time: message passing, tridiagonalization, etc.
 4. a variety of papers play this game; eg Gilboa, Saatci, Cunningham (2013) ICML, (2015) IEEE PAMI.

- So how good is this game (for stationary 1d GP)?
How complex are Gaussian processes?

The usual refrain: GP have $O(n^2)$ storage and $O(n^3)$ runtime complexity...and yet:

- ARMA(4,4) models work just great (remark: we should do a more honest job wrt statsmodels, etc.).
How complex are Gaussian processes?

The usual refrain: GP have $O(n^2)$ storage and $O(n^3)$ runtime complexity...and yet:

- ARMA(4,4) models work just great (remark: we should do a more honest job wrt statsmodels, etc.).
- lots of us have had good success with gauss-markov processes as approximations. Reminder:
The usual refrain: GP have $O(n^2)$ storage and $O(n^3)$ runtime complexity...and yet:

- ARMA(4,4) models work just great (remark: we should do a more honest job wrt statsmodels, etc.).

- lots of us have had good success with gauss-markov processes as approximations. Reminder:

 1. write GMP in Langevin/SDE form:

 $z(t) = z(0) + \int_0^t (-Gz(s)ds + \sigma dw(s))$ or...

 $\begin{bmatrix}
 \frac{df(t)}{dt} \\
 \vdots \\
 \frac{df^{m-1}(t)}{dt^{m-1}} \\
 \end{bmatrix}
 = -G
 \begin{bmatrix}
 \frac{f(t)}{dt} \\
 \vdots \\
 \frac{f^{m-1}(t)}{dt^{m-1}} \\
 \end{bmatrix}
 + \sigma dw(t)$

 2. Matern kernels have this representation (exact); SE, RQ, etc have good approximate representations.

 3. Kalman filtering (aka RTS) will do inference in linear time: message passing, tridiagonalization, etc.

 4. a variety of papers play this game; eg Gilboa, Saatci, Cunningham (2013) ICML, (2015) IEEE PAMI.
The usual refrain: GP have $O(n^2)$ storage and $O(n^3)$ runtime complexity...and yet:

- ARMA(4,4) models work just great (remark: we should do a more honest job wrt statsmodels, etc.).
- lots of us have had good success with gauss-markov processes as approximations. Reminder:

1. write GMP in Langevin/SDE form:

$$z(t) = z(0) + \int_0^t (-Gz(s)ds + \sigma dw(s)) \quad \text{or...} \quad \begin{bmatrix} \frac{df(t)}{dt} \\
\vdots \\
\frac{df^{m-1}(t)}{dt^{m-1}} \\
\frac{df^{m}(t)}{dt^{m}} \\
\frac{dt^{m}}{dt^{m-1}} \\
\frac{dt^{m-1}}{dt^{m-2}} \\
\vdots \\
\frac{dt^{1}}{dt^{0}} \end{bmatrix} = -G \begin{bmatrix} \frac{f(t)}{dt} \\
\vdots \\
\frac{df^{m-1}(t)}{dt^{m-1}} \\
\frac{df^{m}(t)}{dt^{m}} \\
\frac{dt^{m}}{dt^{m-1}} \\
\frac{dt^{m-1}}{dt^{m-2}} \\
\vdots \\
\frac{dt^{1}}{dt^{0}} \end{bmatrix} + \sigma dw(t)$$

2. Matern kernels have this representation (exact); SE, RQ, etc have good approximate representations.
The usual refrain: GP have $O(n^2)$ storage and $O(n^3)$ runtime complexity...and yet:

- ARMA(4,4) models work just great (remark: we should do a more honest job wrt statsmodels, etc.).
- lots of us have had good success with gauss-markov processes as approximations. Reminder:

 1. write GMP in Langevin/SDE form:

\[
\begin{align*}
 z(t) &= z(0) + \int_0^t (-Gz(s)ds + \sigma dw(s)) \\
 &= -G \begin{bmatrix}
 \frac{df(t)}{dt} \\
 \vdots \\
 \frac{df^{m-1}(t)}{dt^{m-1}}
\end{bmatrix}
 + \sigma dw(t)
\end{align*}
\]

 or...

\[
\begin{bmatrix}
 \frac{df(t)}{dt} \\
 \vdots \\
 \frac{df^{m-1}(t)}{dt^{m-1}}
\end{bmatrix}
 = -G \begin{bmatrix}
 \frac{f(t)}{dt} \\
 \vdots \\
 \frac{df^{m-1}(t)}{dt^{m-1}}
\end{bmatrix}
\]

2. Matern kernels have this representation (exact); SE, RQ, etc have good approximate representations.

3. Kalman filtering (aka RTS) will do inference in linear time: message passing, tridiagonalization, etc.
How complex are Gaussian processes?

The usual refrain: GP have $O(n^2)$ storage and $O(n^3)$ runtime complexity...and yet:

- ARMA(4,4) models work just great (remark: we should do a more honest job wrt statsmodels, etc.).
- lots of us have had good success with gauss-markov processes as approximations. Reminder:

 1. write GMP in Langevin/SDE form:

 $$z(t) = z(0) + \int_0^t (-Gz(s)ds + \sigma dw(s))$$

 or...

 $$\begin{bmatrix}
 \frac{df(t)}{dt} \\
 \vdots \\
 \frac{df_{m-1}(t)}{dt_{m-1}} \\
 \frac{dt_{m-1}}{dt_{m}}
 \end{bmatrix}
 = -G
 \begin{bmatrix}
 \frac{f(t)}{dt} \\
 \vdots \\
 \frac{df_{m-1}(t)}{dt_{m-1}} \\
 \frac{dt_{m-1}}{dt_{m}}
 \end{bmatrix}
 + \sigma dw(t)$$

 2. Matern kernels have this representation (exact); SE, RQ, etc have good approximate representations.

 3. Kalman filtering (aka RTS) will do inference in linear time: message passing, tridiagonalization, etc.

 4. a variety of papers play this game; eg Gilboa, Saatci, Cunningham (2013) ICML, (2015) IEEE PAMI.
The usual refrain: GP have $O(n^2)$ storage and $O(n^3)$ runtime complexity...and yet:

- ARMA(4,4) models work just great (remark: we should do a more honest job wrt statsmodels, etc.).
- lots of us have had good success with gauss-markov processes as approximations. Reminder:
 1. write GMP in Langevin/SDE form:

\[
 z(t) = z(0) + \int_{0}^{t} (-Gz(s)ds + \sigma dw(s))
\]

\[
 \begin{bmatrix}
 \frac{df(t)}{dt} \\
 \vdots \\
 \frac{df_{m-1}(t)}{dt} \\
 \frac{df_{m}(t)}{dt} \\
 \end{bmatrix}
 =
 -G
 \begin{bmatrix}
 \frac{f(t)}{dt} \\
 \vdots \\
 \frac{f_{m-1}(t)}{dt} \\
 \frac{f_{m}(t)}{dt} \\
 \end{bmatrix}
 + \sigma dw(t)
\]

2. Matern kernels have this representation (exact); SE, RQ, etc have good approximate representations.
3. Kalman filtering (aka RTS) will do inference in linear time: message passing, tridiagonalization, etc.
4. a variety of papers play this game; eg Gilboa, Saatci, Cunningham (2013) ICML, (2015) IEEE PAMI.

- So how good is this game (for stationary 1d GP)?
Let’s be a bit careful

- The OU formulation from the last slide is clean...

\[z(t) = z(0) + \int_0^t (-Gz(s)ds + \sigma dw(s)) \]

- ... but it’s a hassle: stability $\leftrightarrow R(eig(G)) > 0$, which is a nontrivial constraint, and tough to consider theoretically.
Let’s be a bit careful

- The OU formulation from the last slide is clean...

\[z(t) = z(0) + \int_0^t (-Gz(s)ds + \sigma dw(s)) \]

- ... but it’s a hassle: stability \(\leftrightarrow R(eig(G)) > 0 \), which is a nontrivial constraint, and tough to consider theoretically.

- So we have some work to do.
Let’s be a bit careful

- The OU formulation from the last slide is clean...
 \[z(t) = z(0) + \int_0^t (-Gz(s)ds + \sigma dw(s)) \]

- ... but it’s a hassle: stability \(\leftrightarrow \mathcal{R}(\text{eig}(G)) > 0 \), which is a nontrivial constraint, and tough to consider theoretically.

- So we have some work to do.

- Define the following state-space model:
 \[
 z(t) = z(0) + \int_0^t \left(-\frac{1}{2} \left(NN^T + R - R^T \right) z(s)ds + Ndw(s) \right)
 \\
x(t) | z(t) \sim \mathcal{N} \left(Bz(t) , \Lambda\Lambda^T \right).
 \]
Let’s be a bit careful

- The OU formulation from the last slide is clean...

\[z(t) = z(0) + \int_0^t (-Gz(s)ds + \sigma dw(s)) \]

- ... but it’s a hassle: stability $\leftrightarrow R(eig(G)) > 0$, which is a nontrivial constraint, and tough to consider theoretically.

- So we have some work to do.

- Define the following state-space model:

\[
\begin{align*}
 z(t) &= z(0) + \int_0^t \left(-\frac{1}{2} \left(NN^\top + R - R^\top\right)z(s)ds + Ndw(s)\right) \\
 x(t)|z(t) &\sim \mathcal{N}\left(Bz(t), \Lambda\Lambda^\top\right).
\end{align*}
\]

- We will call this SSM a latent exponentially generated GP, $x \sim \text{LEG}(N, R, B, \Lambda)$. We’ll get back to this...
HOW COMPLEX ARE GAUSSIAN PROCESSES?
How complex are Gaussian processes?

- iid gaussians
- stationary gp
- state space models

How much gap is here?
How complex are Gaussian processes?

- IID Gaussians
- Stationary GP
How complex are Gaussian processes?

- iid gaussians
- stationary gp
- SSM of rank 1

Cunningham Lab, Columbia University
How complex are Gaussian processes?

- iid gaussians
- Stationary gp
- SSM of rank 2
- SSM of rank 1
- iid gaussians
How complex are Gaussian processes?

- iid gaussians
- Stationary GP
- SSM of rank 2
- SSM of rank 1
- SSM of rank ℓ
- ...
How complex are Gaussian processes?

- iid gaussians
- stationary gp
- SSM of rank 2
- SSM of rank 1
- SSM of rank ℓ

... }

None!
That’s it

Any stationary, univariate GP is a *linear-time* object. More specifically:

1. LEG is a mixture of ℓ general, well-behaved (stable, stationary, correlated) linear-gaussian state-space components.
2. All vector-valued spectral mixture kernels are LEG kernels (who knew?! spectral mixtures are SSM).
3. Vector-valued spectral mixture kernels are general (total variation convergence; see Thm 1).
4. Thus, LEG are general and linear time.

Banter:

▶ we (the GP community) did not know that already... but yeah probably we thought it was true.
▶ spectral mixture kernels are extended to complex-matrix-valued spectra (nontrivial, \gg an appeal to Bochner).
▶ astrostat has *celerite* kernels, which are \approx block-diagonal LEGGP, without theoretical results.
▶ just in case we don’t get to it: cyclic reduction to parallelize SSM is really cool.
▶ idea: let’s do a deep dive on cyclic reduction, pivoted cholesky, and multigrid methods.
Any stationary, univariate GP is a *linear-time* object. More specifically:

- Any stationary continuous kernel can be approximated to arbitrary accuracy with a LEGGP of certain rank \(\ell \).

Intuition:
1. LEG is a mixture of \(\ell \) general, well-behaved (stable, stationary, correlated) linear-gaussian state-space components.
2. All vector-valued spectral mixture kernels are LEG kernels (who knew?! spectral mixtures are SSM).
3. Vector-valued spectral mixture kernels are general (total variation convergence; see Thm 1).
4. Thus, LEG are general and linear time.

Banter:
- we (the GP community) did not know that already... but yeah probably we thought it was true.
- spectral mixture kernels are extended to complex-matrix-valued spectra (nontrivial, \(\gg \) an appeal to Bochner).
- astrostat has celerite kernels, which are \(\approx \) block-diagonal LEGGP, without theoretical results.
- just in case we don’t get to it: cyclic reduction to parallelize SSM is really cool.
- idea: let’s do a deep dive on cyclic reduction, pivoted cholesky, and multigrid methods.
Any stationary, univariate GP is a *linear-time* object. More specifically:

- **Any stationary continuous kernel can be approximated to arbitrary accuracy with a LEGGP of certain rank \(\ell \).**

Intuition:

- LEG is a mixture of \(\ell \) general, well-behaved (stable, stationary, correlated) linear-gaussian state-space components.
- All vector-valued spectral mixture kernels are LEG kernels (who knew?! spectral mixtures are SSM).
- Vector-valued spectral mixture kernels are general (total variation convergence; see Thm 1).
- Thus, LEG are general and linear time.

Banter:

- we (the GP community) did not know that already... but yeah probably we thought it was true.
- spectral mixture kernels are extended to complex-matrix-valued spectra (nontrivial, \(\gg \) an appeal to Bochner).
- astrostat has [celerite](#) kernels, which are \(\approx \) block-diagonal LEGGP, without theoretical results.
- just in case we don't get to it: cyclic reduction to parallelize SSM is really cool.
- idea: let's do a deep dive on cyclic reduction, pivoted cholesky, and multigrid methods.
Any stationary, univariate GP is a *linear-time* object. More specifically:

- Any stationary continuous kernel can be approximated to arbitrary accuracy with a LEGGP of certain rank ℓ.

Intuition:

1. LEG is a mixture of ℓ general, well-behaved (stable, stationary, correlated) linear-gaussian state-space components.

Banter:

- we (the GP community) did not know that already... but yeah probably we thought it was true.
- spectral mixture kernels are extended to complex-matrix-valued spectra (nontrivial, \gg an appeal to Bochner).
- astrostat has *celerite* kernels, which are \approx block-diagonal LEGGP, without theoretical results.
- just in case we don’t get to it: cyclic reduction to parallelize SSM is really cool.
- idea: let’s do a deep dive on cyclic reduction, pivoted cholesky, and multigrid methods.
That’s it

Any stationary, univariate GP is a linear-time object. More specifically:

- Any stationary continuous kernel can be approximated to arbitrary accuracy with a LEGGP of certain rank ℓ.

Intuition:

1. LEG is a mixture of ℓ general, well-behaved (stable, stationary, correlated) linear-gaussian state-space components.

2. All vector-valued spectral mixture kernels are LEG kernels (who knew?! spectral mixtures are SSM).
Any stationary, univariate GP is a *linear-time* object. More specifically:

▶ Any stationary continuous kernel can be approximated to arbitrary accuracy with a LEGGP of certain rank ℓ.

Intuition:

1. LEG is a mixture of ℓ general, well-behaved (stable, stationary, correlated) linear-gaussian state-space components.
2. All vector-valued spectral mixture kernels are LEG kernels (who knew?! spectral mixtures are SSM).
3. Vector-valued spectral mixture kernels are general (total variation convergence; see Thm 1).
Any stationary, univariate GP is a *linear-time* object. More specifically:

- Any stationary continuous kernel can be approximated to arbitrary accuracy with a LEGGP of certain rank ℓ.

Intuition:

1. LEG is a mixture of ℓ general, well-behaved (stable, stationary, correlated) linear-gaussian state-space components.
2. All vector-valued spectral mixture kernels are LEG kernels (who knew?! spectral mixtures are SSM).
3. Vector-valued spectral mixture kernels are general (total variation convergence; see Thm 1).
4. Thus, LEG are general and linear time.
Any stationary, univariate GP is a \textit{linear-time} object. More specifically:

- \textit{Any stationary continuous kernel can be approximated to arbitrary accuracy with a LEGGP of certain rank }ℓ.\textit{ }

\textbf{Intuition:}

1. LEG is a mixture of ℓ general, well-behaved (stable, stationary, correlated) linear-gaussian state-space components.

2. All vector-valued spectral mixture kernels are LEG kernels (who knew?! spectral mixtures are SSM).

3. Vector-valued spectral mixture kernels are general (total variation convergence; see Thm 1).

4. Thus, LEG are general and linear time.

\textbf{Banter:}
Any stationary, univariate GP is a linear-time object. More specifically:

- Any stationary continuous kernel can be approximated to arbitrary accuracy with a LEGGP of certain rank ℓ.

Intuition:

1. LEG is a mixture of ℓ general, well-behaved (stable, stationary, correlated) linear-gaussian state-space components.
2. All vector-valued spectral mixture kernels are LEG kernels (who knew?! spectral mixtures are SSM).
3. Vector-valued spectral mixture kernels are general (total variation convergence; see Thm 1).
4. Thus, LEG are general and linear time.

Banter:

- we (the GP community) did not know that already... but yeah probably we thought it was true.

spectral mixture kernels are extended to complex-matrix-valued spectra (nontrivial, \gg appeal to Bochner).

astrostat has celerite kernels, which are \approx block-diagonal LEGGP, without theoretical results.

just in case we don’t get to it: cyclic reduction to parallelize SSM is really cool.

idea: let’s do a deep dive on cyclic reduction, pivoted cholesky, and multigrid methods.
Any stationary, univariate GP is a *linear-time* object. More specifically:

- Any stationary continuous kernel can be approximated to arbitrary accuracy with a LEGGP of certain rank ℓ.

Intuition:

1. LEG is a mixture of ℓ general, well-behaved (stable, stationary, correlated) linear-gaussian state-space components.
2. All vector-valued spectral mixture kernels are LEG kernels (who knew?! spectral mixtures are SSM).
3. Vector-valued spectral mixture kernels are general (total variation convergence; see Thm 1).
4. Thus, LEG are general and linear time.

Banter:

- we (the GP community) did not know that already... but yeah probably we thought it was true.
- spectral mixture kernels are extended to complex-matrix-valued spectra (nontrivial, \gg an appeal to Bochner).
Any stationary, univariate GP is a \textit{linear-time} object. More specifically:

- \textit{Any stationary continuous kernel can be approximated to arbitrary accuracy with a LEGGP of certain rank ℓ.}

Intuition:

1. LEG is a mixture of ℓ general, well-behaved (stable, stationary, correlated) linear-gaussian state-space components.
2. All vector-valued spectral mixture kernels are LEG kernels (who knew?! spectral mixtures are SSM).
3. Vector-valued spectral mixture kernels are general (total variation convergence; see Thm 1).
4. Thus, LEG are general and linear time.

Banter:

- we (the GP community) did not know that already... but yeah probably we thought it was true.
- spectral mixture kernels are extended to complex-matrix-valued spectra (nontrivial, \gg an appeal to Bochner).
- astrostat has \textit{celerite} kernels, which are \approx block-diagonal LEGGP, without theoretical results.
Any stationary, univariate GP is a *linear-time* object. More specifically:

- *Any stationary continuous kernel can be approximated to arbitrary accuracy with a LEGGP of certain rank ℓ.*

Intuition:

1. LEG is a mixture of ℓ general, well-behaved (stable, stationary, correlated) linear-gaussian state-space components.

2. All vector-valued spectral mixture kernels are LEG kernels (who knew?! spectral mixtures are SSM).

3. Vector-valued spectral mixture kernels are general (total variation convergence; see Thm 1).

4. Thus, LEG are general and linear time.

Banter:

- we (the GP community) did not know that already... but yeah probably we thought it was true.
- spectral mixture kernels are extended to complex-matrix-valued spectra (nontrivial, \gg an appeal to Bochner).
- astrostat has *celerite* kernels, which are \approx block-diagonal LEGGP, without theoretical results.
- just in case we don’t get to it: cyclic reduction to parallelize SSM is really cool.
Any stationary, univariate GP is a *linear-time* object. More specifically:

- *Any stationary continuous kernel can be approximated to arbitrary accuracy with a LEGGP of certain rank* ℓ.

Intuition:

1. LEG is a mixture of ℓ general, well-behaved (stable, stationary, correlated) linear-gaussian state-space components.
2. All vector-valued spectral mixture kernels are LEG kernels (who knew?! spectral mixtures are SSM).
3. Vector-valued spectral mixture kernels are general (total variation convergence; see Thm 1).
4. Thus, LEG are general and linear time.

Banter:

- we (the GP community) did not know that already... but yeah probably we thought it was true.
- spectral mixture kernels are extended to complex-matrix-valued spectra (nontrivial, \gg an appeal to Bochner).
- astrostat has *celerite* kernels, which are \approx block-diagonal LEGGP, without theoretical results.
- just in case we don’t get to it: cyclic reduction to parallelize SSM is really cool.
- idea: let’s do a deep dive on cyclic reduction, pivoted cholesky, and multigrid methods.
gaussian processes and state-space models

latent exponentially generated gaussian processes (leegp)

toolkit: cyclic reduction for parallelizing message passing in tridiagonal (gauss markov) models
Understanding PEG via samples

\[z(t) = z(0) + \int_0^t \left(-\frac{1}{2} (NN^\top + R - R^\top) z(s) ds + Ndw(s) \right) \]

- rank \(\ell = 2 \) (first dim plotted)
- \(NN^\top \) is a diffusion; increasing any eigenvalue makes that direction less predictable.
- \(R - R^\top \) is a rotation: eigenvalues correspond to frequency, vectors to mixing into \(z \).
The process:

\[
\begin{align*}
 z(t) &= z(0) + \int_0^t \left(-\frac{1}{2} \left(NN^\top + R - R^\top \right) z(s) ds + Ndw(s) \right) \\
 x(t) | z(t) &\sim \mathcal{N} \left(Bz(t), \Lambda \Lambda^\top \right)
\end{align*}
\]
FROM PEG to LEG

The process:

\[
z(t) = z(0) + \int_0^t \left(-\frac{1}{2} \left(NN^T + R - R^T \right) z(s) ds + Ndw(s) \right)
\]

\[
x(t)|z(t) \sim \mathcal{N} \left(Bz(t), \Lambda \Lambda^T \right)
\]

Its well-behaved covariance:

\[
C_{PEG}(\tau; N, R) \triangleq \exp \left(-\frac{\tau}{2} \left(NN^T + R - R^T \right) \right)
\]

\[
C_{LEG}(\tau; N, R, B, \Lambda) \triangleq B \left(C_{PEG}(\tau; N, R) \right) B^T + \delta_{\tau=0} \Lambda \Lambda^T
\]
FROM PEG TO LEG

The process:

\[z(t) = z(0) + \int_0^t \left(-\frac{1}{2} \left(NN^T + R - R^T \right) z(s) ds + Ndw(s) \right) \]

\[x(t) | z(t) \sim \mathcal{N} \left(Bz(t), \Lambda \Lambda^T \right) \]

Its well-behaved covariance:

\[C_{PEG}(\tau; N, R) \triangleq \exp \left(-\frac{\tau}{2} \left(NN^T + R - R^T \right) \right) \]

\[C_{LEG}(\tau; N, R, B, \Lambda) \triangleq B \left(C_{PEG}(\tau; N, R) \right) B^T + \delta_{\tau=0} \Lambda \Lambda^T \]

Notes:

- LEG is just a state-space model
- Linear mixture of state-space components (very standard)
- These derivations are nontrivial and it’s worth reading the appendix to see how deep this work goes.
- LEG is closed under addition (non obvious but good to know)
is LEG linear?

\[z(t) = z(0) + \int_0^t \left(-\frac{1}{2} \left(NN^\top + R - R^\top \right) z(s) ds + Ndw(s) \right) \]

\[x(t) | z(t) \sim \mathcal{N} \left(Bz(t), \Lambda \Lambda^\top \right) \]
is LEG linear?

\[z(t) = z(0) + \int_0^t \left(-\frac{1}{2} (NN^\top + R - R^\top) z(s) ds + Ndw(s) \right) \]

\[x(t) | z(t) \sim \mathcal{N} \left(Bz(t), \Lambda \Lambda^\top \right) \]

▶ plenty of extensions possible; see §4 of the paper.
▶ linear run-time, as promised. Also, \(10^9 \) is a big number.
IS LEG ACCURATE?

\[
z(t) = z(0) + \int_0^t \left(-\frac{1}{2} \left(NN^\top + R - R^\top \right) z(s) ds + Ndw(s) \right)
\]

\[
x(t) \mid z(t) \sim \mathcal{N} \left(Bz(t), \Lambda\Lambda^\top \right)
\]
is LEG accurate?

\[
z(t) = z(0) + \int_0^t \left(-\frac{1}{2} \left(NN^\top + R - R^\top \right) z(s) ds + Ndw(s) \right)
\]

\[
x(t)|z(t) \sim \mathcal{N} \left(Bz(t), \Lambda\Lambda^\top \right)
\]

\[\ell = 4\] is not bad!

\[\text{well, we already knew Matern } \nu = \frac{1}{2} \text{ is a SSM; in fact it's a rank-2 LEG.}\]

\[\text{RQ also quite well considering how different it is from the LEG in terms of spectra...}\]
How well do LEG kernels approximate the Rational Quadratic (RQ) kernel?

\[C_{RQ}(\tau) = \frac{2}{1 + \tau^2} \quad \text{vs} \quad C_{LEG}(\tau) = B \exp \left(-\frac{\tau}{2} \left(NN^T + R - R^T \right) \right) B^T + \delta_{\tau=0} \Lambda \Lambda^T \]
How well do LEG kernels approximate the Rational Quadratic (RQ) kernel?

\[C_{\text{RQ}}(\tau) = \frac{2}{1 + \tau^2} \quad \text{vs} \quad C_{\text{LEG}}(\tau) = B \exp \left(-\frac{\tau}{2} \left(N N^\top + R - R^\top \right) \right) B^\top + \delta_{\tau=0} \Lambda \Lambda^\top \]

RQ is profoundly different than LEG kernel, yet every RQ kernel is arbitrarily close to a LEG kernel:
How well do LEG kernels approximate the Rational Quadratic (RQ) kernel?

\[C_{RQ}(\tau) = \frac{2}{1 + \tau^2} \quad vs \quad C_{LEG}(\tau) = B \exp\left(-\frac{\tau}{2} \left(NN^\top + R - R^\top \right) \right) B^\top + \delta_{\tau=0} \Lambda \Lambda^\top \]

RQ is profoundly different than LEG kernel, yet every RQ kernel is arbitrarily close to a LEG kernel:

- RQ spectrum decays exponentially, and LEG spectrum is asymptotically an inverse polynomial
How well do LEG kernels approximate the Rational Quadratic (RQ) kernel?

\[C_{RQ}(\tau) = \frac{2}{1 + \tau^2} \quad \text{vs} \quad C_{LEG}(\tau) = B \exp \left(-\frac{\tau}{2} \left(NN^\top + R - R^\top \right) \right) B^\top + \delta_{\tau=0} \Lambda \Lambda^\top \]

RQ is profoundly different than LEG kernel, yet every RQ kernel is arbitrarily close to a LEG kernel:

- RQ spectrum decays exponentially, and LEG spectrum is asymptotically an inverse polynomial
- ...but this paper guarantees an RQ kernel can be matched uniformly well by a LEG kernel
How well do LEG kernels approximate the Rational Quadratic (RQ) kernel?

\[C_{\text{RQ}}(\tau) = \frac{2}{(1 + \tau^2)} \quad \text{vs} \quad C_{\text{LEG}}(\tau) = B \exp\left(-\frac{\tau}{2} \left(NN^\top + R - R^\top \right)\right) B^\top + \delta_{\tau=0} \Lambda \Lambda^\top \]

RQ is profoundly different than LEG kernel, yet every RQ kernel is arbitrarily close to a LEG kernel:

- RQ spectrum decays exponentially, and LEG spectrum is asymptotically an inverse polynomial
- …but this paper guarantees an RQ kernel can be matched uniformly well by a LEG kernel

This apparent contradiction is resolved by considering the different timescales involved in any Gaussian Process:
How well do LEG kernels approximate the Rational Quadratic (RQ) kernel?

\[C_{\text{RQ}}(\tau) = \frac{2}{1 + \tau^2} \quad \text{vs} \quad C_{\text{LEG}}(\tau) = B \exp \left(-\frac{\tau}{2} \left(NN^\top + R - R^\top \right) \right) B^\top + \delta_{\tau=0} \Lambda \Lambda^\top \]

RQ is profoundly different than LEG kernel, yet every RQ kernel is arbitrarily close to a LEG kernel:

- RQ spectrum decays exponentially, and LEG spectrum is asymptotically an inverse polynomial
- ...but this paper guarantees an RQ kernel can be matched uniformly well by a LEG kernel

This apparent contradiction is resolved by considering the different timescales involved in any Gaussian Process:

- LEG uniformly approximate any stationary covariance \(\rightarrow\) uniformly accurate predictions at \textit{any fixed timescale}
RQ excerpts that I found useful for discussion

How well do LEG kernels approximate the Rational Quadratic (RQ) kernel?

\[C_{RQ}(\tau) = \frac{2}{1 + \tau^2} \quad \text{vs} \quad C_{LEG}(\tau) = B \exp\left(-\frac{\tau}{2} (NN^\top + R - R^\top)\right) B^\top + \delta_{\tau=0}\Lambda\Lambda^\top \]

RQ is profoundly different than LEG kernel, yet every RQ kernel is arbitrarily close to a LEG kernel:

- RQ spectrum decays exponentially, and LEG spectrum is asymptotically an inverse polynomial
- ...but this paper guarantees an RQ kernel can be matched uniformly well by a LEG kernel

This apparent contradiction is resolved by considering the different timescales involved in any Gaussian Process:

- LEG uniformly approximate any stationary covariance \(\rightarrow \) uniformly accurate predictions at any fixed timescale
- LEG kernel trained on observations at a timescale \(\rightarrow \) it will attempt to match smoothness at that timescale.
RQ excerpts that I found useful for discussion

How well do LEG kernels approximate the Rational Quadratic (RQ) kernel?

$$C_{RQ}(\tau) = \frac{2}{1 + \tau^2} \quad \text{vs} \quad C_{LEG}(\tau) = B \exp\left(-\frac{\tau}{2} \left(N N^\top + R - R^\top \right)\right) B^\top + \delta_{\tau=0} \Lambda \Lambda^\top$$

RQ is profoundly different than LEG kernel, yet every RQ kernel is arbitrarily close to a LEG kernel:

- RQ spectrum decays exponentially, and LEG spectrum is asymptotically an inverse polynomial
- ...but this paper guarantees an RQ kernel can be matched uniformly well by a LEG kernel

This apparent contradiction is resolved by considering the different timescales involved in any Gaussian Process:

- LEG uniformly approximate any stationary covariance \rightarrow uniformly accurate predictions at any fixed timescale
- LEG kernel trained on observations at a timescale \rightarrow it will attempt to match smoothness at that timescale.
- Previous figure: LEG trained on observations at a timescale of .1, so they match the covariance at that scale.
How well do LEG kernels approximate the Rational Quadratic (RQ) kernel?

\[C_{RQ}(\tau) = \frac{2}{1 + \tau^2} \quad vs \quad C_{LEG}(\tau) = B \exp\left(-\frac{\tau}{2} \left(NN^\top + R - R^\top \right) \right) B^\top + \delta_{\tau=0} \Lambda \Lambda^\top \]

RQ is profoundly different than LEG kernel, yet every RQ kernel is arbitrarily close to a LEG kernel:

- RQ spectrum decays exponentially, and LEG spectrum is asymptotically an inverse polynomial
- ...but this paper guarantees an RQ kernel can be matched uniformly well by a LEG kernel

This apparent contradiction is resolved by considering the different timescales involved in any Gaussian Process:

- LEG uniformly approximate any stationary covariance → uniformly accurate predictions at any fixed timescale
- LEG kernel trained on observations at a timescale → it will attempt to match smoothness at that timescale.
- Previous figure: LEG trained on observations at a timescale of .1, so they match the covariance at that scale.
\[z(t) = z(0) + \int_0^t \left(-\frac{1}{2} \left(NN^\top + R - R^\top \right) z(s)ds + Ndw(s) \right) \]

\[x(t) | z(t) \sim \mathcal{N} \left(Bz(t), \Lambda\Lambda^\top \right) \]
\[z(t) = z(0) + \int_0^t \left(-\frac{1}{2} \left(NN^\top + R - R^\top \right) z(s) ds + Ndw(s) \right) \]

\[x(t) | z(t) \sim \mathcal{N} \left(Bz(t), \Lambda \Lambda^\top \right) \]

- rank 5 ($\ell = 5$) LEG seems to do as well as Chapter 5.4 of Rasmussen and Williams and similar.
- leggps is a usable and very fast package for working with LEG. See also celerite.
gaussian processes and state-space models

latent exponentially generated gaussian processes (leggp)

toolkit: cyclic reduction for parallelizing message passing in tridiagonal (gauss markov) models
Reminder: SSM/GMP/LEGGP are linear time

(I’m making z_t discrete time for simplicity of the reminder here, but it’s the same in c.t.)

all linear operations maintain joint gaussianity

In case this inference operation is distant in your mind:

$$p_\theta(z_t|z_{t-1}) = \mathcal{N}(Az_{t-1}, Q)$$

$$p_\theta(x_t|z_t) = \mathcal{N}(Bz_t, \Lambda)$$

$$p_\theta(z|x) \propto \prod_{t=1}^{T} p_\theta(x_t|z_t)p_\theta(z_t|z_{t-1}) = \mathcal{N}(\mu, \Sigma)$$

$$z = [z_1, \ldots, z_T]^\top \in \mathbb{R}^{dT} \quad x = [x_1, \ldots, x_T]^\top \in \mathbb{R}^{pT}$$
Considering this problem in its natural form clarifies all:

\[\mathcal{N}(\mu, \Sigma) \propto \exp \left\{ -\frac{1}{2} (z - \mu)^\top \Sigma^{-1} (z - \mu) \right\} \propto \exp \left\{ \left[\frac{1}{2} \Sigma^{-1} \mu \right]^\top \left[\begin{array}{c} z \\ zz^\top \end{array} \right] \right\} \overset{\Delta}{=} \exp \left\{ \left[h \right]^\top \left[\begin{array}{c} z \\ zz^\top \end{array} \right] \right\} \]
Considering this problem in its natural form clarifies all:

\[\mathcal{N}(\mu, \Sigma) \propto \exp \left\{ -\frac{1}{2} (\mathbf{z} - \mu)^\top \Sigma^{-1} (\mathbf{z} - \mu) \right\} \propto \exp \left\{ \left[\begin{array}{c} \Sigma^{-1} \mu \\ -\frac{1}{2} \Sigma^{-1} \end{array} \right]^\top \left[\begin{array}{c} \mathbf{z} \\ \mathbf{z}^\top \end{array} \right] \right\} \triangleq \exp \left\{ \left[\begin{array}{c} \mathbf{h} \\ \mathbf{J} \end{array} \right]^\top \left[\begin{array}{c} \mathbf{z} \\ \mathbf{z}^\top \end{array} \right] \right\} \]

Now the LDS model:

\[p_{\theta}(\mathbf{z}|\mathbf{x}) \propto \prod_{t=1}^{T} p_{\theta}(x_t|z_t)p_{\theta}(z_t|z_{t-1}) \]
Considering this problem in its natural form clarifies all:

\[
\mathcal{N}(\mu, \Sigma) \propto \exp\left\{ -\frac{1}{2} (\mathbf{z} - \mu)^\top \Sigma^{-1} (\mathbf{z} - \mu) \right\} \propto \exp\left\{ \begin{bmatrix} \Sigma^{-1} \mu \\ -\frac{1}{2} \Sigma^{-1} \end{bmatrix}^\top \begin{bmatrix} \mathbf{z} \\ \mathbf{z}^\top \end{bmatrix} \right\} \triangleq \exp\left\{ \begin{bmatrix} \mathbf{h} \\ \mathbf{J} \end{bmatrix}^\top \begin{bmatrix} \mathbf{z} \\ \mathbf{z}^\top \end{bmatrix} \right\}
\]

Now the LDS model:

\[
p_\theta(\mathbf{z}|\mathbf{x}) \propto \prod_{t=1}^{T} p_\theta(x_t|z_t)p_\theta(z_t|z_{t-1})
\]

\[
= \prod_{t=1}^{T} \exp\left\{ -\frac{1}{2} (x_t - Bz_t)^\top \Lambda^{-1} (x_t - Bz_t) - \frac{1}{2} (z_t - Az_{t-1})^\top Q^{-1} (z_t - Az_{t-1}) \right\}
\]
Considering this problem in its natural form clarifies all:

\[N(\mu, \Sigma) \propto \exp \left\{ -\frac{1}{2} (z - \mu) \Sigma^{-1} (z - \mu) \right\} \propto \exp \left\{ \left[\begin{array}{c} \Sigma^{-1} \mu \\ -\frac{1}{2} \Sigma^{-1} \end{array} \right]^\top \left[\begin{array}{c} z \\ \Sigma^{-1} \end{array} \right] \right\} \triangleq \exp \left\{ [h]^\top [z] \right\} \]

Now the LDS model:

\[
p_\theta(z|x) \propto \prod_{t=1}^T p_\theta(x_t|z_t) p_\theta(z_t|z_{t-1}) \\
= \prod_{t=1}^T \exp \left\{ -\frac{1}{2} (x_t - Bz_t)^\top \Lambda^{-1} (x_t - Bz_t) - \frac{1}{2} (z_t - Az_{t-1})^\top Q^{-1} (z_t - Az_{t-1}) \right\} \\
\propto \prod_{t=1}^T \exp \left\{ x_t^\top (\Lambda^{-1} B) z_t + z_t^\top (Q^{-1} A) z_{t-1} - \frac{1}{2} z_t^\top (Q^{-1} + A^\top Q^{-1} A + B^\top \Lambda^{-1} B) z_t \right\}
\]

(with some laziness around \(t = 0 \))
Considering this problem in its natural form clarifies all:

\[
\mathcal{N}(\mu, \Sigma) \propto \exp \left\{ -\frac{1}{2} (z - \mu)^\top \Sigma^{-1} (z - \mu) \right\} \propto \exp \left\{ \left[\Sigma^{-1} \mu \right]^\top \left[\begin{array}{c} z \\ z \end{array} \right] \right\} \overset{\Delta}{=} \exp \left\{ \left[h \right]^\top \left[\begin{array}{c} z \\ z \end{array} \right] \right\}
\]

Now the LDS model:

\[
p_{\theta}(z|x) \propto \prod_{t=1}^{T} p_{\theta}(x_t|z_t)p_{\theta}(z_t|z_{t-1}) = \prod_{t=1}^{T} \exp \left\{ -\frac{1}{2} (x_t - B z_t)^\top \Lambda^{-1} (x_t - B z_t) - \frac{1}{2} (z_t - A z_{t-1})^\top Q^{-1} (z_t - A z_{t-1}) \right\}
\]

\[
= \prod_{t=1}^{T} \exp \left\{ x_t^\top (\Lambda^{-1} B) z_t + z_t^\top (Q^{-1} A) z_{t-1} - \frac{1}{2} z_t^\top (Q^{-1} + A^\top Q^{-1} A + B^\top \Lambda^{-1} B) z_t \right\}
\]

(with some laziness around \(t = 0 \))

So it is immediate that the natural parameter \(h = [h_1, \ldots, h_T]^\top \) has form:

\[
h_t = B^\top \Lambda^{-1} x_t
\]
Considering this problem in its natural form clarifies all:

\[
\mathcal{N}(\mu, \Sigma) \propto \exp \left\{ -\frac{1}{2} (\mathbf{z} - \mu)^\top \Sigma^{-1} (\mathbf{z} - \mu) \right\} \propto \exp \left\{ \left[\frac{\Sigma^{-1} \mu}{-\frac{1}{2} \Sigma^{-1}} \right]^\top \left[\frac{\mathbf{z}}{zz^\top} \right] \right\} \triangleq \exp \left\{ [h]^\top \left[\frac{\mathbf{z}}{zz^\top} \right] \right\}
\]

Now the LDS model:

\[
p_\theta(\mathbf{z}|\mathbf{x}) \propto \prod_{t=1}^{T} p_\theta(x_t|z_t)p_\theta(z_t|z_{t-1})
\]

\[
= \prod_{t=1}^{T} \exp \left\{ -\frac{1}{2} (x_t - Bz_t)^\top \Lambda^{-1} (x_t - Bz_t) - \frac{1}{2} (z_t - A z_{t-1})^\top Q^{-1} (z_t - A z_{t-1}) \right\}
\]

\[
\propto \prod_{t=1}^{T} \exp \left\{ x_t^\top (\Lambda^{-1} B) z_t + z_t^\top (Q^{-1} A) z_{t-1} - \frac{1}{2} z_t^\top \left(Q^{-1} + A^\top Q^{-1} A + B^\top \Lambda^{-1} B \right) z_t \right\}
\]

(with some laziness around \(t = 0 \))

So it is immediate that the natural parameter \(\mathbf{h} = [h_1, ..., h_T]^\top \) has form:

\[
h_t = B^\top \Lambda^{-1} x_t
\]
...and the natural parameter J:

$$p_\theta(z|x) \propto \prod_{t=1}^{T} \exp \left\{ x_t^\top (\Lambda^{-1} B) z_t + z_t^\top (Q^{-1} A) z_{t-1} - \frac{1}{2} z_t^\top (B^\top \Lambda^{-1} B + Q^{-1} + A^\top Q^{-1} A) z_t \right\}$$
...and the natural parameter J:

$$p_\theta(z|x) \propto \prod_{t=1}^{T} \exp \left\{ x_t^\top (\Lambda^{-1} B) z_t + z_t^\top (Q^{-1} A) z_{t-1} - \frac{1}{2} z_t^\top \left(B^\top \Lambda^{-1} B + Q^{-1} + A^\top Q^{-1} A \right) z_t \right\}$$

$$-\frac{1}{2} J = \begin{bmatrix} D_0 & F_0^\top \\ F_0 & D_1 & F_1^\top \\ & \ddots & \ddots \\ & & F_{T-1}^\top & D_{T-1} \end{bmatrix} \quad \text{where} \quad \begin{bmatrix} D_t = Q^{-1} + A^\top Q^{-1} A + B^\top \Lambda^{-1} B \\ F_t = -2Q^{-1} A \end{bmatrix}$$
...and the natural parameter J:

$$p_{\theta}(z|x) \propto \prod_{t=1}^{T} \exp \left\{ x_t^\top (\Lambda^{-1} B) z_t + z_t^\top (Q^{-1} A) z_{t-1} - \frac{1}{2} z_t^\top (B^\top \Lambda^{-1} B + Q^{-1} + A^\top Q^{-1} A) z_t \right\}$$

$$-\frac{1}{2} J = \begin{bmatrix} D_0 & F_0^\top & & & \\ F_0 & D_1 & F_1^\top & & \\ & \ddots & \ddots & \ddots & \\ & & F_{T-1}^\top & & \\ & & & D_T & \end{bmatrix} \quad \text{where} \quad \begin{bmatrix} D_t = Q^{-1} + A^\top Q^{-1} A + B^\top \Lambda^{-1} B \\ F_t = -2Q^{-1} A \end{bmatrix}$$

So what?

- block tridiagonal precision matrix: $z_t^\top z_{t-\tau}$ terms $= 0 \ \forall \tau > 1$.
...and the natural parameter J:

$$p_\theta(z|x) \propto \prod_{t=1}^{T} \exp \left\{ x_t^\top \left(\Lambda^{-1} B \right) z_t + z_t^\top \left(Q^{-1} A \right) z_{t-1} - \frac{1}{2} z_t^\top \left(B^\top \Lambda^{-1} B + Q^{-1} + A^\top Q^{-1} A \right) z_t \right\}$$

$$-\frac{1}{2} J = \begin{bmatrix} D_0 & F_0^\top & & & \\ F_0 & D_1 & F_1^\top & & \\ & \ddots & \ddots & \ddots & \\ & & F_{T-1}^\top & \ddots & \\ & & & F_{T-1} & D_T \end{bmatrix}$$

where

$$D_t = Q^{-1} + A^\top Q^{-1} A + B^\top \Lambda^{-1} B$$

$$F_t = -2Q^{-1} A$$

So what?

- **block tridiagonal precision matrix**: $z_t z_{t-\tau}^\top$ terms $= 0 \ \forall \tau > 1$.
- Recover $\mu = -\frac{1}{2} J^{-1} h$ and $\Sigma = -\frac{1}{2} J^{-1}$.
...and the natural parameter J:

$$p_\theta(z|x) \propto \prod_{t=1}^{T} \exp \left\{ x_t^\top (\Lambda^{-1} B) z_t + z_t^\top (Q^{-1} A) z_{t-1} - \frac{1}{2} z_t^\top \left(B^\top \Lambda^{-1} B + Q^{-1} + A^\top Q^{-1} A \right) z_t \right\}$$

$$- \frac{1}{2} J = \begin{bmatrix} D_0 & F_0^\top & F_1^\top & \cdots & F_{T-1}^\top \\ F_0 & D_1 & F_1 & \cdots & F_{T-1} \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ F_{T-1} & \cdots & F_{T-1} & D_T \end{bmatrix}$$

where

$$D_t = Q^{-1} + A^\top Q^{-1} A + B^\top \Lambda^{-1} B$$

$$F_t = -2Q^{-1}A$$

So what?

- **block tridiagonal precision matrix:** $z_t z_{t-\tau}^\top$ terms $= 0 \ \forall \tau > 1$.
- Recover $\mu = -\frac{1}{2} J^{-1} h$ and $\Sigma = -\frac{1}{2} J^{-1}$
- Reparameterize $z^\ell = -\frac{1}{2} J^{-1} h + \left(-\frac{1}{2} J^{-1} \right)^{\frac{1}{2}} \epsilon^\ell$
Kalman filter/smoother

Still, so what...

$$\frac{1}{2} J = \begin{bmatrix} D_0 & F_0^T & F_1^T & \cdots & F_{T-1}^T \\ F_0 & D_1 & F_1^T & \cdots & F_{T-1}^T \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ F_{T-1} & F_{T-1}^T & D_{T-1} & \cdots & D_T \end{bmatrix} = \begin{bmatrix} L_0 & 0 & 0 & \cdots & 0 \\ C_0 & L_1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ C_{T-1} & 0 & C_T & \cdots & 0 \\ 0 & 0 & C_{T-1} & \cdots & L_T \end{bmatrix} \triangleq RR^T$$
Still, so what...

\[-\frac{1}{2} J = \begin{bmatrix} D_0 & F_0^T & \cdots & F_T^T \\ F_0 & D_1 & \cdots & F_{T-1}^T \\ \vdots & \vdots & \ddots & \vdots \\ F_{T-1} & \cdots & F_T^T & D_T \end{bmatrix} = \begin{bmatrix} L_0 & 0 & \cdots & 0 \\ C_0 & L_1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ C_{T-1} & \cdots & 0 & L_T \end{bmatrix} \begin{bmatrix} L_0 & C_0^T & \cdots & C_{T-1}^T \\ 0 & L_1 & \cdots & C_{T-1}^T \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & L_T \end{bmatrix} \triangleq RR^T\]

Iterative solve:

\[L_0 L_0^T = D_0 , \ C_0 L_0^T = F_0 , \ C_0 C_0^T + L_1 L_1^T = D_1 , \ \ldots , \ C_{T-1} C_{T-1}^T + L_T L_T^T = D_T\]
Kalman filter/smoother

Still, so what...

\[-\frac{1}{2} J = \begin{bmatrix} D_0 & F_0^T & F_1^T & \cdots & F_{T-1}^T \\ F_0 & D_1 & F_1^T & \cdots & F_{T-1}^T \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ F_{T-1} & D_T \end{bmatrix} = \begin{bmatrix} L_0 & 0 & 0 & \cdots & 0 \\ C_0 & L_1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ C_{T-2} & \cdots & C_{T-1} & 0 & 0 \\ 0 & \cdots & 0 & L_T \end{bmatrix} \begin{bmatrix} L_0 & 0 & 0 & \cdots & 0 \\ C_0^T & L_1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ C_{T-1}^T & \cdots & C_{T-1}^T & 0 & 0 \\ 0 & \cdots & 0 & L_T^T \end{bmatrix} \triangleq RR^T \]

Iterative solve:

\[L_0L_0^T = D_0, \quad C_0L_0^T = F_0, \quad C_0C_0^T + L_1L_1^T = D_1, \quad \cdots, \quad C_{T-1}C_{T-1}^T + L_TL_T^T = D_T\]

Fast Cholesky factorization (aka fwd/bk substitution, message passing, KF/KS, etc.)

https://software.intel.com/en-us/node/531896
Kalman filter/smoother

Still, so what...

\[-\frac{1}{2} J = \begin{bmatrix} D_0 & F_0^\top & F_1^\top & \cdots & F_{T-1}^\top \\ F_0 & D_1 & F_1 & \cdots & F_{T-1} \\ & \ddots & \ddots & \ddots & \vdots \\ & & F_{T-1} & D_T & \end{bmatrix} = \begin{bmatrix} L_0 & 0 & 0 & \cdots & 0 \\ C_0 & L_1 & 0 & \cdots & 0 \\ & \ddots & \ddots & \ddots & \vdots \\ & & & C_{T-1} & L_T \\ & & & & 0 \end{bmatrix} \begin{bmatrix} L_0 & C_0^\top & \cdots & C_{T-1}^\top \\ 0 & L_1 & \cdots & C_{T-1}^\top \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & \cdots & L_T \end{bmatrix} \triangleq RR^\top \]

Iterative solve:

\[L_0 L_0^\top = D_0, \quad C_0 L_0^\top = F_0, \quad C_0 C_0^\top + L_1 L_1^\top = D_1, \quad \ldots, \quad C_{T-1} C_{T-1}^\top + L_T L_T^\top = D_T \]

Fast Cholesky factorization (aka fwd/bk substitution, message passing, KF/KS, etc.)

And finally we recover either the reparameterization or the closed form posterior:

\[z^\ell = R^{-1} R^{-\top} h + R^{-\top} \epsilon^\ell \]

\[p_\theta(z|x) = \mathcal{N} \left(R^{-1} R^{-\top} h, R^{-1} R^{-\top} \right) \]

▶ All key operations are \(\mathcal{O}(T) \).
Is linear good enough? Not these days:

- Conventional KF/RTS smoothing is linear but entirely serial (forward/backward)
- No access to GPU parallelization

Numerical linear algebra to our rescue (again):

"Cyclic Reduction has proved ... very powerful for solving structured matrix problems. In particular for matrices which are (block) Toeplitz and (block) tri-diagonal, the method is especially useful. The basic idea is to eliminate half the unknowns, regroup the equations and again eliminate half the unknowns. The process is continued ad nauseam."

- Gene Golub (Gander and Golub 1997)

Start with a tridiagonal system:

following Bini and Meini 2008
CYCLIC REDUCTION

Is linear good enough? Not these days:

- Conventional KF/RTS smoothing is linear but entirely serial (forward/backward)
- No access to GPU parallelization
- Numerical linear algebra to our rescue (again):

"Cyclic Reduction has proved ... very powerful for solving structured matrix problems. In particular for matrices which are (block) Toeplitz and (block) tri-diagonal, the method is especially useful. The basic idea is to eliminate half the unknowns, regroup the equations and again eliminate half the unknowns. The process is continued ad nauseum."

- Gene Golub (Gander and Golub 1997)

Start with a tridiagonal system:

following Bini and Meini 2008
Is linear good enough? Not these days:

- Conventional KF/RTS smoothing is linear but entirely serial (forward/backward)
- No access to GPU parallelization
- Numerical linear algebra to our rescue (again):

"Cyclic Reduction has proved ... very powerful for solving structured matrix problems. In particular for matrices which are (block) Toeplitz and (block) tri-diagonal, the method is especially useful. The basic idea is to eliminate half the unknowns, regroup the equations and again eliminate half the unknowns. The process is continued ad nauseum."

- Gene Golub (Gander and Golub 1997)
CYCLIC REDUCTION

Is linear good enough? Not these days:

- Conventional KF/RTS smoothing is linear but entirely serial (forward/backward)
- No access to GPU parallelization
- Numerical linear algebra to our rescue (again):

"Cyclic Reduction has proved ... very powerful for solving structured matrix problems. In particular for matrices which are (block) Toeplitz and (block) tri-diagonal, the method is especially useful. The basic idea is to eliminate half the unknowns, regroup the equations and again eliminate half the unknowns. The process is continued ad nauseum."

- Gene Golub (Gander and Golub 1997)

Start with a tridiagonal system:

\[
\begin{bmatrix}
A & C & 0 \\
B & A & \cdots \\
& \ddots & C \\
0 & B & A \\
\end{bmatrix}
\begin{bmatrix}
u_1 \\
u_2 \\
\vdots \\
u_n \\
\end{bmatrix} =
\begin{bmatrix}
b_1 \\
b_2 \\
\vdots \\
b_n \\
\end{bmatrix}
\]

following Bini and Meini 2008
Subdivide (odds and evens) and permute the system:

\[
\begin{bmatrix}
A & 0 & C & 0 \\
\vdots & B & \ddots & \vdots \\
0 & A & 0 & B \\
B & C & 0 & A \\
\vdots & \vdots & \ddots & \vdots \\
0 & B & C & 0 & A
\end{bmatrix}
\begin{bmatrix}
u_1 \\
u_3 \\
\vdots \\
u_{2^{q-1}-1} \\
u_2 \\
u_4 \\
\vdots \\
u_{2^{q-1}-2}
\end{bmatrix}
=
\begin{bmatrix}
b_1 \\
b_3 \\
\vdots \\
b_{2^{q-1}-1} \\
b_2 \\
b_4 \\
\vdots \\
b_{2^{q-1}-2}
\end{bmatrix}
\]

Write in Schur form:

\[
\begin{bmatrix}
H_{11} & H_{12} \\
H_{21} & H_{22}
\end{bmatrix}
\begin{bmatrix}
\mathbf{u}_{\text{odd}} \\
\mathbf{u}_{\text{even}}
\end{bmatrix}
=
\begin{bmatrix}
\mathbf{b}_{\text{odd}} \\
\mathbf{b}_{\text{even}}
\end{bmatrix}
\]

\((H_{22} - H_{21}H_{11}^{-1}H_{12})\mathbf{u}_{\text{even}} = \mathbf{b}^{(1)}\)

\(\mathbf{b}^{(1)} = \mathbf{b}_{\text{even}} - H_{21}H_{11}^{-1}\mathbf{b}_{\text{odd}}\)
Subdivide (odds and evens) and permute the system:

\[
\begin{bmatrix}
A & 0 & C & 0 \\
\vdots & & B & \ddots \\
0 & \ddots & A & 0 \\
B & C & 0 & A
\end{bmatrix}
\begin{bmatrix}
u_1 \\
u_3 \\
\vdots \\
u_{2^q-1} \\
u_{2^q-2} \\
\vdots \\
u_{2^q-2}
\end{bmatrix}
=
\begin{bmatrix}
b_1 \\
b_3 \\
\vdots \\
b_{2^q-1} \\
b_{2^q-2} \\
\vdots \\
b_{2^q-2}
\end{bmatrix}
\]

Write in Schur form:

\[
\begin{bmatrix}
H_{11} & H_{12} \\
H_{21} & H_{22}
\end{bmatrix}
\begin{bmatrix}
u_{\text{odd}} \\
u_{\text{even}}
\end{bmatrix}
=
\begin{bmatrix}
\begin{bmatrix}
u_{\text{odd}} \\
u_{\text{even}}
\end{bmatrix}
\end{bmatrix}
\]

\[(H_{22} - H_{21}H_{11}^{-1}H_{12})u_{\text{even}} = b^{(1)} \]

\[b^{(1)} = b_{\text{even}} - H_{21}H_{11}^{-1}b_{\text{odd}}\]

"Magically, the Schur complement has the same structure as the original matrix"...
“Magically, the Schur complement has the same structure as the original matrix”...

\[
\begin{bmatrix}
A^{(1)} & C^{(1)} & 0 \\
B^{(1)} & A^{(1)} & \ddots \\
& \ddots & \ddots & C^{(1)} \\
0 & B^{(1)} & A^{(1)} \\
\end{bmatrix}
\begin{bmatrix}
u_2 \\
u_4 \\
\vdots \\
u_{2^q-2} \\
\end{bmatrix} =
\begin{bmatrix}
b_1^{(1)} \\
b_2^{(1)} \\
\vdots \\
b_{2^q-1}^{(1)} \\
\end{bmatrix}
\]

\[b_i^{(1)} = b_{2i} - BA^{-1}b_{2i-1} - CA^{-1}b_{2i+1}, \quad i = 1, \ldots, 2^{q-1} - 1\]

and

\[A^{(1)} = A - BA^{-1}C - CA^{-1}B\]
\[B^{(1)} = -BA^{-1}B\]
\[C^{(1)} = -CA^{-1}C\]

Subdivide again (and again... in fact up to \(k = \log_2 T\) times) to produce a sequence of smaller tridiag systems:

\[
\begin{bmatrix}
A^{(k)} & C^{(k)} & 0 \\
B^{(k)} & A^{(k)} & \ddots \\
& \ddots & \ddots & C^{(k)} \\
0 & B^{(k)} & A^{(k)} \\
\end{bmatrix}
\begin{bmatrix}
u_{1,2^k} \\
u_{2,2^k} \\
\vdots \\
u_{(2^{q-k}-1)2^k} \\
\end{bmatrix} =
\begin{bmatrix}
b_1^{(k)} \\
b_2^{(k)} \\
\vdots \\
b_{2^q-k-1}^{(k)} \\
\end{bmatrix}
\]

How to achieve parallelization:
“Magically, the Schur complement has the same structure as the original matrix”...

\[
\begin{bmatrix}
A^{(1)} & C^{(1)} & 0 \\
B^{(1)} & A^{(1)} & \ddots \\
\vdots & \ddots & \ddots & \ddots \\
0 & B^{(1)} & A^{(1)} & \cdots & 0
\end{bmatrix}
\begin{bmatrix}
u_2 \\
u_4 \\
\vdots \\
u_{2^q-2}
\end{bmatrix}
=
\begin{bmatrix}
b_1^{(1)} \\
b_2^{(1)} \\
\vdots \\
b_{2^q-1-1}^{(1)}
\end{bmatrix}
\quad \text{and}

b_i^{(1)} = b_{2i} - BA^{-1}b_{2i-1} - CA^{-1}b_{2i+1}, \ i = 1, \ldots, 2^{q-1} - 1
\]

Subdivide again (and again... in fact up to \(k = \log_2 T \) times) to produce a sequence of smaller tridiag systems:

\[
\begin{bmatrix}
A^{(k)} & C^{(k)} & 0 \\
B^{(k)} & A^{(k)} & \ddots \\
\vdots & \ddots & \ddots & \ddots \\
0 & B^{(k)} & A^{(k)} & \cdots & 0
\end{bmatrix}
\begin{bmatrix}
u_{1.2^k} \\
u_{2.2^k} \\
\vdots \\
u_{(2^q-k)-1.2^k}
\end{bmatrix}
=
\begin{bmatrix}
b_1^{(k)} \\
b_2^{(k)} \\
\vdots \\
b_{2^q-k-1}^{(k)}
\end{bmatrix}
\]

How to achieve parallelization:

- Original approach: solve the last subdivided systems, back substitute to compute all remaining unknowns.
“Magically, the Schur complement has the same structure as the original matrix”...

\[
\begin{bmatrix}
A^{(1)} & C^{(1)} & 0 \\
B^{(1)} & A^{(1)} & \ddots \\
\vdots & \ddots & \ddots & C^{(1)} \\
0 & B^{(1)} & \cdots & A^{(1)}
\end{bmatrix}
\begin{bmatrix}
u_2 \\
u_4 \\
\vdots \\
u_{2q-2}
\end{bmatrix} =
\begin{bmatrix}
b_1^{(1)} \\
b_2^{(1)} \\
\vdots \\
b_{2q-1-1}^{(1)}
\end{bmatrix}
\]

\[b_i^{(1)} = b_{2i} - BA^{-1}b_{2i-1} - CA^{-1}b_{2i+1}, \quad i = 1, \ldots, 2^{q-1} - 1\]

Subdivide again (and again... in fact up to \(k = \log_2 T\) times) to produce a sequence of smaller tridiag systems:

\[
\begin{bmatrix}
A^{(k)} & C^{(k)} & 0 \\
B^{(k)} & A^{(k)} & \ddots \\
\vdots & \ddots & \ddots & C^{(k)} \\
0 & B^{(k)} & \cdots & A^{(k)}
\end{bmatrix}
\begin{bmatrix}
u_{1,2^k} \\
u_{2,2^k} \\
\vdots \\
u_{(2^{q-k}-1)2^k}
\end{bmatrix} =
\begin{bmatrix}
b_1^{(k)} \\
b_2^{(k)} \\
\vdots \\
b_{2^{q-k}-1}^{(k)}
\end{bmatrix}
\]

How to achieve parallelization:

- Original approach: solve the last subdivided systems, back substitute to compute all remaining unknowns.
- Sweet (1988) recasts \(A^{(k)}u = b\) as \(u = \sum c_i(A - d_iI)^{-1}b\), resulting in \(2^k\) entirely parallel system solves.
Easy way out: leggps package (on github)
Easy way out: leggps package (on github)

- fully parallel construction using Sweet
CYCLIC REDUCTION

Easy way out: leggps package (on github)

- fully parallel construction using Sweet
- handles irregularly-spaced time points
Easy way out: leggps package (on github)

- fully parallel construction using Sweet
- handles irregularly-spaced time points
- handles vector-valued observations
Easy way out: leggps package (on github)

- fully parallel construction using Sweet
- handles irregularly-spaced time points
- handles vector-valued observations
- no parameters to tune (good use of BFGS given small parameterization)
Easy way out: leggps package (on github)

- fully parallel construction using Sweet
- handles irregularly-spaced time points
- handles vector-valued observations
- no parameters to tune (good use of BFGS given small parameterization)

Challenges:
CYCLIC REDUCTION

Easy way out: leggps package (on github)

▶ fully parallel construction using Sweet

▶ handles irregularly-spaced time points

▶ handles vector-valued observations

▶ no parameters to tune (good use of BFGS given small parameterization)

Challenges:

▶ we should do a deep dive on pivoted cholesky, multigrid methods, and cyclic reduction
Easy way out: leggps package (on github)

- fully parallel construction using Sweet
- handles irregularly-spaced time points
- handles vector-valued observations
- no parameters to tune (good use of BFGS given small parameterization)

Challenges:

- we should do a deep dive on pivoted cholesky, multigrid methods, and cyclic reduction
- what is CR from a gaussian conditioning perspective (Schur complementation is the core op)
gaussian processes and state-space models

latent exponentially generated gaussian processes (leggp)

toolkit: cyclic reduction for parallelizing message passing in tridiagonal (gauss markov) models